Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7

Detalhes bibliográficos
Autor(a) principal: Rocha, Sheisi Fonseca Leite da Silva
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/5153
Resumo: Shp2, along with Shp1, forms a small family of protein tyrosine phosphatases. Studies suggest that although inhibition of Shp2 is advantageous for the treatment of some types of cancer, inhibition of Shp1 may have the opposite effect because it acts as a tumor suppressor. In this way, we sought to develop an in silico methodology capable of identifying more selective Shp2 inhibitors. In this work, we showed that in spite of the thermodynamic complexity involved in the enzyme/inhibitor interaction, it was possible to correlate the selectivity of two series (76 compounds) with the difference of the enthalpy of interaction calculated in both enzymes. The interaction profile of the inhibitors with Shp2 and Shp1 were initially obtained by molecular docking. After the refinement of the geometries of the enzyme / inhibitor complexes with the semi-empirical molecular orbital PM7 method, the enthalpy values of the interaction were obtained. For the series 1, composed of 52 selective inhibitors of Shp2, we demonstrated that the enthalpy of interaction can be used as a reliable criterion for the identification of selective inhibitors for Shp2, since it was significantly more favorable for Shp2 than for Shp1 with a confidence level of 99%. For series 2, composed of 24 compounds, a satisfactory correlation (R = 0.70) could be obtained between the selectivity and the relative percentage difference of the calculated enthalpies of interaction in both enzymes. Another objective of this work was to construct a model of prediction of the activity of inhibitors of Shp2 using as empirical basis the series 1 to validate it later with the series 2. Due to the presence of negatively charged inhibitors within the series, it was necessary to consider the electrolytic effect, correcting the experimental values of inhibitory activity, since such data refer to formal concentrations and the thermodynamic constant involves effective concentrations. For this it was necessary to calculate the ionic strength of the reaction medium and to estimate the activity coefficients of the species involved in the enzyme /inhibitor dissociation equilibrium through the Guntelberg equation. The construction of the model was based on literature proposals on the use of thermodynamic cycles to calculate the free energy of interaction between ligands and enzymes. In this sense, terms related to the enthalpy of interaction of the enzyme / inhibitor complex, the energy of solvation of the ligand and the entropic losses due to rotational restrictions were obtained after their interaction with the enzyme. These terms were correlated through linear multiple regression with experimental data of inhibition. In this way it was possible to develop a prediction model of the activity of inhibitors of Shp2 with good correlation with experimental data (R = 0.83). This model was validated satisfactorily (R = 0.73) with series 2 and used in the prediction of the relative activity of new compounds.
id UFRRJ-1_57e52725f4c86ace583d9ab0afdca7c3
oai_identifier_str oai:localhost:jspui/5153
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Sant?Anna, Carlos Mauricio Rabello deCPF: 827.232.227-72Salles, Cristiane Martins Cardoso deCPF: 035.399.287-90Bauerfeldt, Glauco FavillaBarra, Cristina MariaRomeiro, Nelilma CorreiaFokoue, Harold HilarionCPF: 122.348.897-74http://lattes.cnpq.br/4206525243279971Rocha, Sheisi Fonseca Leite da Silva2021-10-24T05:51:05Z2019-01-29ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7. 2019. 95 f. Tese (Doutorado em Qu?mica) - Instituto de Qu?mica, Departamento de Qu?mica Org?nica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.https://tede.ufrrj.br/jspui/handle/jspui/5153Shp2, along with Shp1, forms a small family of protein tyrosine phosphatases. Studies suggest that although inhibition of Shp2 is advantageous for the treatment of some types of cancer, inhibition of Shp1 may have the opposite effect because it acts as a tumor suppressor. In this way, we sought to develop an in silico methodology capable of identifying more selective Shp2 inhibitors. In this work, we showed that in spite of the thermodynamic complexity involved in the enzyme/inhibitor interaction, it was possible to correlate the selectivity of two series (76 compounds) with the difference of the enthalpy of interaction calculated in both enzymes. The interaction profile of the inhibitors with Shp2 and Shp1 were initially obtained by molecular docking. After the refinement of the geometries of the enzyme / inhibitor complexes with the semi-empirical molecular orbital PM7 method, the enthalpy values of the interaction were obtained. For the series 1, composed of 52 selective inhibitors of Shp2, we demonstrated that the enthalpy of interaction can be used as a reliable criterion for the identification of selective inhibitors for Shp2, since it was significantly more favorable for Shp2 than for Shp1 with a confidence level of 99%. For series 2, composed of 24 compounds, a satisfactory correlation (R = 0.70) could be obtained between the selectivity and the relative percentage difference of the calculated enthalpies of interaction in both enzymes. Another objective of this work was to construct a model of prediction of the activity of inhibitors of Shp2 using as empirical basis the series 1 to validate it later with the series 2. Due to the presence of negatively charged inhibitors within the series, it was necessary to consider the electrolytic effect, correcting the experimental values of inhibitory activity, since such data refer to formal concentrations and the thermodynamic constant involves effective concentrations. For this it was necessary to calculate the ionic strength of the reaction medium and to estimate the activity coefficients of the species involved in the enzyme /inhibitor dissociation equilibrium through the Guntelberg equation. The construction of the model was based on literature proposals on the use of thermodynamic cycles to calculate the free energy of interaction between ligands and enzymes. In this sense, terms related to the enthalpy of interaction of the enzyme / inhibitor complex, the energy of solvation of the ligand and the entropic losses due to rotational restrictions were obtained after their interaction with the enzyme. These terms were correlated through linear multiple regression with experimental data of inhibition. In this way it was possible to develop a prediction model of the activity of inhibitors of Shp2 with good correlation with experimental data (R = 0.83). This model was validated satisfactorily (R = 0.73) with series 2 and used in the prediction of the relative activity of new compounds.A Shp2, juntamente com a Shp1, forma uma pequena fam?lia de prote?nas tirosina fosfatases. Estudos sugerem que, embora a inibi??o da Shp2 seja vantajosa para o tratamento de alguns tipos de c?ncer, a inibi??o da Shp1 pode ter o efeito oposto, pois atua como supressora de tumores. Desta forma, buscou-se desenvolver uma metodologia in silico capaz de identificar inibidores da Shp2 mais seletivos. Neste trabalho, mostramos que apesar da complexidade termodin?mica envolvida na intera??o enzima/inibidor, foi poss?vel correlacionar a seletividade de duas s?ries (76 compostos) com a diferen?a das entalpias de intera??o calculadas em ambas as enzimas. Os perfis de intera??o dos inibidores com a Shp2 e a Shp1 foram inicialmente obtidos por docagem molecular. Ap?s o refinamento das geometrias dos complexos enzima/inibidor com o m?todo do orbital molecular semi-emp?rico PM7, foram obtidos os valores de entalpia de intera??o. Para a s?rie 1, composta por 52 inibidores seletivos da Shp2, demonstramos que a entalpia de intera??o pode ser usada como um crit?rio confi?vel para a identifica??o de inibidores seletivos para a Shp2, pois foi significativamente mais favor?vel para Shp2 do que para a Shp1 com um n?vel de confian?a de 99%. Para a s?rie 2, composta por 24 compostos, uma correla??o satisfat?ria (R = 0,70) p?de ser obtida entre a seletividade e a diferen?a percentual relativa das entalpias de intera??o calculadas em ambas as enzimas. Outro objetivo deste trabalho foi construir um modelo de predi??o da atividade de inibidores da Shp2 utilizando como base emp?rica a s?rie 1 e posteriormente, validar com a s?rie 2. Devido ? presen?a de inibidores carregados negativamente dentro das s?ries estudadas, foi necess?rio considerar o efeito eletrol?tico, corrigindo os valores experimentais de atividade inibit?ria (CI50), uma vez que tais dados se referem a concentra??es formais e a constante termodin?mica envolve concentra??es efetivas. Para isso foi necess?rio calcular a for?a i?nica do meio reacional e estimar os coeficientes de atividade das esp?cies envolvidas no equil?brio de dissocia??o enzima/inibidor atrav?s da equa??o de Guntelberg. A constru??o do modelo se baseou em propostas da literatura sobre o uso de ciclos termodin?micos para se calcular a energia livre de intera??o entre ligantes e enzimas. Neste sentido, foram obtidos termos referentes ? entalpia de intera??o do complexo enzima/inibidor, a energia de solvata??o do ligante e as perdas entr?picas devido a restri??es rotacionais ap?s a intera??o do mesmo com a enzima. Estes termos foram correlacionados atrav?s de regress?o m?ltipla linear com dados experimentais de inibi??o. Desta forma foi poss?vel desenvolver um modelo de predi??o da atividade de inibidores da Shp2 com boa correla??o com dados experimentais (R= 0,83). Este modelo foi validado de forma satisfat?ria (R=0,73) atrav?s da s?rie 2 e utilizado na predi??o da atividade relativa de novos compostos.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-10-24T05:51:05Z No. of bitstreams: 1 2019 - Sheisi Fonseca Leite da Silva Rocha.pdf: 3059409 bytes, checksum: 78e70249053e5be917fab9c80bc8a3b5 (MD5)Made available in DSpace on 2021-10-24T05:51:05Z (GMT). No. of bitstreams: 1 2019 - Sheisi Fonseca Leite da Silva Rocha.pdf: 3059409 bytes, checksum: 78e70249053e5be917fab9c80bc8a3b5 (MD5) Previous issue date: 2019-01-29CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/67212/2019%20-%20Sheisi%20Fonseca%20Leite%20da%20Silva%20Rocha.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Qu?micaABRAHAM, M. J., MURTOLA, T., SCHULZ, R., P?LL, S., SMITH, J. C., HESS, B., LINDAHL, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, v. 1, p. 19-25, 2015. ALC?CER, Lu?s. Introdu??o ? qu?mica qu?ntica computacional. Energia, v. 265, n. 268, p. 273, 2007. ALICEA-VELAZQUEZ, L. N., BOGGON, J. T.. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein and Peptide Letters, v. 20, n. 9, p. 1039-1048, 2013. ALONSO, A., SASIN, J., BOTTINI, N., FRIEDBERG, I., FRIEDBERG, I., OSTERMAN, A., MUSTELIN, T. Protein tyrosine phosphatases in the human genome. Cell, v. 117, n. 6, p. 699-711, 2004. ALLINGER, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society, v. 99, n. 25, p. 8127-8134, 1977. ANDERSEN, J. N., MORTENSEN, O. H., PETERS, G. H., DRAKE, P. G., IVERSEN, L. F., OLSEN, O. H., M?LLER, N. P. H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, v. 21, n. 21, p. 7117-7136, 2001. ASI, A. M., RAHMAN, N. A., MERICAN, A. F. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)?l-arginine and ArgRc?l-citrulline protein?ligand complexes. Journal of Molecular Graphics and Modelling, v. 22, n. 4, p. 249-262, 2004. BARD-CHAPEAU, E. A., LI, S., DING, J., ZHANG, S. S., ZHU, H. H., PRINCEN, F., VARKI, N. M. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer cell, v. 19, n. 5, p. 629-639, 2011. BARR, A. J., UGOCHUKWU, E., LEE, W. H., KING, O. N., FILIPPAKOPOULOS, P., ALFANO, I., KNAPP, S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell, v. 136, n. 2, p. 352-363, 2009. BENTIRES-ALJ, M., PAEZ, J. G., DAVID, F. S., KEILHACK, H., HALMOS, B., NAOKI, K., RICHARDS, W. G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, v. 64, n. 24, p. 8816-8820, 2004. BONET, B., LOERINCS, G., GEFFNER, H. A robust and fast action selection mechanism for planning. In: AAAI/IAAI. 1997. p. 714-719. BORN, M., OPPENHEIMER, R. ROBERT. Zur quantentheorie der molekeln. Annalen der Physik, v. 389, n. 20, p. 457-484, 1927. BROOKS, C. L. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, v.LXXI. 1988. CHAMBERS, C. C., HAWKINS, G. D., CRAMER, C. J., TRUHLAR, D. G. Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry. v. 100, p. 16385-16298, 1996. CHAN, R. J., FENG, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, v. 109, n. 3, p. 862-867, 2007. CHEN, C. Y., WILLARD, D., RUDOLPH, J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry, v. 48, n. 6, p. 1399-1409, 2009. CHEN, L., PERNAZZA, D., SCOTT, L. M., LAWRENCE, H. R., REN, Y., LUO, Y., LAWRENCE, N. J. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Biochemical pharmacology, v. 80, n. 6, p. 801-810, 2010. CHENG, Y.; PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration which causes 50% inhibition of an enzymatic reaction. Biochemical Pharmacology, v. 22, p. 403-411, 1973. CHMIELA, S., TKATCHENKO, A., SAUCEDA, H. E., POLTAVSKY, I., SCH?TT, K. T., M?LLER, K. R. Machine learning of accurate energy-conserving molecular force fields. Science Advances, v. 3, n. 5, p. e1603015, 2017. CLARK, Tim. A handbook of computational chemistry: A practical guide to chemical structure and energy calculations. Wiley-Interscience, 1985. COSTA FILHO, Paulo Augusto da; POPPI, Ronei Jesus. Genetic algorithm in chemistry. Qu?mica Nova, v. 22, n. 3, p. 405-411, 1999. CRAMER, C. J.; TRUHLAR, D. G. PM3?SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, v. 13, n. 9, p. 1089-1097, 1992. DANCE, M., MONTAGNER, A., SALLES, J. P., YART, A., RAYNAL, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling, v. 20, n. 3, p. 453-459, 2008. DEWAR, M. J., ZOEBISCH, E. G., HEALY, E. F., STEWART, J. J. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902-3909, 1985. DEWAR, M. J. S; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, n. 15, p. 4899-4907, 1977. DOBE?, P., FANFRL?K, J., ?EZ??, J., OTYEPKA, M., HOBZA, P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, v. 25, n. 3, p. 223-235, 2011. DONG, S., LI, F. Q., ZHANG, Q., LV, K. Z., YANG, H. L., GAO, Y., YU, J. R. Expression and clinical significance of SHP2 in gastric cancer. Journal of International Medical Research, v. 40, n. 6, p. 2083-2089, 2012. ELDRIDGE, M. D., MURRAY, C. W., AUTON, T. R., PAOLINI, G. V., MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425-445, 1997. FAN, L. C., TENG, H. W., SHIAU, C. W., LIN, H., HUNG, M. H., CHEN, Y. L., CHEN, K. F. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget, v. 5, n. 15, p. 6243, 2014. FANFRL?K, J., BRONOWSKA, A. K., ?EZ??, J., P?ENOSIL, O., KONVALINKA, J., HOBZA, P. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. The Journal of Physical Chemistry B, v. 114, n. 39, p. 12666-12678, 2010. FICHTNER-FEIGL, S., KESSELRING, R., STROBER, W. Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, v. 36, n. 8, p. 451-459, 2015. GILSON, Michael K.; HONIG, Barry H. The dielectric constant of a folded protein. Biopolymers: Original Research on Biomolecules, v. 25, n. 11, p. 2097-2119, 1986. GOHLKE, H., HENDLICH, M., KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions1. Journal of Molecular Biology, v. 295, n. 2, p. 337-356, 2000. G?NTELBERG, E. Untersuchungen ?ber Ioneninteraktion. Zeitschrift f?r Physikalische Chemie, v. 123, n. 1, p. 199-247, 1926. HAN, T., X., D. M., SUN, W., LIU, N., SUN, H. L., WEN, W., CHENG, Z. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. Journal of Hepatology, v. 63, n. 3, p. 651-660, 2015. HANSSON, T., MARELIUS, J., ?QVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, v. 12, n. 1, p. 27-35, 1998. HARTREE, D. R. On some approximate numerical applications of Bohr?s theory of spectra. In: Proceedings of the Cambridge Philosophical Society. 1923. p. 625-641. HE, R., YU, Z. H., ZHANG, R. Y., WU, L., GUNAWAN, A. M., LANE, B. S., WELLS, C. D. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Medicinal Chemistry Letters, v. 6, n. 7, p. 782-786, 2015. HIGASHI, H., NAKAYA, A., TSUTSUMI, R., YOKOYAMA, K., FUJII, Y., ISHIKAWA, S., TANAKA, S. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, v. 279, n. 17, p. 17205-17216, 2004. H?YVIK, I.M., J?RGENSEN, P. Characterization and generation of local occupied and virtual Hartree?Fock orbitals. Chemical Reviews, v. 116, n. 5, p. 3306-3327, 2016. HOF, P., PLUSKEY, S., DHE-PAGANON, S., ECK, M. J., SHOELSON, S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell, v. 92, n. 4, p. 441-450, 1998. HOUSE, J. E. Fundamentals of Quantum Chemistry. Compllemmentary Science Series. Elsevier Science & Technology, 2004. HUANG, J., RAUSCHER, S., NAWROCKI, G., RAN, T., FEIG, M., DE GROOT, B. L., MACKERELL JR, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, v. 14, n. 1, p. 71, 2016. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, p.429. 1999. KAWASAKI, Y., FREIRE, E. Finding a better path to drug selectivity. Drug Discovery Today, v. 16, n. 21-22, p. 985-990, 2011. KLAMT, A.; SCHUURMANN, G. J. Chem Soc Perkin Trans 2 1993, 5, 799;(b) Baldridge, K.; Klamt. A. J Chem Phys, v. 106, p. 6622, 1997. KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v. 3, n. 11, p. 935, 2004. KUREBAYASHI, J., OKUBO, S., YAMAMOTO, Y., IKEDA, M., TANAKA, K., OTSUKI, T., SONOO, H. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemotherapy and Pharmacology, v. 58, n. 4, p. 460-470, 2006. KOLLMAN, Peter. Free energy calculations: applications to chemical and biochemical phenomena. Chemical Reviews, v. 93, n. 7, p. 2395-2417, 1993. KORB, O., ST?TZLE, T., EXNER, T. E. An ant colony optimization approach to flexible protein?ligand docking. Swarm Intelligence, v. 1, n. 2, p. 115-134, 2007. KORB, O., STUTZLE, T., EXNER, T. E. Empirical scoring functions for advanced protein? ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84-96, 2009. KUNTZ, I. D., BLANEY, J. M., OATLEY, S. J., LANGRIDGE, R., FERRIN, T. E. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v. 161, n. 2, p. 269-288, 1982. LABB?, D. P., HARDY, S., TREMBLAY, M. L. Protein tyrosine phosphatases in cancer: friends and foes!. In: Progress in Molecular Biology and Translational Science. Academic Press, 2012. p. 253-306. LAN, L., HOLLAND, J. D., QI, J., GROSSKOPF, S., VOGEL, R., GY?RFFY, B., BIRCHMEIER, W. Shp2 signaling suppresses senescence in PyMT?induced mammary gland cancer in mice. The EMBO journal, p. e201489004, 2015. LAWRENCE, H. R., PIREDDU, R., CHEN, L., LUO, Y., SUNG, S. S., SZYMANSKI, A. M., LAWRENCE, N. J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. Journal of Medicinal Chemistry, v. 51, n. 16, p. 4948-4956, 2008. LEACH, A. R. Molecular Modelling -- Principles and Applications. England: Person Prentice Hall, p.744. 2001. LINDEN, R. Algoritmos gen?ticos: uma importante ferramenta da intelig?ncia computacional. Brasport, 2006. LIU, W., YU, B., XU, G., XU, W. R., LOH, M. L., TANG, L. D., QU, C. K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Journal of Medicinal Chemistry, v. 56, n. 18, p. 7212-7221, 2013. LOH, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., Meshinchi, S. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia, v. 18, n. 11, p. 1831, 2004. MORGON, N. H., COUTINHO, K. M?todos de qu?mica te?rica e modelagem molecular. Editora Livraria da F?sica, 2007. MORRIS, G. M., GOODSELL, D. S., HALLIDAY, R. S., HUEY, R., HART, W. E., BELEW, R. K., & OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639-1662, 1998. MUEGGE, I., MARTIN, Y. C. A general and fast scoring function for protein? ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v. 42, n. 5, p. 791-804, 1999. NARDOZZA, A. P., D'ORAZIO, M., TRAPANNONE, R., CORALLINO, S., FILOMENI, G., TARTAGLIA, M., CASTAGNOLI, L. ROS and EGF are antagonistic cues controlling SHP-2 dimerization. Molecular and Cellular Biology, p. MCB. 06674-11, 2012. NIU, T., LIANG, X., YANG, J., ZHAO, Z., ZHOU, G. W. Kinetic comparison of the catalytic domains of SHP?1 and SHP?2. Journal of Cellular Biochemistry, v. 72, n. 1, p. 145-150, 1999. NODA, S., TAKAHASHI, A., HAYASHI, T., TANUMA, S. I., HATAKEYAMA, M. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, v. 469, n. 4, p. 1133-1139, 2016. O'BOYLE, N. M., BANCK, M., JAMES, C. A., MORLEY, C., VANDERMEERSCH, T., & HUTCHISON, G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics, v. 3, n. 1, p. 33, 2011. OLIVEIRA, Fernanda G. et al. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & medicinal chemistry, v. 14, n. 17, p. 6001-6011, 2006. OHNISHI, Naomi et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences, v. 105, n. 3, p. 1003-1008, 2008. OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. PAGADALA, Nataraj S.; SYED, Khajamohiddin; TUSZYNSKI, Jack. Software for molecular docking: a review. Biophysical Reviews, v. 9, n. 2, p. 91-102, 2017. POPLE, J. A.; BEVERIDGE, D. L.; DOBOSH, P. A. Approximate self?consistent molecular?orbital theory. V. Intermediate neglect of differential overlap. The Journal of Chemical Physics, v. 47, n. 6, p. 2026-2033, 1967. QU, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Research, v. 10, n. 4, p. 279, 2000. REEVES, C. R. Modern heuristic techniques for combinatorial problems. Advanced topics in computer science. Mc Graw-Hill, 1995. ROCCOGRANDI, L., BINDER, Z. A., ZHANG, L., ACETO, N., ZHANG, Z., BENTIRES-ALJ, M., O?ROURKE, D. M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, v. 135, n. 3, p. 487-496, 2017. ROCHA, G. B., FREIRE, R. O., SIMAS, A. M., STEWART, J. J. Rm1: A reparameterization of am1 for h, c, n, o, p, s, f, cl, br, and i. Journal of Computational Chemistry, v. 27, n. 10, p. 1101-1111, 2006. S?, C. G. Planejamento, s?ntese e avalia??o farmacol?gica in vitro de novos compostos N-arilpiperaz?nicos candidatos a prot?tipos antipsic?ticos. Tese de doutorado. UFRJ, 2017 SANT'ANNA, C. M. R. Gloss?rio de termos usados no planejamento de f?rmacos (recomenda??es da IUPAC para 1997). Qu?mica Nova, v. 25, n. 3, p. 505-512, 2002. SANT'ANNA, C. M. R. M?todos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdu??o. Revista Virtual de Qu?mica, v. 1, n. 1, p. 49-57, 2009. SKOOG, D. A., WEST, D. M., HOLLER, F. J., CROUCH, S. Fundamentals of analytical chemistry. Nelson Education, 2013. SLATER, J. C. The theory of complex spectra. Physical Review., v.34, p.1293--1322, 1929. SERRANO, M. SHP2: a new target for pro?senescence cancer therapies. The EMBO journal, v. 34, n. 11, p. 1439-1441, 2015. M SCOTT, L., R LAWRENCE, H., M SEBTI, S., J LAWRENCE, N., WU, J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, v. 16, n. 16, p. 1843-1862, 2010. SCOTT, L. M., CHEN, L., DANIEL, K. G., BROOKS, W. H., GUIDA, W. C., LAWRENCE, H. R., WU, J. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 2, p. 730-733, 2011. SHI, Z. Q., YU, D. H., PARK, M., MARSHALL, M., FENG, G. S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cellular Biology, v. 20, n. 5, p. 1526-1536, 2000. STEWART, J. J. P. Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, v. 10, n. 2, p. 221-264, 1989. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self?consistent field equations. International Journal of Quantum Chemistry, v. 58, n. 2, p. 133-146, 1996. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. TARCSAY, ?., KESER?, G. M. Is there a link between selectivity and binding thermodynamics profiles?. Drug Discovery Today, v. 20, n. 1, p. 86-94, 2015. THIEL, W., VOITYUK, A. A. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, v. 81, n. 6, p. 391-404, 1992. TONKS, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, v. 7, n. 11, p. 833, 2006. VERDONK, M. L., COLE, J. C., HARTSHORN, M. J., MURRAY, C. W., TAYLOR, R. D. Improved protein?ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, v. 52, n. 4, p. 609-623, 2003. WANG, S., MILNE, G. W., NICKLAUS, M. C., MARQUEZ, V. E., LEE, J., BLUMBERG, P. M. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, v. 37, n. 9, p. 1326-1338, 1994. WEINER, S. J., KOLLMAN, P. A., CASE, D. A., SINGH, U. C., GHIO, C., ALAGONA, G., WEINER, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, v. 106, n. 3, p. 765-784, 1984. WU, J.; LAWRENCE, N. J.; SEBTI, S. M.; LAWRENCE, H. R; University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2012. (US20120034186 A1) WU, N. J. LAWRENCE, S. M. SEBTI, H. R. LAWRENCE. University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2008. (US2008/0176309 A1) XU, R., YU, Y., ZHENG, S., ZHAO, X., DONG, Q., HE, Z., XU, X. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, v. 106, n. 9, p. 3142-3149, 2005. YANG, J., LIANG, X., NIU, T., MENG, W., ZHAO, Z., ZHOU, G. W. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 273, n. 43, p. 28199-28207, 1998. YANG, J., CHENG, Z., NIU, T., LIANG, X., ZHAO, Z. J., ZHOU, G. W. Structural basis for substrate specificity of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 275, n. 6, p. 4066-4071, 2000. YANG, J., NIU, T., ZHANG, A., MISHRA, A. K., ZHAO, Z. J., ZHOU, G. W. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP?1. Journal of Cellular Biochemistry, v. 84, n. 1, p. 47-55, 2002. YU, Z. H., CHEN, L., WU, L., LIU, S., WANG, L., ZHANG, Z. Y. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 14, p. 4238-4242, 2011. ZHANG, X., HE, Y., LIU, S., YU, Z., JIANG, Z. X., YANG, Z., WANG, L. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Journal of Medicinal Chemistry, v. 53, n. 6, p. 2482-2493, 2010. ZHOU, X., COAD, J., DUCATMAN, B., AGAZIE, Y. M. SHP2 is up?regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology, v. 53, n. 4, p. 389-402, 2008. ZHOU, T., HUANG, D., CAFLISCH, A. Is quantum mechanics necessary for predicting binding free energy?. Journal of Medicinal Chemistry, v. 51, n. 14, p. 4280-4288, 2008.Shp2SeletividadeDocagemPM7Efeito eletrol?ticoSelectivityDockingElectrolytic effectQu?micaDesenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.jpg2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/5153/4/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.txt2019 - Sheisi Fonseca Leite da Silva Rocha.pdf.txttext/plain191756http://localhost:8080/tede/bitstream/jspui/5153/3/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf.txtea42740fb5dc6f32463415c98bdd31d0MD53ORIGINAL2019 - Sheisi Fonseca Leite da Silva Rocha.pdf2019 - Sheisi Fonseca Leite da Silva Rocha.pdfapplication/pdf3059409http://localhost:8080/tede/bitstream/jspui/5153/2/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf78e70249053e5be917fab9c80bc8a3b5MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/5153/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/51532022-04-18 23:37:01.912oai:localhost:jspui/5153Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-04-19T02:37:01Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
title Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
spellingShingle Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
Rocha, Sheisi Fonseca Leite da Silva
Shp2
Seletividade
Docagem
PM7
Efeito eletrol?tico
Selectivity
Docking
Electrolytic effect
Qu?mica
title_short Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
title_full Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
title_fullStr Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
title_full_unstemmed Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
title_sort Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7
author Rocha, Sheisi Fonseca Leite da Silva
author_facet Rocha, Sheisi Fonseca Leite da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Sant?Anna, Carlos Mauricio Rabello de
dc.contributor.advisor1ID.fl_str_mv CPF: 827.232.227-72
dc.contributor.advisor-co1.fl_str_mv Salles, Cristiane Martins Cardoso de
dc.contributor.advisor-co1ID.fl_str_mv CPF: 035.399.287-90
dc.contributor.referee1.fl_str_mv Bauerfeldt, Glauco Favilla
dc.contributor.referee2.fl_str_mv Barra, Cristina Maria
dc.contributor.referee3.fl_str_mv Romeiro, Nelilma Correia
dc.contributor.referee4.fl_str_mv Fokoue, Harold Hilarion
dc.contributor.authorID.fl_str_mv CPF: 122.348.897-74
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4206525243279971
dc.contributor.author.fl_str_mv Rocha, Sheisi Fonseca Leite da Silva
contributor_str_mv Sant?Anna, Carlos Mauricio Rabello de
Salles, Cristiane Martins Cardoso de
Bauerfeldt, Glauco Favilla
Barra, Cristina Maria
Romeiro, Nelilma Correia
Fokoue, Harold Hilarion
dc.subject.por.fl_str_mv Shp2
Seletividade
Docagem
PM7
Efeito eletrol?tico
topic Shp2
Seletividade
Docagem
PM7
Efeito eletrol?tico
Selectivity
Docking
Electrolytic effect
Qu?mica
dc.subject.eng.fl_str_mv Selectivity
Docking
Electrolytic effect
dc.subject.cnpq.fl_str_mv Qu?mica
description Shp2, along with Shp1, forms a small family of protein tyrosine phosphatases. Studies suggest that although inhibition of Shp2 is advantageous for the treatment of some types of cancer, inhibition of Shp1 may have the opposite effect because it acts as a tumor suppressor. In this way, we sought to develop an in silico methodology capable of identifying more selective Shp2 inhibitors. In this work, we showed that in spite of the thermodynamic complexity involved in the enzyme/inhibitor interaction, it was possible to correlate the selectivity of two series (76 compounds) with the difference of the enthalpy of interaction calculated in both enzymes. The interaction profile of the inhibitors with Shp2 and Shp1 were initially obtained by molecular docking. After the refinement of the geometries of the enzyme / inhibitor complexes with the semi-empirical molecular orbital PM7 method, the enthalpy values of the interaction were obtained. For the series 1, composed of 52 selective inhibitors of Shp2, we demonstrated that the enthalpy of interaction can be used as a reliable criterion for the identification of selective inhibitors for Shp2, since it was significantly more favorable for Shp2 than for Shp1 with a confidence level of 99%. For series 2, composed of 24 compounds, a satisfactory correlation (R = 0.70) could be obtained between the selectivity and the relative percentage difference of the calculated enthalpies of interaction in both enzymes. Another objective of this work was to construct a model of prediction of the activity of inhibitors of Shp2 using as empirical basis the series 1 to validate it later with the series 2. Due to the presence of negatively charged inhibitors within the series, it was necessary to consider the electrolytic effect, correcting the experimental values of inhibitory activity, since such data refer to formal concentrations and the thermodynamic constant involves effective concentrations. For this it was necessary to calculate the ionic strength of the reaction medium and to estimate the activity coefficients of the species involved in the enzyme /inhibitor dissociation equilibrium through the Guntelberg equation. The construction of the model was based on literature proposals on the use of thermodynamic cycles to calculate the free energy of interaction between ligands and enzymes. In this sense, terms related to the enthalpy of interaction of the enzyme / inhibitor complex, the energy of solvation of the ligand and the entropic losses due to rotational restrictions were obtained after their interaction with the enzyme. These terms were correlated through linear multiple regression with experimental data of inhibition. In this way it was possible to develop a prediction model of the activity of inhibitors of Shp2 with good correlation with experimental data (R = 0.83). This model was validated satisfactorily (R = 0.73) with series 2 and used in the prediction of the relative activity of new compounds.
publishDate 2019
dc.date.issued.fl_str_mv 2019-01-29
dc.date.accessioned.fl_str_mv 2021-10-24T05:51:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7. 2019. 95 f. Tese (Doutorado em Qu?mica) - Instituto de Qu?mica, Departamento de Qu?mica Org?nica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/5153
identifier_str_mv ROCHA, Sheisi Fonseca Leite da Silva. Desenvolvimento de um modelo emp?rico de predi??o da seletividade e da atividade de inibidores da Shp2 utilizando o m?todo semi-emp?rico PM7. 2019. 95 f. Tese (Doutorado em Qu?mica) - Instituto de Qu?mica, Departamento de Qu?mica Org?nica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2018.
url https://tede.ufrrj.br/jspui/handle/jspui/5153
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABRAHAM, M. J., MURTOLA, T., SCHULZ, R., P?LL, S., SMITH, J. C., HESS, B., LINDAHL, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, v. 1, p. 19-25, 2015. ALC?CER, Lu?s. Introdu??o ? qu?mica qu?ntica computacional. Energia, v. 265, n. 268, p. 273, 2007. ALICEA-VELAZQUEZ, L. N., BOGGON, J. T.. SHP family protein tyrosine phosphatases adopt canonical active-site conformations in the apo and phosphate-bound states. Protein and Peptide Letters, v. 20, n. 9, p. 1039-1048, 2013. ALONSO, A., SASIN, J., BOTTINI, N., FRIEDBERG, I., FRIEDBERG, I., OSTERMAN, A., MUSTELIN, T. Protein tyrosine phosphatases in the human genome. Cell, v. 117, n. 6, p. 699-711, 2004. ALLINGER, N. L. Conformational analysis. 130. MM2. A hydrocarbon force field utilizing V1 and V2 torsional terms. Journal of the American Chemical Society, v. 99, n. 25, p. 8127-8134, 1977. ANDERSEN, J. N., MORTENSEN, O. H., PETERS, G. H., DRAKE, P. G., IVERSEN, L. F., OLSEN, O. H., M?LLER, N. P. H. Structural and evolutionary relationships among protein tyrosine phosphatase domains. Molecular and Cellular Biology, v. 21, n. 21, p. 7117-7136, 2001. ASI, A. M., RAHMAN, N. A., MERICAN, A. F. Application of the linear interaction energy method (LIE) to estimate the binding free energy values of Escherichia coli wild-type and mutant arginine repressor C-terminal domain (ArgRc)?l-arginine and ArgRc?l-citrulline protein?ligand complexes. Journal of Molecular Graphics and Modelling, v. 22, n. 4, p. 249-262, 2004. BARD-CHAPEAU, E. A., LI, S., DING, J., ZHANG, S. S., ZHU, H. H., PRINCEN, F., VARKI, N. M. Ptpn11/Shp2 acts as a tumor suppressor in hepatocellular carcinogenesis. Cancer cell, v. 19, n. 5, p. 629-639, 2011. BARR, A. J., UGOCHUKWU, E., LEE, W. H., KING, O. N., FILIPPAKOPOULOS, P., ALFANO, I., KNAPP, S. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell, v. 136, n. 2, p. 352-363, 2009. BENTIRES-ALJ, M., PAEZ, J. G., DAVID, F. S., KEILHACK, H., HALMOS, B., NAOKI, K., RICHARDS, W. G. Activating mutations of the noonan syndrome-associated SHP2/PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. Cancer Research, v. 64, n. 24, p. 8816-8820, 2004. BONET, B., LOERINCS, G., GEFFNER, H. A robust and fast action selection mechanism for planning. In: AAAI/IAAI. 1997. p. 714-719. BORN, M., OPPENHEIMER, R. ROBERT. Zur quantentheorie der molekeln. Annalen der Physik, v. 389, n. 20, p. 457-484, 1927. BROOKS, C. L. A theoretical perspective of dynamics, structure, and thermodynamics. Advances in chemical physics; John Wiley: New York, v.LXXI. 1988. CHAMBERS, C. C., HAWKINS, G. D., CRAMER, C. J., TRUHLAR, D. G. Model for Aqueous Solvation Based on Class IV Atomic Charges and First Solvation Shell Effects. Journal of Physical Chemistry. v. 100, p. 16385-16298, 1996. CHAN, R. J., FENG, G. S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood, v. 109, n. 3, p. 862-867, 2007. CHEN, C. Y., WILLARD, D., RUDOLPH, J. Redox regulation of SH2-domain-containing protein tyrosine phosphatases by two backdoor cysteines. Biochemistry, v. 48, n. 6, p. 1399-1409, 2009. CHEN, L., PERNAZZA, D., SCOTT, L. M., LAWRENCE, H. R., REN, Y., LUO, Y., LAWRENCE, N. J. Inhibition of cellular Shp2 activity by a methyl ester analog of SPI-112. Biochemical pharmacology, v. 80, n. 6, p. 801-810, 2010. CHENG, Y.; PRUSOFF, W. H. Relationship between the inhibition constant (KI) and the concentration which causes 50% inhibition of an enzymatic reaction. Biochemical Pharmacology, v. 22, p. 403-411, 1973. CHMIELA, S., TKATCHENKO, A., SAUCEDA, H. E., POLTAVSKY, I., SCH?TT, K. T., M?LLER, K. R. Machine learning of accurate energy-conserving molecular force fields. Science Advances, v. 3, n. 5, p. e1603015, 2017. CLARK, Tim. A handbook of computational chemistry: A practical guide to chemical structure and energy calculations. Wiley-Interscience, 1985. COSTA FILHO, Paulo Augusto da; POPPI, Ronei Jesus. Genetic algorithm in chemistry. Qu?mica Nova, v. 22, n. 3, p. 405-411, 1999. CRAMER, C. J.; TRUHLAR, D. G. PM3?SM3: A general parameterization for including aqueous solvation effects in the PM3 molecular orbital model. Journal of Computational Chemistry, v. 13, n. 9, p. 1089-1097, 1992. DANCE, M., MONTAGNER, A., SALLES, J. P., YART, A., RAYNAL, P. The molecular functions of Shp2 in the Ras/Mitogen-activated protein kinase (ERK1/2) pathway. Cellular signalling, v. 20, n. 3, p. 453-459, 2008. DEWAR, M. J., ZOEBISCH, E. G., HEALY, E. F., STEWART, J. J. Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, v. 107, n. 13, p. 3902-3909, 1985. DEWAR, M. J. S; THIEL, W. Ground states of molecules. 38. The MNDO method. Approximations and parameters. Journal of the American Chemical Society, v. 99, n. 15, p. 4899-4907, 1977. DOBE?, P., FANFRL?K, J., ?EZ??, J., OTYEPKA, M., HOBZA, P. Transferable scoring function based on semiempirical quantum mechanical PM6-DH2 method: CDK2 with 15 structurally diverse inhibitors. Journal of Computer-Aided Molecular Design, v. 25, n. 3, p. 223-235, 2011. DONG, S., LI, F. Q., ZHANG, Q., LV, K. Z., YANG, H. L., GAO, Y., YU, J. R. Expression and clinical significance of SHP2 in gastric cancer. Journal of International Medical Research, v. 40, n. 6, p. 2083-2089, 2012. ELDRIDGE, M. D., MURRAY, C. W., AUTON, T. R., PAOLINI, G. V., MEE, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design, v. 11, n. 5, p. 425-445, 1997. FAN, L. C., TENG, H. W., SHIAU, C. W., LIN, H., HUNG, M. H., CHEN, Y. L., CHEN, K. F. SHP-1 is a target of regorafenib in colorectal cancer. Oncotarget, v. 5, n. 15, p. 6243, 2014. FANFRL?K, J., BRONOWSKA, A. K., ?EZ??, J., P?ENOSIL, O., KONVALINKA, J., HOBZA, P. A reliable docking/scoring scheme based on the semiempirical quantum mechanical PM6-DH2 method accurately covering dispersion and H-bonding: HIV-1 protease with 22 ligands. The Journal of Physical Chemistry B, v. 114, n. 39, p. 12666-12678, 2010. FICHTNER-FEIGL, S., KESSELRING, R., STROBER, W. Chronic inflammation and the development of malignancy in the GI tract. Trends in Immunology, v. 36, n. 8, p. 451-459, 2015. GILSON, Michael K.; HONIG, Barry H. The dielectric constant of a folded protein. Biopolymers: Original Research on Biomolecules, v. 25, n. 11, p. 2097-2119, 1986. GOHLKE, H., HENDLICH, M., KLEBE, G. Knowledge-based scoring function to predict protein-ligand interactions1. Journal of Molecular Biology, v. 295, n. 2, p. 337-356, 2000. G?NTELBERG, E. Untersuchungen ?ber Ioneninteraktion. Zeitschrift f?r Physikalische Chemie, v. 123, n. 1, p. 199-247, 1926. HAN, T., X., D. M., SUN, W., LIU, N., SUN, H. L., WEN, W., CHENG, Z. PTPN11/Shp2 overexpression enhances liver cancer progression and predicts poor prognosis of patients. Journal of Hepatology, v. 63, n. 3, p. 651-660, 2015. HANSSON, T., MARELIUS, J., ?QVIST, J. Ligand binding affinity prediction by linear interaction energy methods. Journal of Computer-Aided Molecular Design, v. 12, n. 1, p. 27-35, 1998. HARTREE, D. R. On some approximate numerical applications of Bohr?s theory of spectra. In: Proceedings of the Cambridge Philosophical Society. 1923. p. 625-641. HE, R., YU, Z. H., ZHANG, R. Y., WU, L., GUNAWAN, A. M., LANE, B. S., WELLS, C. D. Exploring the existing drug space for novel pTyr mimetic and SHP2 inhibitors. ACS Medicinal Chemistry Letters, v. 6, n. 7, p. 782-786, 2015. HIGASHI, H., NAKAYA, A., TSUTSUMI, R., YOKOYAMA, K., FUJII, Y., ISHIKAWA, S., TANAKA, S. Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. Journal of Biological Chemistry, v. 279, n. 17, p. 17205-17216, 2004. H?YVIK, I.M., J?RGENSEN, P. Characterization and generation of local occupied and virtual Hartree?Fock orbitals. Chemical Reviews, v. 116, n. 5, p. 3306-3327, 2016. HOF, P., PLUSKEY, S., DHE-PAGANON, S., ECK, M. J., SHOELSON, S. E. Crystal structure of the tyrosine phosphatase SHP-2. Cell, v. 92, n. 4, p. 441-450, 1998. HOUSE, J. E. Fundamentals of Quantum Chemistry. Compllemmentary Science Series. Elsevier Science & Technology, 2004. HUANG, J., RAUSCHER, S., NAWROCKI, G., RAN, T., FEIG, M., DE GROOT, B. L., MACKERELL JR, A. D. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods, v. 14, n. 1, p. 71, 2016. JENSEN, F. Introduction to computational chemistry. Chichester: John Wiley & Sons, p.429. 1999. KAWASAKI, Y., FREIRE, E. Finding a better path to drug selectivity. Drug Discovery Today, v. 16, n. 21-22, p. 985-990, 2011. KLAMT, A.; SCHUURMANN, G. J. Chem Soc Perkin Trans 2 1993, 5, 799;(b) Baldridge, K.; Klamt. A. J Chem Phys, v. 106, p. 6622, 1997. KITCHEN, D. B., DECORNEZ, H., FURR, J. R., BAJORATH, J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nature Reviews Drug Discovery, v. 3, n. 11, p. 935, 2004. KUREBAYASHI, J., OKUBO, S., YAMAMOTO, Y., IKEDA, M., TANAKA, K., OTSUKI, T., SONOO, H. Additive antitumor effects of gefitinib and imatinib on anaplastic thyroid cancer cells. Cancer Chemotherapy and Pharmacology, v. 58, n. 4, p. 460-470, 2006. KOLLMAN, Peter. Free energy calculations: applications to chemical and biochemical phenomena. Chemical Reviews, v. 93, n. 7, p. 2395-2417, 1993. KORB, O., ST?TZLE, T., EXNER, T. E. An ant colony optimization approach to flexible protein?ligand docking. Swarm Intelligence, v. 1, n. 2, p. 115-134, 2007. KORB, O., STUTZLE, T., EXNER, T. E. Empirical scoring functions for advanced protein? ligand docking with PLANTS. Journal of Chemical Information and Modeling, v. 49, n. 1, p. 84-96, 2009. KUNTZ, I. D., BLANEY, J. M., OATLEY, S. J., LANGRIDGE, R., FERRIN, T. E. A geometric approach to macromolecule-ligand interactions. Journal of Molecular Biology, v. 161, n. 2, p. 269-288, 1982. LABB?, D. P., HARDY, S., TREMBLAY, M. L. Protein tyrosine phosphatases in cancer: friends and foes!. In: Progress in Molecular Biology and Translational Science. Academic Press, 2012. p. 253-306. LAN, L., HOLLAND, J. D., QI, J., GROSSKOPF, S., VOGEL, R., GY?RFFY, B., BIRCHMEIER, W. Shp2 signaling suppresses senescence in PyMT?induced mammary gland cancer in mice. The EMBO journal, p. e201489004, 2015. LAWRENCE, H. R., PIREDDU, R., CHEN, L., LUO, Y., SUNG, S. S., SZYMANSKI, A. M., LAWRENCE, N. J. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (Shp2) based on oxindole scaffolds. Journal of Medicinal Chemistry, v. 51, n. 16, p. 4948-4956, 2008. LEACH, A. R. Molecular Modelling -- Principles and Applications. England: Person Prentice Hall, p.744. 2001. LINDEN, R. Algoritmos gen?ticos: uma importante ferramenta da intelig?ncia computacional. Brasport, 2006. LIU, W., YU, B., XU, G., XU, W. R., LOH, M. L., TANG, L. D., QU, C. K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). Journal of Medicinal Chemistry, v. 56, n. 18, p. 7212-7221, 2013. LOH, M. L., Reynolds, M. G., Vattikuti, S., Gerbing, R. B., Alonzo, T. A., Carlson, E., Meshinchi, S. PTPN11 mutations in pediatric patients with acute myeloid leukemia: results from the Children's Cancer Group. Leukemia, v. 18, n. 11, p. 1831, 2004. MORGON, N. H., COUTINHO, K. M?todos de qu?mica te?rica e modelagem molecular. Editora Livraria da F?sica, 2007. MORRIS, G. M., GOODSELL, D. S., HALLIDAY, R. S., HUEY, R., HART, W. E., BELEW, R. K., & OLSON, A. J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, v. 19, n. 14, p. 1639-1662, 1998. MUEGGE, I., MARTIN, Y. C. A general and fast scoring function for protein? ligand interactions: a simplified potential approach. Journal of Medicinal Chemistry, v. 42, n. 5, p. 791-804, 1999. NARDOZZA, A. P., D'ORAZIO, M., TRAPANNONE, R., CORALLINO, S., FILOMENI, G., TARTAGLIA, M., CASTAGNOLI, L. ROS and EGF are antagonistic cues controlling SHP-2 dimerization. Molecular and Cellular Biology, p. MCB. 06674-11, 2012. NIU, T., LIANG, X., YANG, J., ZHAO, Z., ZHOU, G. W. Kinetic comparison of the catalytic domains of SHP?1 and SHP?2. Journal of Cellular Biochemistry, v. 72, n. 1, p. 145-150, 1999. NODA, S., TAKAHASHI, A., HAYASHI, T., TANUMA, S. I., HATAKEYAMA, M. Determination of the catalytic activity of LEOPARD syndrome-associated SHP2 mutants toward parafibromin, a bona fide SHP2 substrate involved in Wnt signaling. Biochemical and Biophysical Research Communications, v. 469, n. 4, p. 1133-1139, 2016. O'BOYLE, N. M., BANCK, M., JAMES, C. A., MORLEY, C., VANDERMEERSCH, T., & HUTCHISON, G. R. Open Babel: An open chemical toolbox. Journal of Cheminformatics, v. 3, n. 1, p. 33, 2011. OLIVEIRA, Fernanda G. et al. Molecular docking study and development of an empirical binding free energy model for phosphodiesterase 4 inhibitors. Bioorganic & medicinal chemistry, v. 14, n. 17, p. 6001-6011, 2006. OHNISHI, Naomi et al. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences, v. 105, n. 3, p. 1003-1008, 2008. OPREA, T. I. Chemoinformatics in drug discovery. Weinheim: Wiley-VCH, p.493. 2005. PAGADALA, Nataraj S.; SYED, Khajamohiddin; TUSZYNSKI, Jack. Software for molecular docking: a review. Biophysical Reviews, v. 9, n. 2, p. 91-102, 2017. POPLE, J. A.; BEVERIDGE, D. L.; DOBOSH, P. A. Approximate self?consistent molecular?orbital theory. V. Intermediate neglect of differential overlap. The Journal of Chemical Physics, v. 47, n. 6, p. 2026-2033, 1967. QU, C. K. The SHP-2 tyrosine phosphatase: signaling mechanisms and biological functions. Cell Research, v. 10, n. 4, p. 279, 2000. REEVES, C. R. Modern heuristic techniques for combinatorial problems. Advanced topics in computer science. Mc Graw-Hill, 1995. ROCCOGRANDI, L., BINDER, Z. A., ZHANG, L., ACETO, N., ZHANG, Z., BENTIRES-ALJ, M., O?ROURKE, D. M. SHP2 regulates proliferation and tumorigenicity of glioma stem cells. Journal of Neuro-Oncology, v. 135, n. 3, p. 487-496, 2017. ROCHA, G. B., FREIRE, R. O., SIMAS, A. M., STEWART, J. J. Rm1: A reparameterization of am1 for h, c, n, o, p, s, f, cl, br, and i. Journal of Computational Chemistry, v. 27, n. 10, p. 1101-1111, 2006. S?, C. G. Planejamento, s?ntese e avalia??o farmacol?gica in vitro de novos compostos N-arilpiperaz?nicos candidatos a prot?tipos antipsic?ticos. Tese de doutorado. UFRJ, 2017 SANT'ANNA, C. M. R. Gloss?rio de termos usados no planejamento de f?rmacos (recomenda??es da IUPAC para 1997). Qu?mica Nova, v. 25, n. 3, p. 505-512, 2002. SANT'ANNA, C. M. R. M?todos de modelagem molecular para estudo e planejamento de compostos bioativos: Uma introdu??o. Revista Virtual de Qu?mica, v. 1, n. 1, p. 49-57, 2009. SKOOG, D. A., WEST, D. M., HOLLER, F. J., CROUCH, S. Fundamentals of analytical chemistry. Nelson Education, 2013. SLATER, J. C. The theory of complex spectra. Physical Review., v.34, p.1293--1322, 1929. SERRANO, M. SHP2: a new target for pro?senescence cancer therapies. The EMBO journal, v. 34, n. 11, p. 1439-1441, 2015. M SCOTT, L., R LAWRENCE, H., M SEBTI, S., J LAWRENCE, N., WU, J. Targeting protein tyrosine phosphatases for anticancer drug discovery. Current Pharmaceutical Design, v. 16, n. 16, p. 1843-1862, 2010. SCOTT, L. M., CHEN, L., DANIEL, K. G., BROOKS, W. H., GUIDA, W. C., LAWRENCE, H. R., WU, J. Shp2 protein tyrosine phosphatase inhibitor activity of estramustine phosphate and its triterpenoid analogs. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 2, p. 730-733, 2011. SHI, Z. Q., YU, D. H., PARK, M., MARSHALL, M., FENG, G. S. Molecular mechanism for the Shp-2 tyrosine phosphatase function in promoting growth factor stimulation of Erk activity. Molecular and Cellular Biology, v. 20, n. 5, p. 1526-1536, 2000. STEWART, J. J. P. Optimization of parameters for semiempirical methods II. Applications. Journal of Computational Chemistry, v. 10, n. 2, p. 221-264, 1989. STEWART, J. J. P. Application of localized molecular orbitals to the solution of semiempirical self?consistent field equations. International Journal of Quantum Chemistry, v. 58, n. 2, p. 133-146, 1996. STEWART, J. J. P. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling, v. 13, n. 12, p. 1173-1213, 2007. STEWART, J. J. P. Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters. Journal of Molecular Modeling, v. 19, n. 1, p. 1-32, 2013. TARCSAY, ?., KESER?, G. M. Is there a link between selectivity and binding thermodynamics profiles?. Drug Discovery Today, v. 20, n. 1, p. 86-94, 2015. THIEL, W., VOITYUK, A. A. Extension of the MNDO formalism tod orbitals: Integral approximations and preliminary numerical results. Theoretica Chimica Acta, v. 81, n. 6, p. 391-404, 1992. TONKS, N. K. Protein tyrosine phosphatases: from genes, to function, to disease. Nature Reviews Molecular Cell Biology, v. 7, n. 11, p. 833, 2006. VERDONK, M. L., COLE, J. C., HARTSHORN, M. J., MURRAY, C. W., TAYLOR, R. D. Improved protein?ligand docking using GOLD. Proteins: Structure, Function, and Bioinformatics, v. 52, n. 4, p. 609-623, 2003. WANG, S., MILNE, G. W., NICKLAUS, M. C., MARQUEZ, V. E., LEE, J., BLUMBERG, P. M. Protein kinase C. Modeling of the binding site and prediction of binding constants. Journal of Medicinal Chemistry, v. 37, n. 9, p. 1326-1338, 1994. WEINER, S. J., KOLLMAN, P. A., CASE, D. A., SINGH, U. C., GHIO, C., ALAGONA, G., WEINER, P. A new force field for molecular mechanical simulation of nucleic acids and proteins. Journal of the American Chemical Society, v. 106, n. 3, p. 765-784, 1984. WU, J.; LAWRENCE, N. J.; SEBTI, S. M.; LAWRENCE, H. R; University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2012. (US20120034186 A1) WU, N. J. LAWRENCE, S. M. SEBTI, H. R. LAWRENCE. University Of South Florida, H. Lee Mofffitt Cancer Center and Research Institute, Inc. 2008. (US2008/0176309 A1) XU, R., YU, Y., ZHENG, S., ZHAO, X., DONG, Q., HE, Z., XU, X. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood, v. 106, n. 9, p. 3142-3149, 2005. YANG, J., LIANG, X., NIU, T., MENG, W., ZHAO, Z., ZHOU, G. W. Crystal structure of the catalytic domain of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 273, n. 43, p. 28199-28207, 1998. YANG, J., CHENG, Z., NIU, T., LIANG, X., ZHAO, Z. J., ZHOU, G. W. Structural basis for substrate specificity of protein-tyrosine phosphatase SHP-1. Journal of Biological Chemistry, v. 275, n. 6, p. 4066-4071, 2000. YANG, J., NIU, T., ZHANG, A., MISHRA, A. K., ZHAO, Z. J., ZHOU, G. W. Relation between the flexibility of the WPD loop and the activity of the catalytic domain of protein tyrosine phosphatase SHP?1. Journal of Cellular Biochemistry, v. 84, n. 1, p. 47-55, 2002. YU, Z. H., CHEN, L., WU, L., LIU, S., WANG, L., ZHANG, Z. Y. Small molecule inhibitors of SHP2 tyrosine phosphatase discovered by virtual screening. Bioorganic & Medicinal Chemistry Letters, v. 21, n. 14, p. 4238-4242, 2011. ZHANG, X., HE, Y., LIU, S., YU, Z., JIANG, Z. X., YANG, Z., WANG, L. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). Journal of Medicinal Chemistry, v. 53, n. 6, p. 2482-2493, 2010. ZHOU, X., COAD, J., DUCATMAN, B., AGAZIE, Y. M. SHP2 is up?regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis. Histopathology, v. 53, n. 4, p. 389-402, 2008. ZHOU, T., HUANG, D., CAFLISCH, A. Is quantum mechanics necessary for predicting binding free energy?. Journal of Medicinal Chemistry, v. 51, n. 14, p. 4280-4288, 2008.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Qu?mica
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/5153/4/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/5153/3/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf.txt
http://localhost:8080/tede/bitstream/jspui/5153/2/2019+-+Sheisi+Fonseca+Leite+da+Silva+Rocha.pdf
http://localhost:8080/tede/bitstream/jspui/5153/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
ea42740fb5dc6f32463415c98bdd31d0
78e70249053e5be917fab9c80bc8a3b5
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313536438599680