Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus

Detalhes bibliográficos
Autor(a) principal: Meirelles, Laura Nóbrega
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11920
Resumo: Devido aos problemas gerados pelo uso indiscriminado de acaricidas químicos para o controle de carrapatos, métodos alternativos vem sendo desenvolvidos, como o uso de fungos entomopatogênicos. No entanto, estes entomopatógenos têm sua viabilidade comprometida quando aplicados em condições naturais, sendo indispensável o desenvolvimento de formulações. Neste contexto, as tecnologias de microencapsulamento de agentes de biocontrole são promissoras, pois além de propiciar proteção contra fatores ambientais, aumentam a vida útil do microrganismo encapsulado. A gelificação iônica é uma técnica simples e financeiramente viável que vem sendo estudada para o encapsulamento de fungos entomopatogênicos.Assim, o objetivo do presente estudo foi encapsular os conídios de Metarhizium anisopliae (LCM S01) em alginato de sódio a 2 e 3%, utilizando a técnica de gelificação iônica e avaliar as micropartículas quanto a morfologia externa, concentração, viabilidade, tempo de prateleira, tolerância à irradiação UV-B, termotolerância e eficácia no controle de fêmeas ingurgitadas de Rhipicephalus microplus. A morfologia externa das partículas foi caracterizada através de Microscopia Eletrônica de Varredura e a viabilidade dos conídios encapsulados (EC) foi determinada pelo percentual de germinação. Para o tempo de prateleira, os conídios encapsulados em 2 (EC 2%) ou 3% (EC 3%) de alginato de sódio e os não encapsulados (NEC), foram armazenados por 1, 3, 5, 7, 9 e 11 meses em condição ambiente e em freezer. Quanto à tolerância à UV-B, os conídios EC e NEC foram expostos a dose total de 6.0 ou 8.0 kJ m-2, enquanto que para termotolerância foram submetidos a 42 ºC em banho maria por 2, 4 e 6 horas. Ainda, foram avaliados os parâmetros biológicos de fêmeas ingurgitadas expostas a 30, 60 ou 90 mg de micropartículas em condições laboratoriais. As partículas fúngicas de alginato de sódio a 2 e 3% apresentaram-se esféricas com superfície mais homogênea e heterogênea, respectivamente. O encapsulamento reduziu, cerca de 5× a concentração inicial de conídios e não afetou sua viabilidade. O encapsulamento aumentou a vida útil dos conídios armazenados em ambiente por 1, 3 e 5 meses em relação aos conídios NEC. Em freezer, os conídios NEC germinaram mais do que os EC. Os conídios EC e NEC apresentaram maior viabilidade em freezer do que em ambiente. A exposição ao calor por 6 horas reduziu a germinação de conídios NEC comparados com os EC 2 e 3%. A exposição às diferentes doses de UV-B também reduziu significativamente a germinação dos conídios NEC em relação aos EC. As partículas foram capazes de reduzir significativamente os parâmetros biológicos das fêmeas ingurgitadas quando comparado aos conídios NEC e ao grupo controle, no entanto não houve diferença significativa entre as diferentes quantidades de partículas avaliadas. De forma geral, não foram observadas diferenças significativas entre as concentrações de alginato de sódio utilizadas. Assim, as formulações desenvolvidas no presente estudo aumentaram o tempo de prateleira, a termotolerâcia e a tolerância à UV-B dos conídios de LCM S01 de M. anisopliae, e foram eficazes no controle de fêmeas ingurgitadas de R. microplus, apresentando potencial promissor no controle deste carrapato.
id UFRRJ-1_4e3d536a0333019f7f20d9482f0dd1da
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11920
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Meirelles, Laura NóbregaBittencourt, Vânia Rita Elias Pinheiro505.198.676-53http://lattes.cnpq.br/3888832724995864Camargo, Mariana GuedesBittencourt, Vânia Rita Elias PinheiroGolo, Patrícia SilvaMonteiro, Caio Márcio de Oliveira136.658.017-61https://orcid.org/0000-0002-2214-5038http://lattes.cnpq.br/58571795366307242023-12-22T01:58:48Z2023-12-22T01:58:48Z2021-08-26MEIRELLES, Laura Nobrega. Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus. 2021. 57 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/11920Devido aos problemas gerados pelo uso indiscriminado de acaricidas químicos para o controle de carrapatos, métodos alternativos vem sendo desenvolvidos, como o uso de fungos entomopatogênicos. No entanto, estes entomopatógenos têm sua viabilidade comprometida quando aplicados em condições naturais, sendo indispensável o desenvolvimento de formulações. Neste contexto, as tecnologias de microencapsulamento de agentes de biocontrole são promissoras, pois além de propiciar proteção contra fatores ambientais, aumentam a vida útil do microrganismo encapsulado. A gelificação iônica é uma técnica simples e financeiramente viável que vem sendo estudada para o encapsulamento de fungos entomopatogênicos.Assim, o objetivo do presente estudo foi encapsular os conídios de Metarhizium anisopliae (LCM S01) em alginato de sódio a 2 e 3%, utilizando a técnica de gelificação iônica e avaliar as micropartículas quanto a morfologia externa, concentração, viabilidade, tempo de prateleira, tolerância à irradiação UV-B, termotolerância e eficácia no controle de fêmeas ingurgitadas de Rhipicephalus microplus. A morfologia externa das partículas foi caracterizada através de Microscopia Eletrônica de Varredura e a viabilidade dos conídios encapsulados (EC) foi determinada pelo percentual de germinação. Para o tempo de prateleira, os conídios encapsulados em 2 (EC 2%) ou 3% (EC 3%) de alginato de sódio e os não encapsulados (NEC), foram armazenados por 1, 3, 5, 7, 9 e 11 meses em condição ambiente e em freezer. Quanto à tolerância à UV-B, os conídios EC e NEC foram expostos a dose total de 6.0 ou 8.0 kJ m-2, enquanto que para termotolerância foram submetidos a 42 ºC em banho maria por 2, 4 e 6 horas. Ainda, foram avaliados os parâmetros biológicos de fêmeas ingurgitadas expostas a 30, 60 ou 90 mg de micropartículas em condições laboratoriais. As partículas fúngicas de alginato de sódio a 2 e 3% apresentaram-se esféricas com superfície mais homogênea e heterogênea, respectivamente. O encapsulamento reduziu, cerca de 5× a concentração inicial de conídios e não afetou sua viabilidade. O encapsulamento aumentou a vida útil dos conídios armazenados em ambiente por 1, 3 e 5 meses em relação aos conídios NEC. Em freezer, os conídios NEC germinaram mais do que os EC. Os conídios EC e NEC apresentaram maior viabilidade em freezer do que em ambiente. A exposição ao calor por 6 horas reduziu a germinação de conídios NEC comparados com os EC 2 e 3%. A exposição às diferentes doses de UV-B também reduziu significativamente a germinação dos conídios NEC em relação aos EC. As partículas foram capazes de reduzir significativamente os parâmetros biológicos das fêmeas ingurgitadas quando comparado aos conídios NEC e ao grupo controle, no entanto não houve diferença significativa entre as diferentes quantidades de partículas avaliadas. De forma geral, não foram observadas diferenças significativas entre as concentrações de alginato de sódio utilizadas. Assim, as formulações desenvolvidas no presente estudo aumentaram o tempo de prateleira, a termotolerâcia e a tolerância à UV-B dos conídios de LCM S01 de M. anisopliae, e foram eficazes no controle de fêmeas ingurgitadas de R. microplus, apresentando potencial promissor no controle deste carrapato.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorDue to the problems generated by the indiscriminate use of chemical acaricides to control ticks, alternative methods have been developed, such as the use of entomopathogenic fungi. However, these entomopathogens have their viability compromised when applied under natural conditions, being indispensable the development of formulations. In this context, microencapsulation technologies for biocontrol agents are promising; since it provides protection against environmental factors as well as increased the encapsulated microorganism shelf life. Ionic gelation is a simple and financially viable technique when employed for the entomopathogenic fungi encapsulation. Thus, the aim of the present study was encapsulate the Metarhizium anisopliae conidia (LCM S01) in 2 and 3% sodium alginate, using the ionic gelation technique and, evaluate the external morphology, concentration, viability, shelf life, tolerance of UV-B irradiation, thermotolerance and efficacy of these microparticles in the control of Rhipicephalus microplus engorged females. The external morphology was characterized by ScanningElectron Microscopy (SEM) and the encapsulated conidia (EC) viability was determined by the germination percentage. For shelf life, conidia encapsulated in 2 (EC 2%) or 3% (EC 3%) of sodium alginate and unencapsulated (NEC) were stored for 1, 3, 5, 7, 9 and 11 months at room temperature and in a freezer. For UV-B tolerance assay, EC and NEC were exposed to 6.0 or 8.0 kJ m-2, while for thermotolerance, they were submitted to 42 ºC in a water bath for 2, 4 and 6 hours. Furthermore, the biological parameters of engorged females exposed to 30, 60 or 90 mg of microparticles under laboratory conditions wereevaluated. 2 and 3% sodium alginate fungal particles were spherical with a more homogeneous and heterogeneous surface, respectively. Encapsulation did not cause severe conidia losses and did not affect their viability. Encapsulation increased the conidia shelf life stored at room temperature for 1, 3 and 5 months compared to NEC. In the freezer, NEC germinated more than EC. The EC and NEC showed greater viability in the freezer when compared to room temperature. Heat exposure for 6 hours reduced the NEC germination compared to EC 2 and 3%. Different UV-B doses exposure also significantly reduced the NEC germination compared to EC. The particles were able to reduce significantly the engorged females’ biological parameters when compared to NEC and the control group, however, there was no significant difference between the particles evaluated. In general, no significant differences were observed between the sodium alginate concentrations used. Thus, the formulations developed in the present study increased M. anisopliae (LCM S01) shelf life, thermotolerance and UV-B tolerance, and were effective in R. microplus engorged females control, showing promising potential to control this tick.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de Veterináriafungos entomopatogênicosalginato de sódiogelificação iônicaentomopathogenic fungusionic gelationsodium alginateMedicina VeterináriaEncapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplusMetarhizium anisopliae conidial encapsulation: evaluation of stability and control potential of Rhipicephalus microplusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisALVES, F. M.; BERNARDO, C. C.; PAIXÃO, F. R.; BARRETO, L. P.; LUZ, C.; HUMBER, R. A.; FERNANDES, É. K. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitology research, v. 116, n. 1, p. 111-121, 2016. ACUÑA-JIMÉNEZ, M.; ROSAS-GARCÍA, N. M.; LÓPEZ-MEYER, M.; SAÍNZHERNÁNDEZ, J. C.; MUNDO-OCAMPO, M.; GARCÍA-GUTIÉRREZ, C. Pathogenicity of microencapsulated insecticide from Beauveria bassiana and Metarhizium anisopliae against tobacco budworm, Heliothis virescens (Fabricius). Southwestern Entomologist, v. 40, n. 3, p. 531–538, 2015. ALVES, S. B. Controle microbiano de insetos. Piracicaba, SP: FEALQ: [s. n.], 1998. AW, K. M. S.; HUE, S. M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, v. 3, n. 2, 2017. ALVES, S. B.; RISCO, S. H.; ALMEIDA, L. C. Influence of photoperiod and temperature on the development and sporulation of Metarhizium anisopliae (Metsch.) Sorok. Zeitschrift für Angewandte Entomologie, v. 97, n. 1‐5, p. 127-129, 1984. BARRETO, L. P.; LUZ, C.; MASCARIN, G. M.; ROBERTS, D. W.; ARRUDA, W.; FERNANDES, É. K.K. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium. Journal of Invertebrate Pathology, v. 138, p. 94–103, 2016. BENNETT, G. F. Ovoposition of Boophilus microplus (CANESTRINI) (ACARIDA: IXODIDAE): influence of tick size on egg production. Acarologia, v. 16, p. 52–61, 1974. BIDOCHKA, M. J.; ST. LEGER, R. J.; ROBERTS, D. W. Mechanisms of deuteromycete fungal infections in grasshoppers and locusts: an overview. Memoirs of the Entomological Society of Canada, v. 129, n. S171, p. 213–224, 1997. BISCHOFF, J. F.; REHNER, S. A.; HUMBER, R. A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, n. 4, p. 512–530, 2009. BITENCOURT, R. O. B.; DOS SANTOS MALLET, J. R.; MESQUITA, E.; GÔLO, P. S.; FIOROTTI, J.; BITTENCOURT, V. E. P.; PONTES, E. G.; ANGELO, I. C. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Tropica, v. 213, 2021. BITTENCOURT, V. R. E. P.; MASSARD, C. L.; LIMA, A. F. Ação do fungo Metarhizium anisopliae sobre a fase não parasitária do ciclo biológico de Boophilus microplus. Rev Univ Rural Ser Cienc Vida, v. 16, p. 41–47, 1994. BOKKHIM, H.; NEUPANE, P.; GURUNG, S.; SHRESTHA, R. Encapsulation of Saccharomyces cerevisiae in alginate beads and its application for wine making. Journal of Food Science and Technology Nepal, v. 10, p. 18–23, 2018. BRAGA, G. U. L.; FLINT, S. D.; MESSIAS, C. L.; ANDERSON, A. J.; ROBERTS, D. W. Effects of UVB Irradiance on Conidia and Germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A Study of Reciprocity and Recovery. Photochemistry and Photobiology, v. 73, n. 2, p. 140, 2001a. BRAGA, G. U. L.; FLINT, S. D.; MILLER, C. D.; ANDERSON, A. J.; ROBERTS, D.W. Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the Entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, vol. 74, n. 5, p. 734, 2001b. BRAGA, G. U. L.; RANGEL, D. E. N.; FERNANDES, É. K. K.; FLINT, S. D.; ROBERTS, D. W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, v. 61, n. 3, p. 405–425, 2015. CAMARGO, M. G.; MARCIANO, A. F.; SÁ, F. A.; PERINOTTO, W. M. S.; QUINELATO, S.; GÔLO, P. S.; ANGELO, I. C.; PRATA, M. C. A.; BITTENCOURT, V. R. E. P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, n. 1–2, p. 271–276, 2014. CAMARGO, M. G.; NOGUEIRA, M. R. S.; MARCIANO, A. F.; PERINOTTO, W. M. S.; COUTINHO-RODRIGUES, C. J. B.; SCOTT, F. B.; ANGELO, I. C.; PRATA, M. C. A.; BITTENCOURT, V. R. E. P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38–42, 2016. CAMARGO, M. G.; GOLO, P. S.; ANGELO, I. C; PERINOTTO, W. M. S.; SÁ, Fillipe A.; QUINELATO, S.; BITTENCOURT, V. R. E. P. Veterinary Parasitology Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, n. 1–2, p. 140–147, 2012. CORVAL, A. R. C.; MESQUITA, E.; CORRÊA, T. A.; SILVA, C. S. R.; BITENCOURT, R. O. B.; FERNANDES, É. K. K.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W.; GÔLO, P. S. UV‐B tolerances of conidia, blastospores, and microsclerotia of Metarhizium spp. entomopathogenic fungi. Journal of Basic Microbiology, v. 61, n. 1, p. 15–26, 2021. DOS SANTOS, G. F.; LOCATELLI, G. O.; COÊLHO, D. A.; BOTELHO, P. S.; DE AMORIM, M. S.; DE VASCONCELOS, T. C.L.; BUENO, L. A. Factorial design, preparation and characterization of new beads formed from alginate, polyphosphate and glycerol gelling solution for microorganism microencapsulation. Journal of Sol-Gel Science and Technology, vol. 75, n. 2, p. 345–352, 2015. DRUMMOND, R. O.; GLADNEY, W. J.; WHETSTONE, T. M.; ERNST, S. E. Laboratory testing of insecticides for control of the winter tick. Journal Economic Entomology, v. 64, p. 686–688, 1971. ESTRADA-PEÑA, A.; BOUATTOUR, A.; CAMICAS, J. L.; GUGLIELMONE, A.; HORAK, I.; JONGEJAN, F.; LATIF, A.; PEGRAM, R.; WALKER, A. R. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Experimental and Applied Acarology, vol. 38, n. 2–3, p. 219– 235, 2006. FANG, W.; PAVA-RIPOLL, M.; WANG, S.; ST. LEGER, R. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology, v. 46, n. 3, p. 277–285, 2009. FARIA, M. R.; WRAIGHT, S. P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, v. 43, n. 3, p. 237–256, 2007. FERNANDES, É K.K.; KEYSER, C. A.; CHONG, J. P.; RANGEL, D. E.N.; MILLER, M. P.; ROBERTS, D. W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v. 108, n. 1, p. 115–128, 2010a. FERNANDES, É. K. K.; KEYSER, C. A.; RANGEL, D. E. N.; FOSTER, R. N.; ROBERTS, Donald W. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, v. 54, n. 3, p. 197–205, 2010b. FERNANDES, É. K. K.; RANGEL, D. E. N.; MORAES, Á. M. L.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, v. 98, n. 1, p. 69–78, 2008. FERNANDES, É. K. K.; RANGEL, D. E. N.; MORAES, Á. M. L.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Journal of Invertebrate Pathology, v. 96, n. 3, p. 237–243, 2007. FERNANDES, É. K. K.; BITTENCOURT, V. R. E. P. Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, v. 46, n. 1–4, p. 71–93, 2008. FERNÁNDEZ-BRAVO, M.; FLORES-LEÓN, A.; CALERO-LÓPEZ, S.; GUTIÉRREZSÁNCHEZ, F.; VALVERDE-GARCÍA, P.; QUESADA-MORAGA, E. UV-B radiationrelated effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. strains. Journal of Invertebrate Pathology, v. 148, p. 142–151, 2017. FRACETO, L. F; MARUYAMA, C. R.; GUILGER, M.; MISHRA, S.; KESWANI, C.; SINGH, H. B.; DE LIMA, R.. Trichoderma harzianum -based novel formulations: potential applications for management of Next-Gen agricultural challenges. Journal of Chemical Technology & Biotechnology, v. 93, n.8, p. 2056–2063, 2018. FU, N.; CHEN, X. D. Towards a maximal cell survival in convective thermal drying processes. Food Research International, v. 44, n. 5, p. 1127–1149, 2011. FURLONG, J; MARTINS, J. R; PRATA, M. C. A. O carrapato dos bovinos e a resistência: temos o que comemorar? A Hora Veterinária, v.159, p. 1–7, 2007. GARCIA-CRUZ, C. H.; FOGGETTI, U.; SILVA, A. N. Alginato bacteriano: aspectos tecnológicos, características e produção. Química Nova, v. 31, n. 7, p. 1800–1806, 2008. GARCÍA-GUTIÉRREZ, K.; POGGY-VARALDO, H. M.; ESPARZA-GARCÍA, F.; IBARRA-RENDÓN, J.; BARRERA-CORTÉS, J. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. Bioprocess and Biosystems Engineering, v. 34, n. 6, p. 701–708, 2011. GRISI, L.; LEITE, R. C.; MARTINS, J. R. S.; DE BARROS, A. T. M.; ANDREOTTI, R.; CANÇADO, P. H. D.; DE LEÓN, A. A. P.; PEREIRA, J. B.; VILLELA, H. S. Reavaliação do potencial impacto econômico de parasitos de bovinos no Brasil. Revista Brasileira de Parasitologia Veterinaria, v. 23, n. 2, p. 150–156, 2014. GUISELEY, K. B. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme and Microbial Technology, v. 11, n. 11, p. 706–716, 1989. HORN, S. C.; ARTECHE, C. C. P. Situação parasitária da pecuária no Brasil. A Hora Veterinária, v. 4, p. 12–32, 1985. HUMBER. Preservation of entomopathogenic fungal cultures. Manual of Techniques in Invertebrate Pathology, p. 317–327, 2012. HURTADO, O. J. B.; GIRALDO-RÍOS, C. Economic and Health Impact of the Ticks in Production Animals. Ticks and Tick-Borne Pathogens. [S. l.]: IntechOpen, 2019. JARONSKI, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl, v. 55, n. 1, p. 159–185, 2010. JONES, G. A.; PERINOTTO, W. M. S.; CAMARGO, M. G.; GOLO, P. S.; BITTENCOURT, V. R. E. P. Selection of Metarhizium spp. Brazilian isolates to control Rhipicephalus microplus ticks: In vitro virulence tests and conidiogenesis. Revista Brasileira de Medicina Veterinaria, v. 43, p. 1–13, 2021. KAAYA, G. P.; SAMISH, M.; HEDIMBI, M.; GINDIN, G.; GLAZER, I. Control of tick populations by spraying Metarhizium anisopliae conidia on cattle under field conditions. Experimental and Applied Acarology, v. 55, n. 3, p. 273–281, 2011. KEYSER, C. A.; FERNANDED, E. K. K.; RANGEL, D. E.; Roberts, D. W. Heat-induced post-stress growth delay: A biological trait of many Metarhizium isolates reducing biocontrol efficacy?. Journal of invertebrate pathology, v. 120, p. 67-73, 2014. KLAFKE, G.; WEBSTER, A.; DALL AGNOL, B.; PRADEL, E.; SILVA, J.; DE LA CANAL, L. H.; BECKER, M.; OSÓRIO, M. F.; MANSSON, M.; BARRETO, R.; SCHEFFER, R.; SOUZA, U. A.; CORASSINI, V. B.; DOS SANTOS, J.; RECK, J.; MARTINS, J. R. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks and Tick-borne Diseases, v. 8, n. 1, p. 73–80, 2017. LEONG, J. Y.; LAM, W. H.; HO, K.W.; VOO, W. P.; LEE, M. F. X.; LIM, H. P.; LIM, S.; TEY, B.T.; PONCELET, D.; CHAN, E. S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44–60, 2016. . LIU, C. P.; LIU, S. D. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. Journal of Microencapsulation, v. 26, n. 5, p. 377-384, 2009a. LIU, Ching Piao; LIU, Shan Da. Low-temperature spray drying for the microencapsulation of the fungus beauveria bassiana. Drying Technology, v., n. 6, p. 747–753, 2009b. LOCATELLI, G. O.; DOS SANTOS, G. F.; BOTELHO, P. S.; FINKLER, C. L. L.; BUENO, L. A. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control, v. 117, p. 21–29, 2018. LOPES, R. B.; MARTINS, I.; SOUZA, D.; FARIA, M. Influence of some parameters on the germination assessment of mycopesticides. Journal of Invertebrate Pathology, v. 112, n. 3, p. 236–242, 2013. LORENZ, S. C.; HUMBERT, P.; PATEL, A. V. Chitin increases drying survival of encapsulated Metarhizium pemphigi blastospores for Ixodes ricinus control. Ticks and Tickborne Diseases, v. 11, . 6, p. 101537, 2020. LOTFIPOUR, F.; MIRZAEEI, S.; MAGHSOODI, M. Evaluation of the effect of cacl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Advanced Pharmaceutical Bulletin, vol. 2, n. 1, p. 71–78, 2012. MARANGA, R. O.; KAAYA, G. P.; MUEKE, J. M.; HASSANALI, A. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia, v. 159, n. 4, p. 527–532, 2005. MARCIANO, A. F.; GOLO, P. S.; COUTINHO-RODRIGUES, C. J.B.; CAMARGO, M. G.; FIOROTTI, J.; MESQUITA, E.; CORRÊA, T. A.; PERINOTTO, W. M.S.; BITTENCOURT, V. R.E.P. Metarhizium anisopliae sensu lato (s.l.) oil-in-water emulsions drastically reduced Rhipicephalus microplus larvae outbreak population on artificially infested grass. Medical and Veterinary Entomology, v. 34, n. 4, p. 488–492, 2020. MARCIANO, A. F.; MASCARIN, G. M.; FRANCO, R. F.; GOLO, P. S.; JARONSKI, S. T.; FERNANDES, Éverton K. K.; BITTENCOURT, V. R. E. P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Scientific Reports, v. 11, n. 1, p. 1–11, 2021. MARUYAMA, C. R.; BILESKY-JOSÉ, N.; DE LIMA, R.; FRACETO, L. F. Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Frontiers in Bioengineering and Biotechnology, v. 8, p. 1–14, 2020. MASCARIN, G. M.; LOPES, R. B.; DELALIBERA, Í.; FERNANDES, É. K. K.; LUZ, C.; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, v. 165, p. 46–53, 2019. MENT, D.; GINDIN, G.; ROT, A.; SOROKER, Victoria.; GLAZER, I.; BAREL, S.; SAMISH, M.. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia, to the tick cuticle. Applied and Environmental Microbiology, vol. 76, n.11, p. 3521–3528, 2010. MESQUITA, E.; MARCIANO, A. F.; CORVAL, A. R. C.; FIOROTTI, J.; CORRÊA, T. A.; QUINELATO, S.; BITTENCOURT, V. R. E. P.; GOLO, P. S. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl, v. 65, n.. 3, p. 353–362, 2020. MILNER, R. J.; HUPPATZ, R. J.; SWARIS, S. C. A new method for assessment of germination of Metarhizium conidia. Journal of Invertebrate Pathology, v 57, n 1, p. 121– 123, 1991. MILNER, R. J.; LOZANO, L. B.; DRIVER, F.; HUNTER, D. A comparative study of two Mexican isolates with an Australian isolate of Metarhizium anisopliae var. acridum–strain characterisation, temperature profile and virulence for wingless grasshopper, Phaulacridium vittatum. BioControl, v. 48, n. 3, p. 335-348, 2003. MONTEIRO, S. G. Parasitologia na medicina veterinária. 2nd ed. [S. l.: s. n.], 2017. MORGAN, C. A.; HERMAN, N.; WHITE, P. A.; VESEY, G. Preservation of microorganisms by drying; A review. Journal of Microbiological Methods, v. 66, n.2, p. 183–193 MUÑOZ-CELAYA, A. L.; ORTIZ-GARCÍA, M.; VERNON-CARTER, E. J.; JAUREGUIRINCÓN, J.; GALINDO, E.; SERRANO-CARREÓN, L. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydrate Polymers, v. 88, n. 4, p. 1141–1148, 2012. MURANO, E. Use of natural polysaccharides in the microencapsulation techniques. Journal of Applied Ichthyology, v. 14, n. 3–4, p. 245–249, 1998. MURRELL, A.; BARKER, S. C. Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systematic Parasitology, v. 56, n.3, p. 169–172, 2003. NASCIMENTO, É.; DA SILVA, S. H.; MARQUES, E. R.; ROBERTS, D. W.; BRAGA, G. U. L. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochemistry and Photobiology, v. 86, n. 6, p. 1259–1266, 2010. PAIXÃO, F. R., FERNANDES, É. K. K., PEDRINI, N. Thermotolerance of Fungal Conidia. in Microbes for Sustainable Insect Pest Management, Sustainability in Plant and Crop Protection. Cham, , p. 185–196, 2019. PAIXÃO, F. R.S.; MUNIZ, E. R.; BARRETO, L. P.; BERNARDO, C. C.; MASCARIN, G. M.; LUZ, C.; FERNANDES, K. K. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and Metarhizium robertsii. Biocontrol Science and Technology, v. 27, n. 3, p. 324–337, 2017. PATIL, J. S.; KAMALAPUR, M. V.; MARAPUR, S. C.; KADAM, D. V. Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 1, p. 241–248, 2010. PEREIRA, R. M., ROBERTS, D. W. Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, v. 84, p. 1657–1661, 1991. . POLAR, P.; DE MURO, M. A.; KAIRO, M. T. K.; MOORE, D.; PEGRAM, R.; JOHN, S. A.; ROACH-BENN, C. Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Veterinary Parasitology, v. 134, p. 159–167, 2005. POWELL, R. T., REID, T. J. Project tick control [Boophilus microplus, cattle breeds, prevention, resistance, Australia]. Queensland agricultural journal, v. 108, p. 279–300, 1982. . PRZYKLENK, M.; VEMMER, M.; HANITZSCH, M.; PATEL, A. A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. Journal of Microencapsulation, v. 34, n. 5, p. 498–512, 2017. QIU, H.; FOX, E. G. P.; QIN, C. S.; ZHAO, D.Y.; YANG, H; XU, J. Z. Microcapsuled entomopathogenic fungus against fire ants, Solenopsis invicta. Biological Control, v. 134, n. 1, p. 141–149, 2019. QUAITE, F. E., SUTHERLAND, B. M.; SUTHERLAND, J. C. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, v. 358, p. 576–578, 1992. RANGEL, D. E. N.; BRAGA, G. U. L.; ANDERSON, A. J.; ROBERTS, D. W. Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, v. 88, n. 2, p. 116–125, 2005. RANGEL, D. E. N.; FERNANDES, É. K. K.; DETTENMAIER, S. J.; ROBERTS, D. W. Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. Journal of Basic Microbiology, v. 50, n.4, p. 344–350, 2010. RANGEL, D. E. N.; ROBERTS, D. W. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Journal of Invertebrate Pathology, v. 157, p. 32–35, 2018. RECK, J.; KLAFKE, G. M.; WEBSTER, A.; DALL’AGNOL, B.; SCHEFFER, R.; SOUZA, U. A.; CORASSINI, V. B.; VARGAS, R.; DOS SANTOS, J. S.; MARTINS, J. R. S. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Veterinary Parasitology, v. 201, n 1–2, p. 128–136, 2014. ROBERTS, D. W. AND CAMPBELL, A. S. Stability of entomopathogenic fungi. 1967. ROBERTS, D. W.; ST. LEGER, R. J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, v. 54, p. 1–70, 2004. RODRIGUES, I. M. W.; FILHO, A. B.; GIORDANO, I. B.; DENADAE, B. E.; FERNANDES, J. B.; FORIM, M.Rossi. Compatibilidade de polímeros aos fungos Beauveria bassiana e Metarhizium anisopliae e a estabilidade dos seus produtos formulados. Acta Scientiarum - Agronomy, v. 39, n. 4, p. 457–464, 2017. RODRIGUEZ-VIVAS, R. I.; JONSSON, N. N.; BHUSHAN, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, v. 117, n. 1, p. 3–29, 2018. SAMISH, M.; GINSBERG, H.; GLAZER, I. Biological control of ticks. Parasitology, v. 129, 2004. SANTI, L; BEYS DA SILVA, W. O.; BERGER, M.; GUIMARÃES, J. A.; SCHRANK, A.; VAINSTEIN, M. H. Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, v. 55, n. 4, p. 874–880, 2010. SANTOS, T. R.; DA PAIXÃO, F. R. S; CATÃO, A. M. L.; MUNIZ, E. R.; RIBEIROSILVA, C. S.; TAVEIRA, S. F.; LUZ, C.; MASCARIN, G. M.; FERNANDES, É. K. K.; MARRETO, R. N. Inorganic pellets containing microsclerotia of Metarhizium anisopliae: a new technological platform for the biological control of the cattle tick Rhipicephalus microplus. Applied Microbiology and Biotechnology, v. 105, n. 12, p. 5001–5012, 2021. SCHRANK, A.; VAINSTEIN, M. H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, n. 7, p. 1267–1274, 2010. SMIDSROD, O; SKJAKBRK, G. Alginate as immobilization matrix for cells. Trends in Biotechnology, vol. 8, p. 71–78, 1990. SOUZA HIGA, L. O. Acaricide Resistance Status of the Rhipicephalus microplus in Brazil: A Literature Overview. Medicinal Chemistry, v. 5, n. 7, p. 326–333, 2015. ST.LEGER, R. J.; BUTT, T. M.; GOETTEL, M. S.; STAPLES, R. C.; ROBERTS, D. W. Productionin vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, v. 13, n. 3, p. 274–288, 1989. SULLIVAN, C. F.; PARKER, B. L.; KIM, J. S.; SKINNER, M. Effectiveness of granular formulations of Metarhizium anisopliae and Metarhizium brunneum (Hypocreales: Clavicipitaceae) on off-host larvae of Dermacentor albipictus (Acari: Ixodidae). Biocontrol Science and Technology, v. 0, n. 0, p. 1–15, 2021. WALSTAD, J. D.; ANDERSON, R. F.; STAMBAUGH, W. J. Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarrhizium anisopliae). Journal of Invertebrate pathology, v. 16, n. 2, p. 221-226, 1970. VALSONI, L. M.; FREITAS, M. G.; ECHEVERRIA, J. T.; BORGES, D. G. L.; TUTIJA, J.; BORGES, F. A. Resistance to all chemical groups of acaricides in a single isolate of Rhipicephalus microplus in Mato Grosso do Sul, Brazil. International Journal of Acarology, v. 46, n. 4, p. 276–280, 2020. VEMMER, M.; PATEL, A. V. Review of encapsulation methods suitable for microbial biological control agents. Biological Control, v. 67, n. 3, p. 380–389, 2013. VIEIRA, M. V.; PASTRANA, L. M.; FUCIÑOS, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine drugs, v. 18, n. 12, 2020. VILELA, V. L. R.; FEITOSA, T. F.; BEZERRA, R. A.; KLAFKE, G. M.; RIET-CORREA, F. Multiple acaricide-resistant Rhipicephalus microplus in the semi-arid region of Paraíba State, Brazil. Ticks and Tick-borne Diseases, v. 11, n. 4, p. 101413, 2020. WHARTON, R. H. Control of arthropods of medical and veterinary importance. London: Plenum Press, , p. 134–177, 1974. . ZIMMERMANN, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, v. 17, n. 6, p. 553–596, 2007a. ZIMMERMANN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879–920, 2007b.https://tede.ufrrj.br/retrieve/73038/2021%20-%20Laura%20Nobrega%20Meirelles.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6545Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-27T18:55:41Z No. of bitstreams: 1 2021 - Laura Nobrega Meirelles.pdf: 2521114 bytes, checksum: 986acab977c86c78e1a6853bada700e5 (MD5)Made available in DSpace on 2023-04-27T18:55:41Z (GMT). No. of bitstreams: 1 2021 - Laura Nobrega Meirelles.pdf: 2521114 bytes, checksum: 986acab977c86c78e1a6853bada700e5 (MD5) Previous issue date: 2021-08-26info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Laura Nobrega Meirelles.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/1/2021%20-%20Laura%20Nobrega%20Meirelles.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Laura Nobrega Meirelles.pdf.txtExtracted Texttext/plain131457https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/2/2021%20-%20Laura%20Nobrega%20Meirelles.pdf.txtb23c417c8955d6b1f0ca8f283dcbffa8MD52ORIGINAL2021 - Laura Nobrega Meirelles.pdfapplication/pdf2521114https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/3/2021%20-%20Laura%20Nobrega%20Meirelles.pdf986acab977c86c78e1a6853bada700e5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/119202023-12-21 22:58:48.109oai:rima.ufrrj.br:20.500.14407/11920Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:58:48Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
dc.title.alternative.eng.fl_str_mv Metarhizium anisopliae conidial encapsulation: evaluation of stability and control potential of Rhipicephalus microplus
title Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
spellingShingle Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
Meirelles, Laura Nóbrega
fungos entomopatogênicos
alginato de sódio
gelificação iônica
entomopathogenic fungus
ionic gelation
sodium alginate
Medicina Veterinária
title_short Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
title_full Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
title_fullStr Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
title_full_unstemmed Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
title_sort Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus
author Meirelles, Laura Nóbrega
author_facet Meirelles, Laura Nóbrega
author_role author
dc.contributor.author.fl_str_mv Meirelles, Laura Nóbrega
dc.contributor.advisor1.fl_str_mv Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.advisor1ID.fl_str_mv 505.198.676-53
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3888832724995864
dc.contributor.advisor-co1.fl_str_mv Camargo, Mariana Guedes
dc.contributor.referee1.fl_str_mv Bittencourt, Vânia Rita Elias Pinheiro
dc.contributor.referee2.fl_str_mv Golo, Patrícia Silva
dc.contributor.referee3.fl_str_mv Monteiro, Caio Márcio de Oliveira
dc.contributor.authorID.fl_str_mv 136.658.017-61
https://orcid.org/0000-0002-2214-5038
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5857179536630724
contributor_str_mv Bittencourt, Vânia Rita Elias Pinheiro
Camargo, Mariana Guedes
Bittencourt, Vânia Rita Elias Pinheiro
Golo, Patrícia Silva
Monteiro, Caio Márcio de Oliveira
dc.subject.por.fl_str_mv fungos entomopatogênicos
alginato de sódio
gelificação iônica
topic fungos entomopatogênicos
alginato de sódio
gelificação iônica
entomopathogenic fungus
ionic gelation
sodium alginate
Medicina Veterinária
dc.subject.eng.fl_str_mv entomopathogenic fungus
ionic gelation
sodium alginate
dc.subject.cnpq.fl_str_mv Medicina Veterinária
description Devido aos problemas gerados pelo uso indiscriminado de acaricidas químicos para o controle de carrapatos, métodos alternativos vem sendo desenvolvidos, como o uso de fungos entomopatogênicos. No entanto, estes entomopatógenos têm sua viabilidade comprometida quando aplicados em condições naturais, sendo indispensável o desenvolvimento de formulações. Neste contexto, as tecnologias de microencapsulamento de agentes de biocontrole são promissoras, pois além de propiciar proteção contra fatores ambientais, aumentam a vida útil do microrganismo encapsulado. A gelificação iônica é uma técnica simples e financeiramente viável que vem sendo estudada para o encapsulamento de fungos entomopatogênicos.Assim, o objetivo do presente estudo foi encapsular os conídios de Metarhizium anisopliae (LCM S01) em alginato de sódio a 2 e 3%, utilizando a técnica de gelificação iônica e avaliar as micropartículas quanto a morfologia externa, concentração, viabilidade, tempo de prateleira, tolerância à irradiação UV-B, termotolerância e eficácia no controle de fêmeas ingurgitadas de Rhipicephalus microplus. A morfologia externa das partículas foi caracterizada através de Microscopia Eletrônica de Varredura e a viabilidade dos conídios encapsulados (EC) foi determinada pelo percentual de germinação. Para o tempo de prateleira, os conídios encapsulados em 2 (EC 2%) ou 3% (EC 3%) de alginato de sódio e os não encapsulados (NEC), foram armazenados por 1, 3, 5, 7, 9 e 11 meses em condição ambiente e em freezer. Quanto à tolerância à UV-B, os conídios EC e NEC foram expostos a dose total de 6.0 ou 8.0 kJ m-2, enquanto que para termotolerância foram submetidos a 42 ºC em banho maria por 2, 4 e 6 horas. Ainda, foram avaliados os parâmetros biológicos de fêmeas ingurgitadas expostas a 30, 60 ou 90 mg de micropartículas em condições laboratoriais. As partículas fúngicas de alginato de sódio a 2 e 3% apresentaram-se esféricas com superfície mais homogênea e heterogênea, respectivamente. O encapsulamento reduziu, cerca de 5× a concentração inicial de conídios e não afetou sua viabilidade. O encapsulamento aumentou a vida útil dos conídios armazenados em ambiente por 1, 3 e 5 meses em relação aos conídios NEC. Em freezer, os conídios NEC germinaram mais do que os EC. Os conídios EC e NEC apresentaram maior viabilidade em freezer do que em ambiente. A exposição ao calor por 6 horas reduziu a germinação de conídios NEC comparados com os EC 2 e 3%. A exposição às diferentes doses de UV-B também reduziu significativamente a germinação dos conídios NEC em relação aos EC. As partículas foram capazes de reduzir significativamente os parâmetros biológicos das fêmeas ingurgitadas quando comparado aos conídios NEC e ao grupo controle, no entanto não houve diferença significativa entre as diferentes quantidades de partículas avaliadas. De forma geral, não foram observadas diferenças significativas entre as concentrações de alginato de sódio utilizadas. Assim, as formulações desenvolvidas no presente estudo aumentaram o tempo de prateleira, a termotolerâcia e a tolerância à UV-B dos conídios de LCM S01 de M. anisopliae, e foram eficazes no controle de fêmeas ingurgitadas de R. microplus, apresentando potencial promissor no controle deste carrapato.
publishDate 2021
dc.date.issued.fl_str_mv 2021-08-26
dc.date.accessioned.fl_str_mv 2023-12-22T01:58:48Z
dc.date.available.fl_str_mv 2023-12-22T01:58:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MEIRELLES, Laura Nobrega. Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus. 2021. 57 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11920
identifier_str_mv MEIRELLES, Laura Nobrega. Encapsulamento de conídios de Metarhizium anisopliae: avaliação da estabilidade e potencial no controle de Rhipicephalus microplus. 2021. 57 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Departamento de Parasitologia Animal, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11920
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ALVES, F. M.; BERNARDO, C. C.; PAIXÃO, F. R.; BARRETO, L. P.; LUZ, C.; HUMBER, R. A.; FERNANDES, É. K. Heat-stressed Metarhizium anisopliae: viability (in vitro) and virulence (in vivo) assessments against the tick Rhipicephalus sanguineus. Parasitology research, v. 116, n. 1, p. 111-121, 2016. ACUÑA-JIMÉNEZ, M.; ROSAS-GARCÍA, N. M.; LÓPEZ-MEYER, M.; SAÍNZHERNÁNDEZ, J. C.; MUNDO-OCAMPO, M.; GARCÍA-GUTIÉRREZ, C. Pathogenicity of microencapsulated insecticide from Beauveria bassiana and Metarhizium anisopliae against tobacco budworm, Heliothis virescens (Fabricius). Southwestern Entomologist, v. 40, n. 3, p. 531–538, 2015. ALVES, S. B. Controle microbiano de insetos. Piracicaba, SP: FEALQ: [s. n.], 1998. AW, K. M. S.; HUE, S. M. Mode of infection of Metarhizium spp. fungus and their potential as biological control agents. Journal of Fungi, v. 3, n. 2, 2017. ALVES, S. B.; RISCO, S. H.; ALMEIDA, L. C. Influence of photoperiod and temperature on the development and sporulation of Metarhizium anisopliae (Metsch.) Sorok. Zeitschrift für Angewandte Entomologie, v. 97, n. 1‐5, p. 127-129, 1984. BARRETO, L. P.; LUZ, C.; MASCARIN, G. M.; ROBERTS, D. W.; ARRUDA, W.; FERNANDES, É. K.K. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium. Journal of Invertebrate Pathology, v. 138, p. 94–103, 2016. BENNETT, G. F. Ovoposition of Boophilus microplus (CANESTRINI) (ACARIDA: IXODIDAE): influence of tick size on egg production. Acarologia, v. 16, p. 52–61, 1974. BIDOCHKA, M. J.; ST. LEGER, R. J.; ROBERTS, D. W. Mechanisms of deuteromycete fungal infections in grasshoppers and locusts: an overview. Memoirs of the Entomological Society of Canada, v. 129, n. S171, p. 213–224, 1997. BISCHOFF, J. F.; REHNER, S. A.; HUMBER, R. A. A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia, v. 101, n. 4, p. 512–530, 2009. BITENCOURT, R. O. B.; DOS SANTOS MALLET, J. R.; MESQUITA, E.; GÔLO, P. S.; FIOROTTI, J.; BITTENCOURT, V. E. P.; PONTES, E. G.; ANGELO, I. C. Larvicidal activity, route of interaction and ultrastructural changes in Aedes aegypti exposed to entomopathogenic fungi. Acta Tropica, v. 213, 2021. BITTENCOURT, V. R. E. P.; MASSARD, C. L.; LIMA, A. F. Ação do fungo Metarhizium anisopliae sobre a fase não parasitária do ciclo biológico de Boophilus microplus. Rev Univ Rural Ser Cienc Vida, v. 16, p. 41–47, 1994. BOKKHIM, H.; NEUPANE, P.; GURUNG, S.; SHRESTHA, R. Encapsulation of Saccharomyces cerevisiae in alginate beads and its application for wine making. Journal of Food Science and Technology Nepal, v. 10, p. 18–23, 2018. BRAGA, G. U. L.; FLINT, S. D.; MESSIAS, C. L.; ANDERSON, A. J.; ROBERTS, D. W. Effects of UVB Irradiance on Conidia and Germinants of the Entomopathogenic Hyphomycete Metarhizium anisopliae: A Study of Reciprocity and Recovery. Photochemistry and Photobiology, v. 73, n. 2, p. 140, 2001a. BRAGA, G. U. L.; FLINT, S. D.; MILLER, C. D.; ANDERSON, A. J.; ROBERTS, D.W. Both Solar UVA and UVB Radiation Impair Conidial Culturability and Delay Germination in the Entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology, vol. 74, n. 5, p. 734, 2001b. BRAGA, G. U. L.; RANGEL, D. E. N.; FERNANDES, É. K. K.; FLINT, S. D.; ROBERTS, D. W. Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics, v. 61, n. 3, p. 405–425, 2015. CAMARGO, M. G.; MARCIANO, A. F.; SÁ, F. A.; PERINOTTO, W. M. S.; QUINELATO, S.; GÔLO, P. S.; ANGELO, I. C.; PRATA, M. C. A.; BITTENCOURT, V. R. E. P. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study. Veterinary Parasitology, v. 205, n. 1–2, p. 271–276, 2014. CAMARGO, M. G.; NOGUEIRA, M. R. S.; MARCIANO, A. F.; PERINOTTO, W. M. S.; COUTINHO-RODRIGUES, C. J. B.; SCOTT, F. B.; ANGELO, I. C.; PRATA, M. C. A.; BITTENCOURT, V. R. E. P. Metarhizium anisopliae for controlling Rhipicephalus microplus ticks under field conditions. Veterinary Parasitology, v. 223, p. 38–42, 2016. CAMARGO, M. G.; GOLO, P. S.; ANGELO, I. C; PERINOTTO, W. M. S.; SÁ, Fillipe A.; QUINELATO, S.; BITTENCOURT, V. R. E. P. Veterinary Parasitology Effect of oil-based formulations of acaripathogenic fungi to control Rhipicephalus microplus ticks under laboratory conditions. Veterinary Parasitology, v. 188, n. 1–2, p. 140–147, 2012. CORVAL, A. R. C.; MESQUITA, E.; CORRÊA, T. A.; SILVA, C. S. R.; BITENCOURT, R. O. B.; FERNANDES, É. K. K.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W.; GÔLO, P. S. UV‐B tolerances of conidia, blastospores, and microsclerotia of Metarhizium spp. entomopathogenic fungi. Journal of Basic Microbiology, v. 61, n. 1, p. 15–26, 2021. DOS SANTOS, G. F.; LOCATELLI, G. O.; COÊLHO, D. A.; BOTELHO, P. S.; DE AMORIM, M. S.; DE VASCONCELOS, T. C.L.; BUENO, L. A. Factorial design, preparation and characterization of new beads formed from alginate, polyphosphate and glycerol gelling solution for microorganism microencapsulation. Journal of Sol-Gel Science and Technology, vol. 75, n. 2, p. 345–352, 2015. DRUMMOND, R. O.; GLADNEY, W. J.; WHETSTONE, T. M.; ERNST, S. E. Laboratory testing of insecticides for control of the winter tick. Journal Economic Entomology, v. 64, p. 686–688, 1971. ESTRADA-PEÑA, A.; BOUATTOUR, A.; CAMICAS, J. L.; GUGLIELMONE, A.; HORAK, I.; JONGEJAN, F.; LATIF, A.; PEGRAM, R.; WALKER, A. R. The known distribution and ecological preferences of the tick subgenus Boophilus (Acari: Ixodidae) in Africa and Latin America. Experimental and Applied Acarology, vol. 38, n. 2–3, p. 219– 235, 2006. FANG, W.; PAVA-RIPOLL, M.; WANG, S.; ST. LEGER, R. Protein kinase A regulates production of virulence determinants by the entomopathogenic fungus, Metarhizium anisopliae. Fungal Genetics and Biology, v. 46, n. 3, p. 277–285, 2009. FARIA, M. R.; WRAIGHT, S. P. Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biological Control, v. 43, n. 3, p. 237–256, 2007. FERNANDES, É K.K.; KEYSER, C. A.; CHONG, J. P.; RANGEL, D. E.N.; MILLER, M. P.; ROBERTS, D. W. Characterization of Metarhizium species and varieties based on molecular analysis, heat tolerance and cold activity. Journal of Applied Microbiology, v. 108, n. 1, p. 115–128, 2010a. FERNANDES, É. K. K.; KEYSER, C. A.; RANGEL, D. E. N.; FOSTER, R. N.; ROBERTS, Donald W. CTC medium: A novel dodine-free selective medium for isolating entomopathogenic fungi, especially Metarhizium acridum, from soil. Biological Control, v. 54, n. 3, p. 197–205, 2010b. FERNANDES, É. K. K.; RANGEL, D. E. N.; MORAES, Á. M. L.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Cold activity of Beauveria and Metarhizium, and thermotolerance of Beauveria. Journal of Invertebrate Pathology, v. 98, n. 1, p. 69–78, 2008. FERNANDES, É. K. K.; RANGEL, D. E. N.; MORAES, Á. M. L.; BITTENCOURT, V. R. E. P.; ROBERTS, D. W. Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Journal of Invertebrate Pathology, v. 96, n. 3, p. 237–243, 2007. FERNANDES, É. K. K.; BITTENCOURT, V. R. E. P. Entomopathogenic fungi against South American tick species. Experimental and Applied Acarology, v. 46, n. 1–4, p. 71–93, 2008. FERNÁNDEZ-BRAVO, M.; FLORES-LEÓN, A.; CALERO-LÓPEZ, S.; GUTIÉRREZSÁNCHEZ, F.; VALVERDE-GARCÍA, P.; QUESADA-MORAGA, E. UV-B radiationrelated effects on conidial inactivation and virulence against Ceratitis capitata (Wiedemann) (Diptera; Tephritidae) of phylloplane and soil Metarhizium sp. strains. Journal of Invertebrate Pathology, v. 148, p. 142–151, 2017. FRACETO, L. F; MARUYAMA, C. R.; GUILGER, M.; MISHRA, S.; KESWANI, C.; SINGH, H. B.; DE LIMA, R.. Trichoderma harzianum -based novel formulations: potential applications for management of Next-Gen agricultural challenges. Journal of Chemical Technology & Biotechnology, v. 93, n.8, p. 2056–2063, 2018. FU, N.; CHEN, X. D. Towards a maximal cell survival in convective thermal drying processes. Food Research International, v. 44, n. 5, p. 1127–1149, 2011. FURLONG, J; MARTINS, J. R; PRATA, M. C. A. O carrapato dos bovinos e a resistência: temos o que comemorar? A Hora Veterinária, v.159, p. 1–7, 2007. GARCIA-CRUZ, C. H.; FOGGETTI, U.; SILVA, A. N. Alginato bacteriano: aspectos tecnológicos, características e produção. Química Nova, v. 31, n. 7, p. 1800–1806, 2008. GARCÍA-GUTIÉRREZ, K.; POGGY-VARALDO, H. M.; ESPARZA-GARCÍA, F.; IBARRA-RENDÓN, J.; BARRERA-CORTÉS, J. Small microcapsules of crystal proteins and spores of Bacillus thuringiensis by an emulsification/internal gelation method. Bioprocess and Biosystems Engineering, v. 34, n. 6, p. 701–708, 2011. GRISI, L.; LEITE, R. C.; MARTINS, J. R. S.; DE BARROS, A. T. M.; ANDREOTTI, R.; CANÇADO, P. H. D.; DE LEÓN, A. A. P.; PEREIRA, J. B.; VILLELA, H. S. Reavaliação do potencial impacto econômico de parasitos de bovinos no Brasil. Revista Brasileira de Parasitologia Veterinaria, v. 23, n. 2, p. 150–156, 2014. GUISELEY, K. B. Chemical and physical properties of algal polysaccharides used for cell immobilization. Enzyme and Microbial Technology, v. 11, n. 11, p. 706–716, 1989. HORN, S. C.; ARTECHE, C. C. P. Situação parasitária da pecuária no Brasil. A Hora Veterinária, v. 4, p. 12–32, 1985. HUMBER. Preservation of entomopathogenic fungal cultures. Manual of Techniques in Invertebrate Pathology, p. 317–327, 2012. HURTADO, O. J. B.; GIRALDO-RÍOS, C. Economic and Health Impact of the Ticks in Production Animals. Ticks and Tick-Borne Pathogens. [S. l.]: IntechOpen, 2019. JARONSKI, S.T. Ecological factors in the inundative use of fungal entomopathogens. BioControl, v. 55, n. 1, p. 159–185, 2010. JONES, G. A.; PERINOTTO, W. M. S.; CAMARGO, M. G.; GOLO, P. S.; BITTENCOURT, V. R. E. P. Selection of Metarhizium spp. Brazilian isolates to control Rhipicephalus microplus ticks: In vitro virulence tests and conidiogenesis. Revista Brasileira de Medicina Veterinaria, v. 43, p. 1–13, 2021. KAAYA, G. P.; SAMISH, M.; HEDIMBI, M.; GINDIN, G.; GLAZER, I. Control of tick populations by spraying Metarhizium anisopliae conidia on cattle under field conditions. Experimental and Applied Acarology, v. 55, n. 3, p. 273–281, 2011. KEYSER, C. A.; FERNANDED, E. K. K.; RANGEL, D. E.; Roberts, D. W. Heat-induced post-stress growth delay: A biological trait of many Metarhizium isolates reducing biocontrol efficacy?. Journal of invertebrate pathology, v. 120, p. 67-73, 2014. KLAFKE, G.; WEBSTER, A.; DALL AGNOL, B.; PRADEL, E.; SILVA, J.; DE LA CANAL, L. H.; BECKER, M.; OSÓRIO, M. F.; MANSSON, M.; BARRETO, R.; SCHEFFER, R.; SOUZA, U. A.; CORASSINI, V. B.; DOS SANTOS, J.; RECK, J.; MARTINS, J. R. Multiple resistance to acaricides in field populations of Rhipicephalus microplus from Rio Grande do Sul state, Southern Brazil. Ticks and Tick-borne Diseases, v. 8, n. 1, p. 73–80, 2017. LEONG, J. Y.; LAM, W. H.; HO, K.W.; VOO, W. P.; LEE, M. F. X.; LIM, H. P.; LIM, S.; TEY, B.T.; PONCELET, D.; CHAN, E. S. Advances in fabricating spherical alginate hydrogels with controlled particle designs by ionotropic gelation as encapsulation systems. Particuology, v. 24, p. 44–60, 2016. . LIU, C. P.; LIU, S. D. Formulation and characterization of the microencapsulated entomopathogenic fungus Metarhizium anisopliae MA126. Journal of Microencapsulation, v. 26, n. 5, p. 377-384, 2009a. LIU, Ching Piao; LIU, Shan Da. Low-temperature spray drying for the microencapsulation of the fungus beauveria bassiana. Drying Technology, v., n. 6, p. 747–753, 2009b. LOCATELLI, G. O.; DOS SANTOS, G. F.; BOTELHO, P. S.; FINKLER, C. L. L.; BUENO, L. A. Development of Trichoderma sp. formulations in encapsulated granules (CG) and evaluation of conidia shelf-life. Biological Control, v. 117, p. 21–29, 2018. LOPES, R. B.; MARTINS, I.; SOUZA, D.; FARIA, M. Influence of some parameters on the germination assessment of mycopesticides. Journal of Invertebrate Pathology, v. 112, n. 3, p. 236–242, 2013. LORENZ, S. C.; HUMBERT, P.; PATEL, A. V. Chitin increases drying survival of encapsulated Metarhizium pemphigi blastospores for Ixodes ricinus control. Ticks and Tickborne Diseases, v. 11, . 6, p. 101537, 2020. LOTFIPOUR, F.; MIRZAEEI, S.; MAGHSOODI, M. Evaluation of the effect of cacl2 and alginate concentrations and hardening time on the characteristics of Lactobacillus acidophilus loaded alginate beads using response surface analysis. Advanced Pharmaceutical Bulletin, vol. 2, n. 1, p. 71–78, 2012. MARANGA, R. O.; KAAYA, G. P.; MUEKE, J. M.; HASSANALI, A. Effects of combining the fungi Beauveria bassiana and Metarhizium anisopliae on the mortality of the tick Amblyomma variegatum (ixodidae) in relation to seasonal changes. Mycopathologia, v. 159, n. 4, p. 527–532, 2005. MARCIANO, A. F.; GOLO, P. S.; COUTINHO-RODRIGUES, C. J.B.; CAMARGO, M. G.; FIOROTTI, J.; MESQUITA, E.; CORRÊA, T. A.; PERINOTTO, W. M.S.; BITTENCOURT, V. R.E.P. Metarhizium anisopliae sensu lato (s.l.) oil-in-water emulsions drastically reduced Rhipicephalus microplus larvae outbreak population on artificially infested grass. Medical and Veterinary Entomology, v. 34, n. 4, p. 488–492, 2020. MARCIANO, A. F.; MASCARIN, G. M.; FRANCO, R. F.; GOLO, P. S.; JARONSKI, S. T.; FERNANDES, Éverton K. K.; BITTENCOURT, V. R. E. P. Innovative granular formulation of Metarhizium robertsii microsclerotia and blastospores for cattle tick control. Scientific Reports, v. 11, n. 1, p. 1–11, 2021. MARUYAMA, C. R.; BILESKY-JOSÉ, N.; DE LIMA, R.; FRACETO, L. F. Encapsulation of Trichoderma harzianum Preserves Enzymatic Activity and Enhances the Potential for Biological Control. Frontiers in Bioengineering and Biotechnology, v. 8, p. 1–14, 2020. MASCARIN, G. M.; LOPES, R. B.; DELALIBERA, Í.; FERNANDES, É. K. K.; LUZ, C.; FARIA, M. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology, v. 165, p. 46–53, 2019. MENT, D.; GINDIN, G.; ROT, A.; SOROKER, Victoria.; GLAZER, I.; BAREL, S.; SAMISH, M.. Novel technique for quantifying adhesion of Metarhizium anisopliae conidia, to the tick cuticle. Applied and Environmental Microbiology, vol. 76, n.11, p. 3521–3528, 2010. MESQUITA, E.; MARCIANO, A. F.; CORVAL, A. R. C.; FIOROTTI, J.; CORRÊA, T. A.; QUINELATO, S.; BITTENCOURT, V. R. E. P.; GOLO, P. S. Efficacy of a native isolate of the entomopathogenic fungus Metarhizium anisopliae against larval tick outbreaks under semifield conditions. BioControl, v. 65, n.. 3, p. 353–362, 2020. MILNER, R. J.; HUPPATZ, R. J.; SWARIS, S. C. A new method for assessment of germination of Metarhizium conidia. Journal of Invertebrate Pathology, v 57, n 1, p. 121– 123, 1991. MILNER, R. J.; LOZANO, L. B.; DRIVER, F.; HUNTER, D. A comparative study of two Mexican isolates with an Australian isolate of Metarhizium anisopliae var. acridum–strain characterisation, temperature profile and virulence for wingless grasshopper, Phaulacridium vittatum. BioControl, v. 48, n. 3, p. 335-348, 2003. MONTEIRO, S. G. Parasitologia na medicina veterinária. 2nd ed. [S. l.: s. n.], 2017. MORGAN, C. A.; HERMAN, N.; WHITE, P. A.; VESEY, G. Preservation of microorganisms by drying; A review. Journal of Microbiological Methods, v. 66, n.2, p. 183–193 MUÑOZ-CELAYA, A. L.; ORTIZ-GARCÍA, M.; VERNON-CARTER, E. J.; JAUREGUIRINCÓN, J.; GALINDO, E.; SERRANO-CARREÓN, L. Spray-drying microencapsulation of Trichoderma harzianum conidias in carbohydrate polymers matrices. Carbohydrate Polymers, v. 88, n. 4, p. 1141–1148, 2012. MURANO, E. Use of natural polysaccharides in the microencapsulation techniques. Journal of Applied Ichthyology, v. 14, n. 3–4, p. 245–249, 1998. MURRELL, A.; BARKER, S. C. Synonymy of Boophilus Curtice, 1891 with Rhipicephalus Koch, 1844 (Acari: Ixodidae). Systematic Parasitology, v. 56, n.3, p. 169–172, 2003. NASCIMENTO, É.; DA SILVA, S. H.; MARQUES, E. R.; ROBERTS, D. W.; BRAGA, G. U. L. Quantification of cyclobutane pyrimidine dimers induced by UVB radiation in conidia of the fungi Aspergillus fumigatus, Aspergillus nidulans, Metarhizium acridum and Metarhizium robertsii. Photochemistry and Photobiology, v. 86, n. 6, p. 1259–1266, 2010. PAIXÃO, F. R., FERNANDES, É. K. K., PEDRINI, N. Thermotolerance of Fungal Conidia. in Microbes for Sustainable Insect Pest Management, Sustainability in Plant and Crop Protection. Cham, , p. 185–196, 2019. PAIXÃO, F. R.S.; MUNIZ, E. R.; BARRETO, L. P.; BERNARDO, C. C.; MASCARIN, G. M.; LUZ, C.; FERNANDES, K. K. Increased heat tolerance afforded by oil-based conidial formulations of Metarhizium anisopliae and Metarhizium robertsii. Biocontrol Science and Technology, v. 27, n. 3, p. 324–337, 2017. PATIL, J. S.; KAMALAPUR, M. V.; MARAPUR, S. C.; KADAM, D. V. Ionotropic gelation and polyelectrolyte complexation: The novel techniques to design hydrogel particulate sustained, modulated drug delivery system: A review. Digest Journal of Nanomaterials and Biostructures, vol. 5, no. 1, p. 241–248, 2010. PEREIRA, R. M., ROBERTS, D. W. Alginate and cornstarch mycelial formulations of entomopathogenic fungi, Beauveria bassiana and Metarhizium anisopliae. Journal of Economic Entomology, v. 84, p. 1657–1661, 1991. . POLAR, P.; DE MURO, M. A.; KAIRO, M. T. K.; MOORE, D.; PEGRAM, R.; JOHN, S. A.; ROACH-BENN, C. Thermal characteristics of Metarhizium anisopliae isolates important for the development of biological pesticides for the control of cattle ticks. Veterinary Parasitology, v. 134, p. 159–167, 2005. POWELL, R. T., REID, T. J. Project tick control [Boophilus microplus, cattle breeds, prevention, resistance, Australia]. Queensland agricultural journal, v. 108, p. 279–300, 1982. . PRZYKLENK, M.; VEMMER, M.; HANITZSCH, M.; PATEL, A. A bioencapsulation and drying method increases shelf life and efficacy of Metarhizium brunneum conidia. Journal of Microencapsulation, v. 34, n. 5, p. 498–512, 2017. QIU, H.; FOX, E. G. P.; QIN, C. S.; ZHAO, D.Y.; YANG, H; XU, J. Z. Microcapsuled entomopathogenic fungus against fire ants, Solenopsis invicta. Biological Control, v. 134, n. 1, p. 141–149, 2019. QUAITE, F. E., SUTHERLAND, B. M.; SUTHERLAND, J. C. Action spectrum for DNA damage in alfalfa lowers predicted impact of ozone depletion. Nature, v. 358, p. 576–578, 1992. RANGEL, D. E. N.; BRAGA, G. U. L.; ANDERSON, A. J.; ROBERTS, D. W. Variability in conidial thermotolerance of Metarhizium anisopliae isolates from different geographic origins. Journal of Invertebrate Pathology, v. 88, n. 2, p. 116–125, 2005. RANGEL, D. E. N.; FERNANDES, É. K. K.; DETTENMAIER, S. J.; ROBERTS, D. W. Thermotolerance of germlings and mycelium of the insect-pathogenic fungus Metarhizium spp. and mycelial recovery after heat stress. Journal of Basic Microbiology, v. 50, n.4, p. 344–350, 2010. RANGEL, D. E. N.; ROBERTS, D. W. Possible source of the high UV-B and heat tolerance of Metarhizium acridum (isolate ARSEF 324). Journal of Invertebrate Pathology, v. 157, p. 32–35, 2018. RECK, J.; KLAFKE, G. M.; WEBSTER, A.; DALL’AGNOL, B.; SCHEFFER, R.; SOUZA, U. A.; CORASSINI, V. B.; VARGAS, R.; DOS SANTOS, J. S.; MARTINS, J. R. S. First report of fluazuron resistance in Rhipicephalus microplus: A field tick population resistant to six classes of acaricides. Veterinary Parasitology, v. 201, n 1–2, p. 128–136, 2014. ROBERTS, D. W. AND CAMPBELL, A. S. Stability of entomopathogenic fungi. 1967. ROBERTS, D. W.; ST. LEGER, R. J. Metarhizium spp., cosmopolitan insect-pathogenic fungi: Mycological aspects. Advances in Applied Microbiology, v. 54, p. 1–70, 2004. RODRIGUES, I. M. W.; FILHO, A. B.; GIORDANO, I. B.; DENADAE, B. E.; FERNANDES, J. B.; FORIM, M.Rossi. Compatibilidade de polímeros aos fungos Beauveria bassiana e Metarhizium anisopliae e a estabilidade dos seus produtos formulados. Acta Scientiarum - Agronomy, v. 39, n. 4, p. 457–464, 2017. RODRIGUEZ-VIVAS, R. I.; JONSSON, N. N.; BHUSHAN, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitology Research, v. 117, n. 1, p. 3–29, 2018. SAMISH, M.; GINSBERG, H.; GLAZER, I. Biological control of ticks. Parasitology, v. 129, 2004. SANTI, L; BEYS DA SILVA, W. O.; BERGER, M.; GUIMARÃES, J. A.; SCHRANK, A.; VAINSTEIN, M. H. Conidial surface proteins of Metarhizium anisopliae: Source of activities related with toxic effects, host penetration and pathogenesis. Toxicon, v. 55, n. 4, p. 874–880, 2010. SANTOS, T. R.; DA PAIXÃO, F. R. S; CATÃO, A. M. L.; MUNIZ, E. R.; RIBEIROSILVA, C. S.; TAVEIRA, S. F.; LUZ, C.; MASCARIN, G. M.; FERNANDES, É. K. K.; MARRETO, R. N. Inorganic pellets containing microsclerotia of Metarhizium anisopliae: a new technological platform for the biological control of the cattle tick Rhipicephalus microplus. Applied Microbiology and Biotechnology, v. 105, n. 12, p. 5001–5012, 2021. SCHRANK, A.; VAINSTEIN, M. H. Metarhizium anisopliae enzymes and toxins. Toxicon, v. 56, n. 7, p. 1267–1274, 2010. SMIDSROD, O; SKJAKBRK, G. Alginate as immobilization matrix for cells. Trends in Biotechnology, vol. 8, p. 71–78, 1990. SOUZA HIGA, L. O. Acaricide Resistance Status of the Rhipicephalus microplus in Brazil: A Literature Overview. Medicinal Chemistry, v. 5, n. 7, p. 326–333, 2015. ST.LEGER, R. J.; BUTT, T. M.; GOETTEL, M. S.; STAPLES, R. C.; ROBERTS, D. W. Productionin vitro of appressoria by the entomopathogenic fungus Metarhizium anisopliae. Experimental Mycology, v. 13, n. 3, p. 274–288, 1989. SULLIVAN, C. F.; PARKER, B. L.; KIM, J. S.; SKINNER, M. Effectiveness of granular formulations of Metarhizium anisopliae and Metarhizium brunneum (Hypocreales: Clavicipitaceae) on off-host larvae of Dermacentor albipictus (Acari: Ixodidae). Biocontrol Science and Technology, v. 0, n. 0, p. 1–15, 2021. WALSTAD, J. D.; ANDERSON, R. F.; STAMBAUGH, W. J. Effects of environmental conditions on two species of muscardine fungi (Beauveria bassiana and Metarrhizium anisopliae). Journal of Invertebrate pathology, v. 16, n. 2, p. 221-226, 1970. VALSONI, L. M.; FREITAS, M. G.; ECHEVERRIA, J. T.; BORGES, D. G. L.; TUTIJA, J.; BORGES, F. A. Resistance to all chemical groups of acaricides in a single isolate of Rhipicephalus microplus in Mato Grosso do Sul, Brazil. International Journal of Acarology, v. 46, n. 4, p. 276–280, 2020. VEMMER, M.; PATEL, A. V. Review of encapsulation methods suitable for microbial biological control agents. Biological Control, v. 67, n. 3, p. 380–389, 2013. VIEIRA, M. V.; PASTRANA, L. M.; FUCIÑOS, P. Microalgae Encapsulation Systems for Food, Pharmaceutical and Cosmetics Applications. Marine drugs, v. 18, n. 12, 2020. VILELA, V. L. R.; FEITOSA, T. F.; BEZERRA, R. A.; KLAFKE, G. M.; RIET-CORREA, F. Multiple acaricide-resistant Rhipicephalus microplus in the semi-arid region of Paraíba State, Brazil. Ticks and Tick-borne Diseases, v. 11, n. 4, p. 101413, 2020. WHARTON, R. H. Control of arthropods of medical and veterinary importance. London: Plenum Press, , p. 134–177, 1974. . ZIMMERMANN, G. Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Science and Technology, v. 17, n. 6, p. 553–596, 2007a. ZIMMERMANN, G. Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Science and Technology, v. 17, n. 9, p. 879–920, 2007b.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Veterinárias
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Veterinária
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/1/2021%20-%20Laura%20Nobrega%20Meirelles.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/2/2021%20-%20Laura%20Nobrega%20Meirelles.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/3/2021%20-%20Laura%20Nobrega%20Meirelles.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11920/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
b23c417c8955d6b1f0ca8f283dcbffa8
986acab977c86c78e1a6853bada700e5
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107821626228736