Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/10576 |
Resumo: | A absorção de Nitrogênio (N) pelas plantas é uma etapa chave para a eficiência de uso de N, afetando a produção de massa fresca e rendimento de grãos. O transceptor NRT1.1 de Arabidopsis thaliana foi identificado como sinalizador da absorção de nitrato (NO3-). Em arroz, três prováveis ortólogos do transceptor NRT1.1 foram identificados, nomeados de OsNRT1.1A, OsNRT1.1B e OsNRT1.1C. O objetivo deste estudo foi avaliar se a superexpressão dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em plantas mutantes chl1-5 de Arabidopsis thaliana (sem o gene NRT1.1) restabelecem a capacidade de transporte e sinalização pelo nitrato perdida no mutante nocauteado. O processo de transformação de plantas chl1-5 de A. thaliana foi mediante floral dip com as cepas de Agrobacterium tumefaciens da linhagem LBA4404 mediante as construções obtidas 35S:OsNRT1.1A:HA, 35S:OsNRT1.1B:HA, 35S:OsNRT1.1C:HA e 35S:OsNRT1.1sa:HA (promotor:gene:tag de HA). Posteriormente foi utilizado o antibiótico canamicina para obter as linhagens segregantes produto da transformação, sendo que apenas as plantas com duas cópias do gene foram selecionadas para testar os diferentes níveis de expressão gênica das plantas obtidas. Para verificar a resistência das plantas mutantes ao clorato (NaClO3), foi montado o experimento com plantas homozigotas, e suas sementes foram germinadas sobre substrato comercial e vermiculita, aos 23 dias após o plantio foram iniciadas aplicações com 12 mM de NaClO3. Para avaliar a expressão gênica alterada pela introdução de OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C no mutante chl1-5, foram desenhados iniciadores para análise de expressão dos transportadores de NO3- de alta afinidade e baixa afinidade. Foram usadas duas linhagens de cada transformação nos experimentos, além de plantas tipo silvagem (WT) e plantas mutantes chl1-5. O teste com clorato mostrou a capacidade dos transportadores OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C de absorver nitrato, evidenciado pelo decréscimo da massa fresca provocado pela redução do clorato a clorito pela nitrato redutase, produto tóxico para as células. A inserção do transportador OsNRT1.1B causou a maior redução de crescimento no teste do clorato em comparação com OsNRT1.1A e OsNRT1.1C, chegando aos mesmos níveis de redução do crescimento da planta tipo silvestre (WT). As análises de expressão mostraram que a inserção dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em Arabidopsis thaliana chl1-5 foi capaz de induzir a expressão dos genes OsNRT2.1 e OsNAR2.1, sendo que a forma splicing alternativo de OsNRT1.1A (OsNRT1.1Asa) não afetou de maneira significativa a expressão de OsNRT2.1 e OsNAR2.1. Os resultados obtidos mostram a capacidade dos ortólogos de NRT1.1 em arroz (OsNRT1.1A, OsNRT1.1B e OsNRT1.1C) em absorver nitrato e sinalizar para a expressão de outros transportadores de nitrato (transceptor), podendo afetar a eficiência de absorção de nitrogênio. |
id |
UFRRJ-1_5b64c4950efc62a39115e61a3a545341 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/10576 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Chamba, Juan Sebastian VeraSantos, Leandro Azevedo983.907.835-68Sperandio, Marcus Vinícius Loss922.605.357-04Santos, Leandro AzevedoVidal, Marcia SoaresSouza, Marco André Alves de018.193.906-16http://lattes.cnpq.br/53254923218124852023-12-22T01:39:40Z2023-12-22T01:39:40Z2018-04-04CHAMBA, Juan Sebastian Vera. Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana. 2018. 40 f. (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/10576A absorção de Nitrogênio (N) pelas plantas é uma etapa chave para a eficiência de uso de N, afetando a produção de massa fresca e rendimento de grãos. O transceptor NRT1.1 de Arabidopsis thaliana foi identificado como sinalizador da absorção de nitrato (NO3-). Em arroz, três prováveis ortólogos do transceptor NRT1.1 foram identificados, nomeados de OsNRT1.1A, OsNRT1.1B e OsNRT1.1C. O objetivo deste estudo foi avaliar se a superexpressão dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em plantas mutantes chl1-5 de Arabidopsis thaliana (sem o gene NRT1.1) restabelecem a capacidade de transporte e sinalização pelo nitrato perdida no mutante nocauteado. O processo de transformação de plantas chl1-5 de A. thaliana foi mediante floral dip com as cepas de Agrobacterium tumefaciens da linhagem LBA4404 mediante as construções obtidas 35S:OsNRT1.1A:HA, 35S:OsNRT1.1B:HA, 35S:OsNRT1.1C:HA e 35S:OsNRT1.1sa:HA (promotor:gene:tag de HA). Posteriormente foi utilizado o antibiótico canamicina para obter as linhagens segregantes produto da transformação, sendo que apenas as plantas com duas cópias do gene foram selecionadas para testar os diferentes níveis de expressão gênica das plantas obtidas. Para verificar a resistência das plantas mutantes ao clorato (NaClO3), foi montado o experimento com plantas homozigotas, e suas sementes foram germinadas sobre substrato comercial e vermiculita, aos 23 dias após o plantio foram iniciadas aplicações com 12 mM de NaClO3. Para avaliar a expressão gênica alterada pela introdução de OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C no mutante chl1-5, foram desenhados iniciadores para análise de expressão dos transportadores de NO3- de alta afinidade e baixa afinidade. Foram usadas duas linhagens de cada transformação nos experimentos, além de plantas tipo silvagem (WT) e plantas mutantes chl1-5. O teste com clorato mostrou a capacidade dos transportadores OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C de absorver nitrato, evidenciado pelo decréscimo da massa fresca provocado pela redução do clorato a clorito pela nitrato redutase, produto tóxico para as células. A inserção do transportador OsNRT1.1B causou a maior redução de crescimento no teste do clorato em comparação com OsNRT1.1A e OsNRT1.1C, chegando aos mesmos níveis de redução do crescimento da planta tipo silvestre (WT). As análises de expressão mostraram que a inserção dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em Arabidopsis thaliana chl1-5 foi capaz de induzir a expressão dos genes OsNRT2.1 e OsNAR2.1, sendo que a forma splicing alternativo de OsNRT1.1A (OsNRT1.1Asa) não afetou de maneira significativa a expressão de OsNRT2.1 e OsNAR2.1. Os resultados obtidos mostram a capacidade dos ortólogos de NRT1.1 em arroz (OsNRT1.1A, OsNRT1.1B e OsNRT1.1C) em absorver nitrato e sinalizar para a expressão de outros transportadores de nitrato (transceptor), podendo afetar a eficiência de absorção de nitrogênio.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoNitrogen (N) uptake by plants is a key step for N use efficiency, affecting fresh mass production and yield of grains. The NRT1.1 transceptor of Arabidopsis thaliana was identified as a molecular signal of nitrate uptake (NO3-). In rice, three orthologs of the NRT1.1 named OsNRT1.1A, OsNRT1.1B and OsNRT1.1C, were identified. The objective of this work was to evaluate the overexpression of the genes OsNRT1.1A, OsNRT1.1B and OsNRT1.1C in Arabidopsis thaliana chl1-5 mutant plants to restore the transport and signaling capacity of the nitrate lost in the knockout mutant. The transformation process of A. thaliana plants was obtained by floral immersion with strains of Agrobacterium tumefaciens of lineage LBA4404 by the following constructs 35S: OsNRT1.1A: HA, 35S: OsNRT1.1B: HA, 35S: OsNRT1. 1C: HA and 35S: OsNRT1.1sa: HA (promoter: gene: HA tag). Subsequently, the antibiotic kanamycin was used to obtain segregant lineages of the transformation product, being only plants with two copies of the gene was selected for testing the differents levels of gene expressing. To verify the resistance of the mutant plants to the chlorate (NaClO3), the experiment was set up with homozygous plants, and their seeds were germinated on commercial substrate and vermiculite. At 23 days after planting, applications with 12 mM NaClO3 were started. To evaluate altered gene expression by introduction of OsNRT1.1A, OsNRT1.1B, OsNRT1.1C, primers were designed for expression analysis of the high and low affinity NO3- transporters. Two lines of each transformation were used in the experiments, including wild type plants (WT) and chl1-5 mutant plants. The chlorate test showed the ability of OsNRT1.1A, OsNRT1.1B or OsNRT1.1C to nitrate uptake, evidenced by the decrease in fresh mass caused by the reduction of chlorate to chlorite by nitrate reductase, the chlorite a toxic product to cells. The insertion of transporter OsNRT1.1B caused the largest growth reduction in the chlorate test compared to OsNRT1.1A and OsNRT1.1C, aproximating to the same levels of wild-type (WT). Expression analyzes showed that the insertion of OsNRT1.1A, OsNRT1.1B and OsNRT1.1C genes into Arabidopsis thaliana chl1-5 was able to induce the expression of OsNRT2.1 and OsNAR2.1 genes, and the alternative splicing form of OsNRT1 .1A (OsNRT1.1Asa) did not significantly affect the expression of OsNRT2.1 and OsNAR2.1. The results show the ability of orthologs of NRT1.1 in rice (OsNRT1.1A, OsNRT1.1B and OsNRT1.1C) to nitrate uptake and signal to the expression of other nitrate transporters (transceptor), which may affect the nitrogen efficiency and uptake.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaTransceptorNitrogênioOryza sativaArabidopsis thalianaTransceptorNitrogenAgronomiaCaracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thalianaCharacterization of the isoforms OsNTR1.1A, OsNTR1.1B and OsNTR1.1C transporters by phenotypic reversion of the chl1-5 mutant of Arabidopsisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisARAKI, R. & HASEGAWA, H. Expression of Rice (Oryza sativa L.) Genes Involved in High-Affinity Nitrate Transport during the Period of Nitrate Induction. Breeding Science, v. 56, p. 295-302, 2006. ASLAM, M.; TRAVIS, R. L. & HUFFAKER, R. C. Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barley (Hordeum vulgare L.) seedlings. Plant Physiology, v. 102, p. 811-819, 1993. ASLAM, M.; TRAVIS, R. L.; HUFFAKER, R. C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiology, v. 99, n. 3, p. 1124-1133, 1992. BRADY, N. C.; WEIL, R. R. Elementos da natureza e propriedades do solo. 3ª edição. Bookman. 2013. 685 p. CATALDO, D. A.; HAROON, M.; SCHRADER, L. E.; YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, New York, v. 6, n. 1, p. 71-80, 1975. CLOUGH, S. J. AND BENT, A. F. (1998), Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16: 735–743. doi:10.1046/j.1365-313x.1998.00343.x CONAB Acompanhamento safra brasileira grãos, v. 5 Safra 2017/18 – Quinto levantamento, Brasília, p. 1-140. Fevereiro 2018. DUAN DongDong & ZHANG HanMa. A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci China Life Sci. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Arroz: o produtor pergunta, a Embrapa responde. 2ª ed. rev. ampl. Brasília, DF. Embrapa, 2013. 245 p. FANG, X.Z.; TIAN, W.H.: LIU, X.X.: LIN, X.Y.; JIN, C.W.; ZHENG, S. J. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytologist 211: 149-158. 2016. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, 1980. p. 265-314. FENG, H.; LI, B.; ZHI, Y.; CHEN, J.; LI, R.; XIA, X.; XU, G.; FAN, X. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Rep (2017) 36: 1287 FOOD AND AGRICULTURE ORGANIZATION - FAO. International year of rice. 2004. FELKER, P. Microdetermination of nitrogen in seed protein extratcs. Analytical Chemistry, Washington, v.49, n. 7, p.1080, 1977. FERNANDES, M. S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba, San Jose, CR, v.34, p. 9-18, 1984. FERNANDES, M. S.; SOUZA, S. R. Absorção de Nutrientes. In: Fernandes M. S.. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006, v. 1, p. 115-152. FORDE, B.G. Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology, v 53, p. 203-224. GAO, J.; LIU, J.; Li, B.; LI, Z. Isolation and Purification of Functional Total RNA from Bluegrained Whet Endosperm Tissues Contaning High Levels of Starches and Flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185a-185i, 2001. GLASS, A. D. M.; SHAFF, J. E.; KOCHIAN, L. V. Studies of nitrate uptake in barley. IV Electrophysiology. Plant Cell., 99: 456-463, 1992. GLASS A.D.M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit. Rev.Plant Sci. 22: 453–470. 2003. GIBEAUT D. M.; HULETT J.; CRAMER G. R.; SEEMANN J. R. Maximal Biomass of Arabidopsis thaliana Using a Simple, Low-Maintenance Hydroponic Method and Favorable Environmental Conditions. Department of Biochemistry, University of Nevada, Reno, Nevada 89557. Plant Physiol. Vol. 115, 1997. GOJON A, KROUK G, PERRINE-WALKER F, LAUGIER E. Nitrate transceptor(s) in plants. J Exp Bot 62: 2299–2308, 2011. GUO F-Q.; YOUNG J.; CRAWFORD NM. The Nitrate Transporter AtNRT1.1 (CHL1) Functions in Stomatal Opening and Contributes to Drought Susceptibility in Arabidopsis. The Plant Cell. 2003;15(1):107-117. HO, C. H., LIN, S. H., HU, H. C., TSAY, Y. F. CHL1 Functions as a Nitrate Sensor in Plants. Cell, v.138, p. 1184-1194. 2009. HOLZSCHUH M.J, BOHNEN H., ANGHINONI I., PIZZOLATO T.M., CARMONA F.C.; CARLOS F.S. (2011) Absorção de nutrientes e crescimento do arroz com suprimento combinado de amônio e nitrato. Revista Brasileira de Ciência do Solo, 35:1357-1366. HU, B.; WANG, W.; OU, S.; TANG, J.; LI, H.; CHE, R.; ZHANG, Z.; CHAI, X.; WANG, H.; WANG, Y.; LIANG, C.; LIU, L.; PIAO, Z.; DENG, Q.; DENG, K.; XU, C.; LIANG, Y.; ZHANG, L.; LI, L.; CHU, C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47, 834-838. 2015. IBGE (Instituto Brasileiro de Geografia e Estatística). Levantamento sistemático da produção agrícola pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. Rio de Janeiro v. 29 n. 12. 2016. IBGE (Instituto Brasileiro de Geografia e Estatística). Levantamento sistemático da produção agrícola pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. Rio de Janeiro v.29 n.12. 2017. JIAO X.; LYU, Y.; WU, X.; LI, H.; CHENG, L; ZHANG, C.; YUAN, L.; JIANG, R.; JIANG, B.; RENGEL, Z.; ZHANG, F.; DAVIES, J. W.; SHEN, J. Grain production versus resources and enviromental costs: towards increasing sustainability of nutrient use in China. Journal of Experimental Botany. 2016. KIBA, T.; FERIA-BOURRELLIER, A-B.; LAFOUGE, F.; LEZNHEVA, L.; MERCEY, BT.; ORSEL, M.; BREHAUT, V.; MILLER, A.; DANIEL-VEDELE, F.; SAKAKIBARA, H.; KRAPP, A. The Arabidopsis thaliana Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants. The Plant Cell. 2012;24 (1):245-258. KIRK, G.J.D. & KRONZUCKER, H.J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Ann. Bot., 96:639-646, 2005. LIVAK, K. J & SCHMITTGEN, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, v. 25, p. 402-408, 2001. LERAN, S.; VARALA, K.; BOYER, J.C.; CHIURAZZI, M.; CRAWFORD, N.; DANIELVEDELE, F.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B.; GASSMANN, W.; GEIGER, D.; GOJON, A.; GONG, J.M.; HALKIER, B.A.; HARRIS, J.M.; HEDRICH, R.; LIMAMI, A.M.; RENTSCH, D.; SEO, M.; TSAY, Y.F.; ZHANG, M.; CORUZZI, G.; LACOMBE, B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5-9 (2014). LIU, K. H. & TSAY, Y-F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013 (2003). LIU, K. H., HUANG, C. Y., & TSAY, Y. F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis thaliana involved in multiple phases of nitrate uptake. The Plant Cell, 11(5), 865– 874. (1999). LUZ, M. J. S.; FERREIRA, G. V.; BEZERRA, J. R. C. Adubação e Correção do Solo: Procedimentos a Serem Adotados em Função dos Resultados da Análise do Solo. Circular técnica 63. Ministério de Agricultura Pecuária e Abastecimento. 2002. MAATHUIS, F. J. M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, v. 12, p.250-258, 2009. MAO, Q. Q.; GUAN, M, Y.; LU, K, X.; DU, S. T.; FAN, S. K.; YE, Y, Q.; LIN, X. Y.; JIN, C. W. Inibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiol. 2014 Oct; 166(2): 934-944. MARA, C., GRIGOROVA, B., & LIU, Z. Floral-dip Transformation of Arabidopsis thaliana to Examine pTSO2::β-glucuronidase Reporter Gene Expression. Journal of Visualized Experiments : JoVE, (40), 1952, 2010. MEINKE, D. W., CHERRY, J. M., DEAN, C., ROUNSLEY, S. D. & KOORNNEEF, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662±665 (1998). MOUNIER, E., PERVENT, M., LJUNG, K., GOJON, A. and NACRY, P. (2014), Auxinmediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis thaliana root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ, 37: 162-174. MUÑOS S, CAZETTES C, FIZAMES C, GAYMARD F, TILLARD P, LEPETIT M, LEJAY L, GOJON A (2004) Transcript profiling in the chll-5 mutant of Arabidopsis thaliana reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16: 2433-2 MURASHIGE, T.; SKOOG, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15: 473–497. (1962) O’BRIEN J.A., VEGA A., BOUGUYON E., KROUK G., GOJON A., CORUZZI G., AND GUTIÉRREZ R.A. (2016). Nitrate transport, sensing and responses in plants. Mol. Plant. OKAMOTO M.; KUMAR A.; LI W.; WANG Y.; SIDDIQI MY.; CRAWFORD NM.; GLASS AD. (2006) High-affinity nitrate transport in roots of Arabidopsis thaliana depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140: 1036–1046 ORSEL, M.; EULENBURG, K.; KRAPP, A.; DANIEL-VEDELE, F. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restrics growth at low external nitrate concentration. PLANTA, v. 219, p. 714-721, 2004. PLETT, D.; TOUBIA, J.; GARNETT, T.; TESTER, M.; KAISER, BN.; BAUMANN, U. Dichotomy in the NRT Gene Families of Dicots and Grass Species. Schönbach C, ed. PLoS ONE. 2010. REMANS T, NACRY P, PERVENT M, ET AL. A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis. Plant Physiology. 2006;140(3):909-921. RIVERAS, E.; ALVAREZ, J. M.; VIDAL, E. A.; OSES, C.; VEGA, A.; GUTIERREZ, E. A. The calcium ion is a second Messenger in the nitrate signaling pathway of Arabidopsis. Plant. Physiol 2015 Oct; 169(2): 1397–1404. RIVERO, L.; SCHOLL, R.; HOLOMUZKI, N.; CRIST, D.; GROTEWOLD, E.; BRKLJACIC J. Handling Arabidopsis thaliana Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses. In: Sanchez-Serrano, J. J.; Salinas, J. (eds) Arabidopsis thaliana protocols. Third edition. 2014. p 3-27. ROQUETTI, F. D. Potencial de produção de grãos brasileiros via fertilização e impactos nas emissões de CO2eq. Dissertação de Mestrado - 2014. SANTOS, L. A. Efeito da superexpressão dos fatores de transcrição ZmDof1 e OsDof25 sobre a eficiência de uso de Nitrogênio em Arabidopsis thaliana L. Dissertação mestrado. 2009. SIDDIQI, M.Y., GLASS, A.D.M., RUTH, T.J., et al. Studies of the uptake of nitrate in barley. I. Kinetics of 13NO3 - influx. Plant Physiology, Lancaster, v.93, p.1426-1432, 1990. SOSBAI (Sociedade Sul-Brasileira de Arroz Irrigado) Arroz irrigado: recomendações técnicas da pesquisa para o Sul do Brasil / XXX Reunião Técnica da Cultura do Arroz Irrigado. RS, Santa Maria, Brasil, 2014. SOUZA, S. R.; FERNANDES, M. S. Nitrogênio. In: Fernandes, M.S. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do solo, 2006a, v. 1, p. 215- 252. SPERANDIO, M. V. L. Análise de expressão dos genes OsNRT1.1 (A, B e C) e efeito do silenciamento das isoformas OsA2 e OsA7 de PM H+ -ATPases na absorção de nitrogênio em arroz. UFRRJ Tese doutorado. 2015. SUN, J.; ZHENG, N. Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Frontiers in Physiology, 6, 386. 2015. TEDESCO, M. J. Extração simlutânea de N, P, K, Ca e Mg em tecido de plantas por digestão com H2O2-H2SO4. UFRGS. 1982, 23 p. TURANO, F. J.; DASHNER, R.; UPADHYAYA, A.; CALDWELL, C. R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiology, v.112, p.1357-1364, 1996. TSAY, Y. F.; SCHROEDER, J. I.; FELDMANN, K. A.; CRAWFORD, N. M. The herbicide sensitivity gene CHL1 of Arabidopsis thaliana encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713. 1993. VALVEKENS, D.; VAN MONTAGU, M. and VAN LIJSE BETTENS, M. A. tumefaciencs mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Science of the United States of America, May 1988, vol. 85, no. 10, p. 5536-5546. WANG, X., FELDMANN, K. A. AND SCHOLL, R. L. (1988), A chlorate-hypersensitive, high nitrate/chlorate uptake mutant of Arabidopsis thaliana. Physiologia Plantarum, 73: 305– 310. WANG, W.; HU, B.; YUAN, D.; LIU, Y.; CHE, R.; HU, Y.; OU, S.; ZHANG, Z.; WANG, H.; LI, H.; JIANG, Z.; ZHANG, Z.; GAO, Z.; QIU, Y.; MENG, X.; LIU, Y.; BAI, Y.; LIANG, Y.; WANG, Y-Q.; ZHANG, L.; LI, L.; SODMERGEN, S.; JING, H-C.; LI, J.; CHU, C. Expression of the Nitrate Transporter Gene OsNRT1.1A/OsNPF6.3 Confers High Yield and Early Maturation in Rice. Plant Cell Advance Publication. 2018. YAN, M.; FAN, X.; FENG, H.; MILLER, A. J.; SHEN, Q.; XU, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration rangespce. Plant, Cell and Enviroment, v. 34, p. 1360-1372, 2011. YEMM, E. W.; COCKING, E. C. The determination of amino acids with Ninhydrin. Analyst, London, v.80, n. 948, p.209-213, 1955. ZHANG, H. & FORDE, B. G. Regulation of Arabidopsis thaliana root development by nitrate availability. Journal of Experimental Botany, v.51, n.342, p.51-59, 2000.https://tede.ufrrj.br/retrieve/68546/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5469Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-03-21T19:44:26Z No. of bitstreams: 1 2018 - Juan Sebastian Vera Chamba.pdf: 1264896 bytes, checksum: 1fc6c49cecaecd26a16223e2cfcb7e20 (MD5)Made available in DSpace on 2022-03-21T19:44:26Z (GMT). No. of bitstreams: 1 2018 - Juan Sebastian Vera Chamba.pdf: 1264896 bytes, checksum: 1fc6c49cecaecd26a16223e2cfcb7e20 (MD5) Previous issue date: 2018-04-04info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Juan Sebastian Vera Chamba.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/1/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2018 - Juan Sebastian Vera Chamba.pdf.txtExtracted Texttext/plain107774https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/2/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf.txtd894c73c020a29a7b83a3a117abdc6c8MD52ORIGINAL2018 - Juan Sebastian Vera Chamba.pdfapplication/pdf1264896https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/3/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf1fc6c49cecaecd26a16223e2cfcb7e20MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/105762023-12-21 22:39:40.737oai:rima.ufrrj.br:20.500.14407/10576Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:39:40Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
dc.title.alternative.eng.fl_str_mv |
Characterization of the isoforms OsNTR1.1A, OsNTR1.1B and OsNTR1.1C transporters by phenotypic reversion of the chl1-5 mutant of Arabidopsis |
title |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
spellingShingle |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana Chamba, Juan Sebastian Vera Transceptor Nitrogênio Oryza sativa Arabidopsis thaliana Transceptor Nitrogen Agronomia |
title_short |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
title_full |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
title_fullStr |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
title_full_unstemmed |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
title_sort |
Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana |
author |
Chamba, Juan Sebastian Vera |
author_facet |
Chamba, Juan Sebastian Vera |
author_role |
author |
dc.contributor.author.fl_str_mv |
Chamba, Juan Sebastian Vera |
dc.contributor.advisor1.fl_str_mv |
Santos, Leandro Azevedo |
dc.contributor.advisor1ID.fl_str_mv |
983.907.835-68 |
dc.contributor.advisor-co1.fl_str_mv |
Sperandio, Marcus Vinícius Loss |
dc.contributor.advisor-co1ID.fl_str_mv |
922.605.357-04 |
dc.contributor.referee1.fl_str_mv |
Santos, Leandro Azevedo |
dc.contributor.referee2.fl_str_mv |
Vidal, Marcia Soares |
dc.contributor.referee3.fl_str_mv |
Souza, Marco André Alves de |
dc.contributor.authorID.fl_str_mv |
018.193.906-16 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5325492321812485 |
contributor_str_mv |
Santos, Leandro Azevedo Sperandio, Marcus Vinícius Loss Santos, Leandro Azevedo Vidal, Marcia Soares Souza, Marco André Alves de |
dc.subject.por.fl_str_mv |
Transceptor Nitrogênio Oryza sativa Arabidopsis thaliana |
topic |
Transceptor Nitrogênio Oryza sativa Arabidopsis thaliana Transceptor Nitrogen Agronomia |
dc.subject.eng.fl_str_mv |
Transceptor Nitrogen |
dc.subject.cnpq.fl_str_mv |
Agronomia |
description |
A absorção de Nitrogênio (N) pelas plantas é uma etapa chave para a eficiência de uso de N, afetando a produção de massa fresca e rendimento de grãos. O transceptor NRT1.1 de Arabidopsis thaliana foi identificado como sinalizador da absorção de nitrato (NO3-). Em arroz, três prováveis ortólogos do transceptor NRT1.1 foram identificados, nomeados de OsNRT1.1A, OsNRT1.1B e OsNRT1.1C. O objetivo deste estudo foi avaliar se a superexpressão dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em plantas mutantes chl1-5 de Arabidopsis thaliana (sem o gene NRT1.1) restabelecem a capacidade de transporte e sinalização pelo nitrato perdida no mutante nocauteado. O processo de transformação de plantas chl1-5 de A. thaliana foi mediante floral dip com as cepas de Agrobacterium tumefaciens da linhagem LBA4404 mediante as construções obtidas 35S:OsNRT1.1A:HA, 35S:OsNRT1.1B:HA, 35S:OsNRT1.1C:HA e 35S:OsNRT1.1sa:HA (promotor:gene:tag de HA). Posteriormente foi utilizado o antibiótico canamicina para obter as linhagens segregantes produto da transformação, sendo que apenas as plantas com duas cópias do gene foram selecionadas para testar os diferentes níveis de expressão gênica das plantas obtidas. Para verificar a resistência das plantas mutantes ao clorato (NaClO3), foi montado o experimento com plantas homozigotas, e suas sementes foram germinadas sobre substrato comercial e vermiculita, aos 23 dias após o plantio foram iniciadas aplicações com 12 mM de NaClO3. Para avaliar a expressão gênica alterada pela introdução de OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C no mutante chl1-5, foram desenhados iniciadores para análise de expressão dos transportadores de NO3- de alta afinidade e baixa afinidade. Foram usadas duas linhagens de cada transformação nos experimentos, além de plantas tipo silvagem (WT) e plantas mutantes chl1-5. O teste com clorato mostrou a capacidade dos transportadores OsNRT1.1A, OsNRT1.1B ou OsNRT1.1C de absorver nitrato, evidenciado pelo decréscimo da massa fresca provocado pela redução do clorato a clorito pela nitrato redutase, produto tóxico para as células. A inserção do transportador OsNRT1.1B causou a maior redução de crescimento no teste do clorato em comparação com OsNRT1.1A e OsNRT1.1C, chegando aos mesmos níveis de redução do crescimento da planta tipo silvestre (WT). As análises de expressão mostraram que a inserção dos genes OsNRT1.1A, OsNRT1.1B e OsNRT1.1C em Arabidopsis thaliana chl1-5 foi capaz de induzir a expressão dos genes OsNRT2.1 e OsNAR2.1, sendo que a forma splicing alternativo de OsNRT1.1A (OsNRT1.1Asa) não afetou de maneira significativa a expressão de OsNRT2.1 e OsNAR2.1. Os resultados obtidos mostram a capacidade dos ortólogos de NRT1.1 em arroz (OsNRT1.1A, OsNRT1.1B e OsNRT1.1C) em absorver nitrato e sinalizar para a expressão de outros transportadores de nitrato (transceptor), podendo afetar a eficiência de absorção de nitrogênio. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-04-04 |
dc.date.accessioned.fl_str_mv |
2023-12-22T01:39:40Z |
dc.date.available.fl_str_mv |
2023-12-22T01:39:40Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CHAMBA, Juan Sebastian Vera. Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana. 2018. 40 f. (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10576 |
identifier_str_mv |
CHAMBA, Juan Sebastian Vera. Caracterização dos transportadores OsNTR1.1A, OsNTR1.1B e OsNTR1.1C por meio da reversão fenotípica do mutante chl1-5 de Arabidopsis thaliana. 2018. 40 f. (Mestrado em Agronomia, Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10576 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ARAKI, R. & HASEGAWA, H. Expression of Rice (Oryza sativa L.) Genes Involved in High-Affinity Nitrate Transport during the Period of Nitrate Induction. Breeding Science, v. 56, p. 295-302, 2006. ASLAM, M.; TRAVIS, R. L. & HUFFAKER, R. C. Comparative induction of nitrate and nitrite uptake and reduction systems by ambient nitrate and nitrite in intact roots of barley (Hordeum vulgare L.) seedlings. Plant Physiology, v. 102, p. 811-819, 1993. ASLAM, M.; TRAVIS, R. L.; HUFFAKER, R. C. Comparative kinetics and reciprocal inhibition of nitrate and nitrite uptake in roots of uninduced and induced barley (Hordeum vulgare L.) seedlings. Plant Physiology, v. 99, n. 3, p. 1124-1133, 1992. BRADY, N. C.; WEIL, R. R. Elementos da natureza e propriedades do solo. 3ª edição. Bookman. 2013. 685 p. CATALDO, D. A.; HAROON, M.; SCHRADER, L. E.; YOUNGS, V. L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, New York, v. 6, n. 1, p. 71-80, 1975. CLOUGH, S. J. AND BENT, A. F. (1998), Floral dip: a simplified method forAgrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16: 735–743. doi:10.1046/j.1365-313x.1998.00343.x CONAB Acompanhamento safra brasileira grãos, v. 5 Safra 2017/18 – Quinto levantamento, Brasília, p. 1-140. Fevereiro 2018. DUAN DongDong & ZHANG HanMa. A single SNP in NRT1.1B has a major impact on nitrogen use efficiency in rice. Sci China Life Sci. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA - EMBRAPA. Arroz: o produtor pergunta, a Embrapa responde. 2ª ed. rev. ampl. Brasília, DF. Embrapa, 2013. 245 p. FANG, X.Z.; TIAN, W.H.: LIU, X.X.: LIN, X.Y.; JIN, C.W.; ZHENG, S. J. Alleviation of proton toxicity by nitrate uptake specifically depends on nitrate transporter 1.1 in Arabidopsis. New Phytologist 211: 149-158. 2016. FARNDEN, K. J. S.; ROBERTSON, J. G. Methods for studying enzyme involved in metabolism related to nitrogen. In: BERGSEN, F. J. ed. Methods for Evaluating Biological Nitrogen Fixation, Chichester: John Wiley, 1980. p. 265-314. FENG, H.; LI, B.; ZHI, Y.; CHEN, J.; LI, R.; XIA, X.; XU, G.; FAN, X. Overexpression of the nitrate transporter, OsNRT2.3b, improves rice phosphorus uptake and translocation. Plant Cell Rep (2017) 36: 1287 FOOD AND AGRICULTURE ORGANIZATION - FAO. International year of rice. 2004. FELKER, P. Microdetermination of nitrogen in seed protein extratcs. Analytical Chemistry, Washington, v.49, n. 7, p.1080, 1977. FERNANDES, M. S. N-carriers, light and temperature influences on uptake and assimilation of nitrogen by rice. Turrialba, San Jose, CR, v.34, p. 9-18, 1984. FERNANDES, M. S.; SOUZA, S. R. Absorção de Nutrientes. In: Fernandes M. S.. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do Solo, 2006, v. 1, p. 115-152. FORDE, B.G. Local and long-range signaling pathways regulating plant responses to nitrate. Annual Review of Plant Biology, v 53, p. 203-224. GAO, J.; LIU, J.; Li, B.; LI, Z. Isolation and Purification of Functional Total RNA from Bluegrained Whet Endosperm Tissues Contaning High Levels of Starches and Flavonoids. Plant Molecular Biology Reporter, v. 19, p. 185a-185i, 2001. GLASS, A. D. M.; SHAFF, J. E.; KOCHIAN, L. V. Studies of nitrate uptake in barley. IV Electrophysiology. Plant Cell., 99: 456-463, 1992. GLASS A.D.M. Nitrogen use efficiency of crop plants: physiological constraints upon nitrogen absorption. Crit. Rev.Plant Sci. 22: 453–470. 2003. GIBEAUT D. M.; HULETT J.; CRAMER G. R.; SEEMANN J. R. Maximal Biomass of Arabidopsis thaliana Using a Simple, Low-Maintenance Hydroponic Method and Favorable Environmental Conditions. Department of Biochemistry, University of Nevada, Reno, Nevada 89557. Plant Physiol. Vol. 115, 1997. GOJON A, KROUK G, PERRINE-WALKER F, LAUGIER E. Nitrate transceptor(s) in plants. J Exp Bot 62: 2299–2308, 2011. GUO F-Q.; YOUNG J.; CRAWFORD NM. The Nitrate Transporter AtNRT1.1 (CHL1) Functions in Stomatal Opening and Contributes to Drought Susceptibility in Arabidopsis. The Plant Cell. 2003;15(1):107-117. HO, C. H., LIN, S. H., HU, H. C., TSAY, Y. F. CHL1 Functions as a Nitrate Sensor in Plants. Cell, v.138, p. 1184-1194. 2009. HOLZSCHUH M.J, BOHNEN H., ANGHINONI I., PIZZOLATO T.M., CARMONA F.C.; CARLOS F.S. (2011) Absorção de nutrientes e crescimento do arroz com suprimento combinado de amônio e nitrato. Revista Brasileira de Ciência do Solo, 35:1357-1366. HU, B.; WANG, W.; OU, S.; TANG, J.; LI, H.; CHE, R.; ZHANG, Z.; CHAI, X.; WANG, H.; WANG, Y.; LIANG, C.; LIU, L.; PIAO, Z.; DENG, Q.; DENG, K.; XU, C.; LIANG, Y.; ZHANG, L.; LI, L.; CHU, C. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics 47, 834-838. 2015. IBGE (Instituto Brasileiro de Geografia e Estatística). Levantamento sistemático da produção agrícola pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. Rio de Janeiro v. 29 n. 12. 2016. IBGE (Instituto Brasileiro de Geografia e Estatística). Levantamento sistemático da produção agrícola pesquisa mensal de previsão e acompanhamento das safras agrícolas no ano civil. Rio de Janeiro v.29 n.12. 2017. JIAO X.; LYU, Y.; WU, X.; LI, H.; CHENG, L; ZHANG, C.; YUAN, L.; JIANG, R.; JIANG, B.; RENGEL, Z.; ZHANG, F.; DAVIES, J. W.; SHEN, J. Grain production versus resources and enviromental costs: towards increasing sustainability of nutrient use in China. Journal of Experimental Botany. 2016. KIBA, T.; FERIA-BOURRELLIER, A-B.; LAFOUGE, F.; LEZNHEVA, L.; MERCEY, BT.; ORSEL, M.; BREHAUT, V.; MILLER, A.; DANIEL-VEDELE, F.; SAKAKIBARA, H.; KRAPP, A. The Arabidopsis thaliana Nitrate Transporter NRT2.4 Plays a Double Role in Roots and Shoots of Nitrogen-Starved Plants. The Plant Cell. 2012;24 (1):245-258. KIRK, G.J.D. & KRONZUCKER, H.J. The potential for nitrification and nitrate uptake in the rhizosphere of wetland plants: A modeling study. Ann. Bot., 96:639-646, 2005. LIVAK, K. J & SCHMITTGEN, T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, v. 25, p. 402-408, 2001. LERAN, S.; VARALA, K.; BOYER, J.C.; CHIURAZZI, M.; CRAWFORD, N.; DANIELVEDELE, F.; DAVID, L.; DICKSTEIN, R.; FERNANDEZ, E.; FORDE, B.; GASSMANN, W.; GEIGER, D.; GOJON, A.; GONG, J.M.; HALKIER, B.A.; HARRIS, J.M.; HEDRICH, R.; LIMAMI, A.M.; RENTSCH, D.; SEO, M.; TSAY, Y.F.; ZHANG, M.; CORUZZI, G.; LACOMBE, B. A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci. 19, 5-9 (2014). LIU, K. H. & TSAY, Y-F. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013 (2003). LIU, K. H., HUANG, C. Y., & TSAY, Y. F. CHL1 is a dual-affinity nitrate transporter of Arabidopsis thaliana involved in multiple phases of nitrate uptake. The Plant Cell, 11(5), 865– 874. (1999). LUZ, M. J. S.; FERREIRA, G. V.; BEZERRA, J. R. C. Adubação e Correção do Solo: Procedimentos a Serem Adotados em Função dos Resultados da Análise do Solo. Circular técnica 63. Ministério de Agricultura Pecuária e Abastecimento. 2002. MAATHUIS, F. J. M. Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, v. 12, p.250-258, 2009. MAO, Q. Q.; GUAN, M, Y.; LU, K, X.; DU, S. T.; FAN, S. K.; YE, Y, Q.; LIN, X. Y.; JIN, C. W. Inibition of nitrate transporter 1.1-controlled nitrate uptake reduces cadmium uptake in Arabidopsis. Plant Physiol. 2014 Oct; 166(2): 934-944. MARA, C., GRIGOROVA, B., & LIU, Z. Floral-dip Transformation of Arabidopsis thaliana to Examine pTSO2::β-glucuronidase Reporter Gene Expression. Journal of Visualized Experiments : JoVE, (40), 1952, 2010. MEINKE, D. W., CHERRY, J. M., DEAN, C., ROUNSLEY, S. D. & KOORNNEEF, M. Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662±665 (1998). MOUNIER, E., PERVENT, M., LJUNG, K., GOJON, A. and NACRY, P. (2014), Auxinmediated nitrate signalling by NRT1.1 participates in the adaptive response of Arabidopsis thaliana root architecture to the spatial heterogeneity of nitrate availability. Plant Cell Environ, 37: 162-174. MUÑOS S, CAZETTES C, FIZAMES C, GAYMARD F, TILLARD P, LEPETIT M, LEJAY L, GOJON A (2004) Transcript profiling in the chll-5 mutant of Arabidopsis thaliana reveals a role of the nitrate transporter NRT1.1 in the regulation of another nitrate transporter, NRT2.1. Plant Cell 16: 2433-2 MURASHIGE, T.; SKOOG, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15: 473–497. (1962) O’BRIEN J.A., VEGA A., BOUGUYON E., KROUK G., GOJON A., CORUZZI G., AND GUTIÉRREZ R.A. (2016). Nitrate transport, sensing and responses in plants. Mol. Plant. OKAMOTO M.; KUMAR A.; LI W.; WANG Y.; SIDDIQI MY.; CRAWFORD NM.; GLASS AD. (2006) High-affinity nitrate transport in roots of Arabidopsis thaliana depends on expression of the NAR2-like gene AtNRT3.1. Plant Physiol 140: 1036–1046 ORSEL, M.; EULENBURG, K.; KRAPP, A.; DANIEL-VEDELE, F. Disruption of the nitrate transporter genes AtNRT2.1 and AtNRT2.2 restrics growth at low external nitrate concentration. PLANTA, v. 219, p. 714-721, 2004. PLETT, D.; TOUBIA, J.; GARNETT, T.; TESTER, M.; KAISER, BN.; BAUMANN, U. Dichotomy in the NRT Gene Families of Dicots and Grass Species. Schönbach C, ed. PLoS ONE. 2010. REMANS T, NACRY P, PERVENT M, ET AL. A Central Role for the Nitrate Transporter NRT2.1 in the Integrated Morphological and Physiological Responses of the Root System to Nitrogen Limitation in Arabidopsis. Plant Physiology. 2006;140(3):909-921. RIVERAS, E.; ALVAREZ, J. M.; VIDAL, E. A.; OSES, C.; VEGA, A.; GUTIERREZ, E. A. The calcium ion is a second Messenger in the nitrate signaling pathway of Arabidopsis. Plant. Physiol 2015 Oct; 169(2): 1397–1404. RIVERO, L.; SCHOLL, R.; HOLOMUZKI, N.; CRIST, D.; GROTEWOLD, E.; BRKLJACIC J. Handling Arabidopsis thaliana Plants: Growth, Preservation of Seeds, Transformation, and Genetic Crosses. In: Sanchez-Serrano, J. J.; Salinas, J. (eds) Arabidopsis thaliana protocols. Third edition. 2014. p 3-27. ROQUETTI, F. D. Potencial de produção de grãos brasileiros via fertilização e impactos nas emissões de CO2eq. Dissertação de Mestrado - 2014. SANTOS, L. A. Efeito da superexpressão dos fatores de transcrição ZmDof1 e OsDof25 sobre a eficiência de uso de Nitrogênio em Arabidopsis thaliana L. Dissertação mestrado. 2009. SIDDIQI, M.Y., GLASS, A.D.M., RUTH, T.J., et al. Studies of the uptake of nitrate in barley. I. Kinetics of 13NO3 - influx. Plant Physiology, Lancaster, v.93, p.1426-1432, 1990. SOSBAI (Sociedade Sul-Brasileira de Arroz Irrigado) Arroz irrigado: recomendações técnicas da pesquisa para o Sul do Brasil / XXX Reunião Técnica da Cultura do Arroz Irrigado. RS, Santa Maria, Brasil, 2014. SOUZA, S. R.; FERNANDES, M. S. Nitrogênio. In: Fernandes, M.S. (Org.). Nutrição Mineral de Plantas. 1 ed. Viçosa: Sociedade Brasileira de Ciência do solo, 2006a, v. 1, p. 215- 252. SPERANDIO, M. V. L. Análise de expressão dos genes OsNRT1.1 (A, B e C) e efeito do silenciamento das isoformas OsA2 e OsA7 de PM H+ -ATPases na absorção de nitrogênio em arroz. UFRRJ Tese doutorado. 2015. SUN, J.; ZHENG, N. Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Frontiers in Physiology, 6, 386. 2015. TEDESCO, M. J. Extração simlutânea de N, P, K, Ca e Mg em tecido de plantas por digestão com H2O2-H2SO4. UFRGS. 1982, 23 p. TURANO, F. J.; DASHNER, R.; UPADHYAYA, A.; CALDWELL, C. R. Purification of mitochondrial glutamate dehydrogenase from dark-grown soybean seedlings. Plant Physiology, v.112, p.1357-1364, 1996. TSAY, Y. F.; SCHROEDER, J. I.; FELDMANN, K. A.; CRAWFORD, N. M. The herbicide sensitivity gene CHL1 of Arabidopsis thaliana encodes a nitrate-inducible nitrate transporter. Cell 72: 705-713. 1993. VALVEKENS, D.; VAN MONTAGU, M. and VAN LIJSE BETTENS, M. A. tumefaciencs mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proceedings of the National Academy of Science of the United States of America, May 1988, vol. 85, no. 10, p. 5536-5546. WANG, X., FELDMANN, K. A. AND SCHOLL, R. L. (1988), A chlorate-hypersensitive, high nitrate/chlorate uptake mutant of Arabidopsis thaliana. Physiologia Plantarum, 73: 305– 310. WANG, W.; HU, B.; YUAN, D.; LIU, Y.; CHE, R.; HU, Y.; OU, S.; ZHANG, Z.; WANG, H.; LI, H.; JIANG, Z.; ZHANG, Z.; GAO, Z.; QIU, Y.; MENG, X.; LIU, Y.; BAI, Y.; LIANG, Y.; WANG, Y-Q.; ZHANG, L.; LI, L.; SODMERGEN, S.; JING, H-C.; LI, J.; CHU, C. Expression of the Nitrate Transporter Gene OsNRT1.1A/OsNPF6.3 Confers High Yield and Early Maturation in Rice. Plant Cell Advance Publication. 2018. YAN, M.; FAN, X.; FENG, H.; MILLER, A. J.; SHEN, Q.; XU, G. Rice OsNAR2.1 interacts with OsNRT2.1, OsNRT2.2 and OsNRT2.3a nitrate transporters to provide uptake over high and low concentration rangespce. Plant, Cell and Enviroment, v. 34, p. 1360-1372, 2011. YEMM, E. W.; COCKING, E. C. The determination of amino acids with Ninhydrin. Analyst, London, v.80, n. 948, p.209-213, 1955. ZHANG, H. & FORDE, B. G. Regulation of Arabidopsis thaliana root development by nitrate availability. Journal of Experimental Botany, v.51, n.342, p.51-59, 2000. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Agronomia - Ciência do Solo |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/1/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/2/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/3/2018%20-%20Juan%20Sebastian%20Vera%20Chamba.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10576/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 d894c73c020a29a7b83a3a117abdc6c8 1fc6c49cecaecd26a16223e2cfcb7e20 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108049931632640 |