Blendas de PVA – polímeros naturais carregados com mel de manuka

Detalhes bibliográficos
Autor(a) principal: Santos, Antonia Mônica Neres
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/13470
Resumo: Blendas de PVA combinados com polímeros naturais carregados com mel de Manuka foram desenvolvidos com intuito de tratamento de úlceras de pressão, visto que a maioria dos curativos voltados para esse tratamento são hidrogéis. O amido, carboximetil cellulose sódica (NaCMC) e a gelatina são atóxicos, biocompatíveis, biodegradavéis e apresentam baixo custo, estes por sua vez podem alterar as propriedades do PVA quando formam blendas. O mel de Manuka foi usado pois ele apresenta atividade antibacteriana e acelera a cicatrização do ferimento. Os hidrogéis deste trabalho foram desenvolvidos pelo método de casting, e caracterizados via FTIR, DSC, grau de intumescimento, cinética de liberação de mel e ensaio microbiológico. As análises de FTIR mostraram que houve interação física entre os polímeros em todas as blendas analisadas. Os maiores graus de intumescimento (GI) foram encontrados nas amostras de PVA/NaCMC e PVA/NaCMC/Mel e os menores nas amostras PVA/Amido e PVA/Mel. A diferença no GI pode ser correlacionada à formação de cristalitos, bem como à presença de mel, os quais podem atuar como impedimento à entrada de fluido. As amostras PVA/Amido e PVA/Gel/Mel apresentaram os maiores valores de fração gel e os menores valores de perda de massa. As análises de DSC mostraram que nas amostras com mel, o mel pode não só interferir no movimento das cadeias amorfas, como também no empacotamento das cadeias de PVA. Na análise de liberação de mel, observou-se que há o máximo de liberação em 48 h. No modelo cinético, observou-se expoente de difusão n<1, atestando que a reticulação física foi favorável, onde o desvio relativo médio (DRM) estava entre 2,5 % e 17,65 %. Os géis não apresentaram atividade contra S. aureus, porém o mel puro apresentou atividade antibacteriana e diluições de mel superiores à 25 % mel apresentaram atividade bacteriostática.
id UFRRJ-1_5cc3db1339679c69adff3db9c52e0320
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/13470
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Antonia Mônica NeresOliveira, Renata NunesCPF: 055.175.607-17http://lattes.cnpq.br/9026953896544145Mendes, Marisa FernandesCPF: 023.918.187-50http://lattes.cnpq.br/3233683706295801Oliveira, Renata NunesCPF: 055.175.607-17http://lattes.cnpq.br/9026953896544145Mendes, Marisa FernandesCPF: 023.918.187-50http://lattes.cnpq.br/3233683706295801Balbino, Tiago Albertinihttp://lattes.cnpq.br/7922519072204589Machado Júnior, Hélio Fernandeshttp://lattes.cnpq.br/3462534255321209Moreira, Ana Paula Duartehttp://lattes.cnpq.br/3095636219911661CPF: 035.301.143-67http://lattes.cnpq.br/45147252081305832023-12-22T02:47:07Z2023-12-22T02:47:07Z2019-01-23SANTOS, Antonia Mônica Neres. Blendas de PVA – polímeros naturais carregados com mel de manuka. 2019. 51 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/13470Blendas de PVA combinados com polímeros naturais carregados com mel de Manuka foram desenvolvidos com intuito de tratamento de úlceras de pressão, visto que a maioria dos curativos voltados para esse tratamento são hidrogéis. O amido, carboximetil cellulose sódica (NaCMC) e a gelatina são atóxicos, biocompatíveis, biodegradavéis e apresentam baixo custo, estes por sua vez podem alterar as propriedades do PVA quando formam blendas. O mel de Manuka foi usado pois ele apresenta atividade antibacteriana e acelera a cicatrização do ferimento. Os hidrogéis deste trabalho foram desenvolvidos pelo método de casting, e caracterizados via FTIR, DSC, grau de intumescimento, cinética de liberação de mel e ensaio microbiológico. As análises de FTIR mostraram que houve interação física entre os polímeros em todas as blendas analisadas. Os maiores graus de intumescimento (GI) foram encontrados nas amostras de PVA/NaCMC e PVA/NaCMC/Mel e os menores nas amostras PVA/Amido e PVA/Mel. A diferença no GI pode ser correlacionada à formação de cristalitos, bem como à presença de mel, os quais podem atuar como impedimento à entrada de fluido. As amostras PVA/Amido e PVA/Gel/Mel apresentaram os maiores valores de fração gel e os menores valores de perda de massa. As análises de DSC mostraram que nas amostras com mel, o mel pode não só interferir no movimento das cadeias amorfas, como também no empacotamento das cadeias de PVA. Na análise de liberação de mel, observou-se que há o máximo de liberação em 48 h. No modelo cinético, observou-se expoente de difusão n<1, atestando que a reticulação física foi favorável, onde o desvio relativo médio (DRM) estava entre 2,5 % e 17,65 %. Os géis não apresentaram atividade contra S. aureus, porém o mel puro apresentou atividade antibacteriana e diluições de mel superiores à 25 % mel apresentaram atividade bacteriostática.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorPVA blends with natural polymers loaded with Manuka honey were developed for the treatment of pressure ulcers/bed sores, since most bandages used for this treatment are hydrogels. Starch and sodium Carboxymethyl cellulose (NaCMC) and gelatin are non-toxic, biocompatible, biodegradable polymers that have low cost and they can alter the properties of PVA, when mixed to it. Manuka honey was used because it presents antibacterial activity and it accelerates the wound healing. The hydrogels were manufactured by the casting method and they were characterized by FTIR, DSC, swelling degree, honey release kinetics analysis, and microbiological analysis. The FTIR analysis showed that physical interaction occurred between the blends’ materials. The highest swelling rates were found in PVA/NaCMC and PVA/NaCMC/Honey samples and the lowest in PVA/Starch and PVA/Honey samples. The difference of the swelling degree can be related to the crystallites’ formation as well as to the presence of honey, both acting as barrier to fluid entrance. The PVA/Starch and PVA/Gel/Honey samples presented the highest values of gel fraction and the lowest values of weight loss. DSC analysis showed that in samples containing honey, the honey can not only interfere with the movement of amorphous chains, but also in the packaging of PVA chains. In honey release analysis, it was observed that there is a maximum release in 48 h. It was observed a diffusion exponent n<1 in the kinetic model, showing that physical cross-linking occurred, and the average relative deviation was between 2.5 % and 17.65 %. The gels showed no activity against S. aureus, but pure honey showed antibacterial activity and honey dilutions above 25 % presented bacteriostatic activity.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUFRRJBrasilInstituto de TecnologiaHidrogéisMel de ManukaPVAGelatinaNaCMCAmidoHydrogelsManuka honeyPoly (vinyl alcohol)GelatinNaCMCStarchEngenharia QuímicaBlendas de PVA – polímeros naturais carregados com mel de manukaPVA blends – natural polymers loaded with manuka honeyinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAFSHARI, M. J.; SHEIKH, N.; AFARIDEH, H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiation Physics and Chemistry, v. 113, p. 28-35, 2015. AHMAD, Zuraida et al. Swelling properties of gamma irradiated starch-based hydrogel dressing. International Journal of Innovative Science, Engineering & Technology, v. 2, n. 8, p. 933-936, 2015. AJOVALASIT, Alessia et al. Xyloglucan-based hydrogel films for wound dressing: Structureproperty relationships. Carbohydrate polymers, v. 179, p. 262-272, 2018. ALAMARIA, Abdulhakim M.; NAWAWI, M. Ghazali M.; ZAMRUD, Zafifah. Sago/PVA blend membranes for the recovery of ethyl acetate from water. Arabian Journal of Chemistry, 2015. ALANDEJANI, Talal et al. Effectiveness of honey on S. aureus and P. aeruginosa biofilms. Otolaryngology–Head and Neck Surgery, v. 139, n. 2_suppl, p. P107-P107, 2008. ALANDEJANI, Talal et al. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngology—Head and Neck Surgery, v. 141, n. 1, p. 114-118, 2009. ALVES, Claudio Nahum et al. Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. 2012. AMBROSIO, L.; DEMITRI, C.; SANNINO, A. Superabsorbent cellulose-based hydrogels for biomedical applications. In: Biomedical Hydrogels. 2011. p. 25-50. ASTM - American Society for Testing and Materials. E2180-7: Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent (s) In Polymeric or Hydrophobic Materials, 2012 BAKER, Richard William. Controlled release delivery system by an osmotic bursting mechanism. U.S. Patent n. 3,952,741, 27 abr. 1976. BARBA, Bin Jeremiah D. et al. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation. Radiation Physics and Chemistry, v. 144, p. 180-188, 2018. BAUER, A. W. et al. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, v. 45, n. 4_ts, p. 493-496, 1966. BISPO, Viviane Mota. Estudo do efeito da reticulação por genipin em suportesbiocompatíveis de quitosana-PVA. 2009. Tese de Doutorado. Universidade Federal de Minas Gerais. BISWAL, D. R.; SINGH, R. P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate polymers, v. 57, n. 4, p. 379-387, 2004. 43 BURSALI, Elif Ant et al. Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydrate polymers, v. 83, n. 3, p. 1377-1383, 2011. CAPANEMA, Nádia SV et al. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International journal of biological macromolecules, v. 106, p. 1218-1234, 2018. CASABURI, Agustina et al. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocolloids, v. 75, p. 147-156, 2018. CHARERNSRIWILAIWAT, Natthan et al. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. International wound journal, v. 11, n. 2, p. 215-222, 2014. CHEN, Yong Mei et al. Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. European Polymer Journal, v. 94, p. 501-510, 2017. CHIOU, Bor-Sen et al. Properties of electrospun pollock gelatin/poly (vinyl alcohol) and pollock gelatin/poly (lactic acid) fibers. International journal of biological macromolecules, v. 55, p. 214-220, 2013. CONTI, S. et al. Matrices containing NaCMC and HPMC: 2. Swelling and release mechanism study. International Journal of pharmaceutics, v. 333, n. 1-2, p. 143-151, 2007. DA COSTA, Danyelle Rodrigues. Hidrogéis de pva-NaCMC para aplicação em curativos. 2012. Tese de Doutorado. Universidade Federal do Rio de Janeiro. DAS, Kunal et al. Preparation and characterization of cross-linked starch/poly (vinyl alcohol) green films with low moisture absorption. Industrial & Engineering Chemistry Research, v. 49, n. 5, p. 2176-2185, 2010. DE SOUZA COSTA JR, Ezequiel; MANSUR, Herman Sander. Preparação e caracterização de blendas de quitosana/poli (álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido. Quim. Nova, v. 31, n. 6, p. 1460-1466, 2008. DOS SANTOS, G S. Hidrogéis de PVA/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. DUTRA, J. A. P. et al. Papain wound dressings obtained from poly (vinyl alcohol) /calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation. European Journal of Pharmaceutics and Biopharmaceutics, v. 113, p. 11-23, 2017. EISENBUD, David et al. Hydrogel wound dressings: where do we stand in 2003? Ostomy/wound management, v. 49, n. 10, p. 52-57, 2003. EL-MALEK, Fady F. Abd; YOUSEF, Amany S.; EL-ASSAR, Samy A. Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of global antimicrobial resistance, v. 11, p. 171-176, 2017. 44 EMRE, Arif et al. Comparison of intraperitoneal honey and sodium hyaluronatecarboxymethylcellulose (SeprafilmTM) for the prevention of postoperative intra-abdominal adhesions. Clinics, v. 64, n. 4, p. 363-368, 2009. FAN, Lihong et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate polymers, v. 146, p. 427-434, 2016. FERNANDES, Kátia F. PVA/polysaccharides blended films: mechanical properties. Journal of Materials, v. 2013, 2013. FERREIRA, E. L. et al. Descriptive sensory analysis and acceptance of stingless bee honey. Food Science and Technology International, v. 15, n. 3, p. 251-258, 2009. GIBAS, Iwona; JANIK, Helena. Synthetic polymer hydrogels for biomedical applications. 2010. GOK, Seher et al. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food chemistry, v. 170, p. 234-240, 2015. HANANI, ZA Nur et al. Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. Journal of Food Engineering, v. 113, n. 4, p. 606-614, 2012. HE, Huawei et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International journal of biological macromolecules, v. 104, p. 457-464, 2017. HOFFMAN, Allan S. Hydrogels for biomedical applications. Advanced drug delivery reviews, v. 64, p. 18-23, 2012. HU, Dongying; QIANG, Tiangang; WANG, Lijuan. Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. Wound Medicine, v. 16, p. 15-21, 2017. IBRAHIM, Maha M. et al. Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydrate polymers, v. 95, n. 1, p. 414-420, 2013. JIANG, Xiancai et al. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. International journal of biological macromolecules, v. 82, p. 223-230, 2016. JIVAN, Mehdi Jalali; YARMAND, Mohamadsaeed; MADADLOU, Ashkan. Preparation of cold water-soluble potato starch and its characterization. Journal of food science and technology, v. 51, n. 3, p. 601-605, 2014. JODAR, K. D. S. P. Desenvolvimento e caracterizaão de hidogel de PVA (álcool polivinílico) e dextrana com sulfadiazina de prata para aplicação tópica. Universidade de Sorocoba. Sorocaba-SP, p. 121. 2014. 45 KAMOUN, Elbadawy A. et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, v. 8, n. 1, p. 38-47, 2015. KAMOUN, Elbadawy A.; KENAWY, El-Refaie S.; CHEN, Xin. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, v. 8, n. 3, p. 217-233, 2017. KARASAWA, Koji et al. Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC. Analytica chimica acta, v. 954, p. 151-158, 2017. KHAN, N. M. B. Production of plasticized thermoplastic starch by spray drying. University of Groningen. Mianwali, Pakistan, p. 165. 2013. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. LAKSHMI, Duraikkannu Shanthana; TRIVEDI, Nitin; REDDY, C. R. K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate polymers, v. 157, p. 1604-1610, 2017. LAM, Johnny et al. Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly (L-lysine) for applications in cartilage tissue engineering. Data in brief, v. 7, p. 614-619, 2016. LANCELOTTI, Cindia. Preparação e caracterização de hidrogéis neutros de colágeno aniônico: gelatina: extrato de semente de uva. 2014. Tese de Doutorado. Universidade de São Paulo. LENSON, Dsouza; MARINA, Koland. Bilayer Film Type of Unfolding Drug Delivery System for the Dual Release of Proton Pump Inhibitor and H. Asian Journal of Pharmaceutics, v. 10, n. 2, p. S76, 2016. LIM, Franklin; SUN, Anthony M. Microencapsulated islets as bioartificial endocrine pancreas. Science, v. 210, n. 4472, p. 908-910, 1980. MALEKI, H.; GHAREHAGHAJI, A. A.; DIJKSTRA, P. J. A novel honey‐ based nanofibrous scaffold for wound dressing application. Journal of Applied Polymer Science, v. 127, n. 5, p. 4086-4092, 2013. MASRI, Christopher; CHAGNON, Gregory; FAVIER, Denis. Influence of processing parameters on the macroscopic mechanical behavior of PVA hydrogels. Materials Science and Engineering: C, v. 75, p. 769-776, 2017. MC GANN, Michael J. et al. The synthesis of novel pH-sensitive poly (vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. International Journal of Pharmaceutics, v. 372, n. 1-2, p. 154-161, 2009. 46 MOUSSA, Ahmed et al. Additive potential of ginger starch on antifungal potency of honey against Candida albicans. Asian Pacific journal of tropical biomedicine, v. 2, n. 4, p. 253, 2012. NG, Shiow-Fern; JUMAAT, Nafisah. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. European Journal of Pharmaceutical Sciences, v. 51, p. 173-179, 2014. NGWABEBHOH, Fahanwi Asabuwa; GAZI, Mustafa; OLADIPO, Akeem Adeyemi. Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chemical Engineering Research and Design, v. 112, p. 274-288, 2016. NHO, Young-Chang; PARK, Jong-Seok; LIM, Youn-Mook. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, v. 94, p. 176- 180, 2014. NKHWA, Shathani et al. Poly (vinyl alcohol): physical approaches to designing biomaterials for biomedical applications. In: Conference Papers in Science. Hindawi, 2014. NOGUEIRA NETO, Paulo. Vida e criação de abelhas indígenas sem ferrão. Nogueirapis, 1997. OLIVEIRA, R. N. Caracterização de um hidrogel nanocompósito pva-prata para uso potencial como curativo. 2014. Tese de doutorado. Universidade Federal do Rio de Janeiro. OLIVEIRA, Renata N. et al. PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, v. 132, n. 25, 2015. ORYAN, Ahmad; ALEMZADEH, Esmat; MOSHIRI, Ali. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. Journal of tissue viability, v. 25, n. 2, p. 98-118, 2016. PAUKKONEN, Heli et al. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. International journal of pharmaceutics, v. 532, n. 1, p. 269-280, 2017. PEPPAS, N. A. Analysis of Fickian and non-Fickian drug release from polymers. 1985. PIGHINELLI, Luciano; KUCHARSKA, Magdalena. Chitosan–hydroxyapatite composites. Carbohydrate polymers, v. 93, n. 1, p. 256-262, 2013. POPESCU, Maria-Cristina. Structure and sorption properties of CNC reinforced PVA films. International journal of biological macromolecules, v. 101, p. 783-790, 2017. RIYAJAN, Sa-Ad; SUKHLAAIED, Wattana; KEAWMANG, Woranut. Preparation and properties of a hydrogel of maleated poly (vinyl alcohol)(PVAM) grafted with cassava starch. Carbohydrate polymers, v. 122, p. 301-307, 2015. RODRIGUES, N. O. L. Estudo da Liberação Controlada de Fármacos por Hidrógeis de PVA/Atapulgita. 2012. 47 RÜCKRIEMEN, Jana; KLEMM, Oliver; HENLE, Thomas. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Food chemistry, v. 230, p. 540-546, 2017. SANTOS, G. S. dos. Hidrogéis de pva/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. SHAHEEN, Sharif M.; YAMAURA, Kazuo. Preparation of theophylline hydrogels of atactic poly (vinyl alcohol)/NaCl/H2O system for drug delivery system. Journal of controlled release, v. 81, n. 3, p. 367-377, 2002. SHAMLOO, Amir et al. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International journal of pharmaceutics, v. 537, n. 1-2, p. 278-289, 2018. SIONKOWSKA, A. et al. Molecular interactions in collagen and chitosan blends. Biomaterials, v. 25, n. 5, p. 795-801, 2004. SIQUEIRA, E. J.; SALON, M.-C. Brochier; MAURET, E. The effects of sodium chloride (NaCl) and residues of cellulosic fibres derived from sodium carboxymethylcellulose (NaCMC) synthesis on thermal and mechanical properties of CMC films. Industrial Crops and Products, v. 72, p. 87-96, 2015. SIVAKESAVA, S.; IRUDAYARAJ, J. Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. Journal of the Science of Food and Agriculture, v. 81, n. 8, p. 683- 690, 2001. SPRUNG, P.; HOU, Z.; LADIN, D. A. Hydrogels and hydrocolloids: an objective product comparison. Ostomy/wound management, v. 44, n. 1, p. 36-42, 44, 46 passim, 1998. SVEČNJAK, Lidija et al. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectarto-honey transformation pathway using FTIR-ATR spectroscopy. Food chemistry, v. 232, p. 286-294, 2017. TAKINAMI, Patrícia Yoko Inamura. Obtenção de biopolímeros de gelatina por radiação ionizante. 2014. Tese de Doutorado. Universidade de São Paulo. TALEB, Manal F. Abou; EL-MOHDY, HL Abd; EL-REHIM, HA Abd. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. Journal of hazardous materials, v. 168, n. 1, p. 68-75, 2009. TAVAKOLI, Javad; TANG, Youhong. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, v. 77, p. 318-325, 2017. TEIXEIRA, Raquel Simas Pereira. Sistemas poliméricos reticulados por radiação uv como modificadores das propriedades mecânicas das formações durante a perfuração de poços de petróleo. 2013. Tese de doutorado. Universidade Federal do Rio de Janeiro. TERENCE, Mauro César et al. Efeito da radiacao gama na estrutura molecular do poli (alcool vinilico). Revista Brasileira de Pesquisa e Desenvolvimento. 48 TORLEY, P. J. et al. Effect of honey types and concentration on starch gelatinization. LWTFood Science and Technology, v. 37, n. 2, p. 161-170, 2004. VERNON, Tracy. Intrasite Gel and Intrasite Conformable: the hydrogel range. British Journal of Community Nursing, v. 5, n. 10, p. 511-516, 2000. VINKLÁRKOVÁ, Lenka et al. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. Journal of Applied Biomedicine, v. 15, n. 4, p. 313-320, 2017. WALKER, M. et al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL®) and alginate dressings. Biomaterials, v. 24, n. 5, p. 883-890, 2003. WANG, Min et al. Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 265, n. 1, p. 385-389, 2007. WANG, Ping; HE, Ji-Huan. Electrospun polyvinyl alcohol-honey nanofibers. Thermal Science, v. 17, n. 5, p. 1549-1550, 2013. WANG, Tao et al. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate polymers, v. 88, n. 1, p. 75-83, 2012. WARREN, Frederick J.; GIDLEY, Michael J.; FLANAGAN, Bernadine M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate polymers, v. 139, p. 35-42, 2016. WAY, D. Estudo da Reação de Produção de Partículas de Gelatina para Aplicação na Liberação Controlada de Doxiciclina. Mestrado. Universidade Federal do Rio de Janeiro, 2013. XING, Qi et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Scientific reports, v. 4, p. 4706, 2014. YADAV, Mithilesh; RHEE, Kyong Yop; PARK, S. J. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydrate polymers, v. 110, p. 18-25, 2014. YANNAS, Ioannis V. et al. Crosslinked collagen-mucopolysaccharide composite materials. U.S. Patent n. 4,280,954, 28 jul. 1981. YANNAS, Ioannis V.; FORBES, Martin J. Procedures for preparing composite materials from collagen and glycosaminoglycan. U.S. Patent n. 4,350,629, 21 set. 1982. YUSOF, Norimah et al. Development of honey hydrogel dressing for enhanced wound healing. Radiation Physics and Chemistry, v. 76, n. 11-12, p. 1767-1770, 2007. ZANELA, J. Blendas polimérica de amido e poli(vinil-álcool) -PVA: Efeitos do tipo de PVA, amidos modificados e uso de fibras no desenvolvimento de materiais biodegradáveis. 2016. Tese de doutorado. Universidade Estadual de Londrina. ZHAI, Maolin et al. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers, v. 50, n. 3, p. 295-303, 2002.https://tede.ufrrj.br/retrieve/66849/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5060Submitted by Leticia Schettini (leticia@ufrrj.br) on 2021-09-22T15:41:12Z No. of bitstreams: 1 2019 - Antonia Mônica Neres dos Santos.pdf: 1967936 bytes, checksum: a3a7754b63ea87edabe4778e819125eb (MD5)Made available in DSpace on 2021-09-22T15:41:12Z (GMT). No. of bitstreams: 1 2019 - Antonia Mônica Neres dos Santos.pdf: 1967936 bytes, checksum: a3a7754b63ea87edabe4778e819125eb (MD5) Previous issue date: 2019-01-23info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Antonia Mônica Neres dos Santos.pdf.jpgGenerated Thumbnailimage/jpeg1955https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/1/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.jpgdb7f292f2c1017e10ebdc2757c8fdeedMD51TEXT2019 - Antonia Mônica Neres dos Santos.pdf.txtExtracted Texttext/plain133096https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/2/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.txte8a3f215092d55f0a252c6608420f0d9MD52ORIGINAL2019 - Antonia Mônica Neres dos Santos.pdf2019 - Antonia Mônica Neres dos Santosapplication/pdf1967936https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/3/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdfa3a7754b63ea87edabe4778e819125ebMD53LICENSElicense.txttext/plain2165https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/4/license.txtbd3efa91386c1718a7f26a329fdcb468MD5420.500.14407/134702023-12-21 23:47:07.345oai:rima.ufrrj.br:20.500.14407/13470Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T02:47:07Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Blendas de PVA – polímeros naturais carregados com mel de manuka
dc.title.alternative.eng.fl_str_mv PVA blends – natural polymers loaded with manuka honey
title Blendas de PVA – polímeros naturais carregados com mel de manuka
spellingShingle Blendas de PVA – polímeros naturais carregados com mel de manuka
Santos, Antonia Mônica Neres
Hidrogéis
Mel de Manuka
PVA
Gelatina
NaCMC
Amido
Hydrogels
Manuka honey
Poly (vinyl alcohol)
Gelatin
NaCMC
Starch
Engenharia Química
title_short Blendas de PVA – polímeros naturais carregados com mel de manuka
title_full Blendas de PVA – polímeros naturais carregados com mel de manuka
title_fullStr Blendas de PVA – polímeros naturais carregados com mel de manuka
title_full_unstemmed Blendas de PVA – polímeros naturais carregados com mel de manuka
title_sort Blendas de PVA – polímeros naturais carregados com mel de manuka
author Santos, Antonia Mônica Neres
author_facet Santos, Antonia Mônica Neres
author_role author
dc.contributor.author.fl_str_mv Santos, Antonia Mônica Neres
dc.contributor.advisor1.fl_str_mv Oliveira, Renata Nunes
dc.contributor.advisor1ID.fl_str_mv CPF: 055.175.607-17
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9026953896544145
dc.contributor.advisor-co1.fl_str_mv Mendes, Marisa Fernandes
dc.contributor.advisor-co1ID.fl_str_mv CPF: 023.918.187-50
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3233683706295801
dc.contributor.referee1.fl_str_mv Oliveira, Renata Nunes
dc.contributor.referee1ID.fl_str_mv CPF: 055.175.607-17
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9026953896544145
dc.contributor.referee2.fl_str_mv Mendes, Marisa Fernandes
dc.contributor.referee2ID.fl_str_mv CPF: 023.918.187-50
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/3233683706295801
dc.contributor.referee3.fl_str_mv Balbino, Tiago Albertini
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/7922519072204589
dc.contributor.referee4.fl_str_mv Machado Júnior, Hélio Fernandes
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/3462534255321209
dc.contributor.referee5.fl_str_mv Moreira, Ana Paula Duarte
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/3095636219911661
dc.contributor.authorID.fl_str_mv CPF: 035.301.143-67
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4514725208130583
contributor_str_mv Oliveira, Renata Nunes
Mendes, Marisa Fernandes
Oliveira, Renata Nunes
Mendes, Marisa Fernandes
Balbino, Tiago Albertini
Machado Júnior, Hélio Fernandes
Moreira, Ana Paula Duarte
dc.subject.por.fl_str_mv Hidrogéis
Mel de Manuka
PVA
Gelatina
NaCMC
Amido
topic Hidrogéis
Mel de Manuka
PVA
Gelatina
NaCMC
Amido
Hydrogels
Manuka honey
Poly (vinyl alcohol)
Gelatin
NaCMC
Starch
Engenharia Química
dc.subject.eng.fl_str_mv Hydrogels
Manuka honey
Poly (vinyl alcohol)
Gelatin
NaCMC
Starch
dc.subject.cnpq.fl_str_mv Engenharia Química
description Blendas de PVA combinados com polímeros naturais carregados com mel de Manuka foram desenvolvidos com intuito de tratamento de úlceras de pressão, visto que a maioria dos curativos voltados para esse tratamento são hidrogéis. O amido, carboximetil cellulose sódica (NaCMC) e a gelatina são atóxicos, biocompatíveis, biodegradavéis e apresentam baixo custo, estes por sua vez podem alterar as propriedades do PVA quando formam blendas. O mel de Manuka foi usado pois ele apresenta atividade antibacteriana e acelera a cicatrização do ferimento. Os hidrogéis deste trabalho foram desenvolvidos pelo método de casting, e caracterizados via FTIR, DSC, grau de intumescimento, cinética de liberação de mel e ensaio microbiológico. As análises de FTIR mostraram que houve interação física entre os polímeros em todas as blendas analisadas. Os maiores graus de intumescimento (GI) foram encontrados nas amostras de PVA/NaCMC e PVA/NaCMC/Mel e os menores nas amostras PVA/Amido e PVA/Mel. A diferença no GI pode ser correlacionada à formação de cristalitos, bem como à presença de mel, os quais podem atuar como impedimento à entrada de fluido. As amostras PVA/Amido e PVA/Gel/Mel apresentaram os maiores valores de fração gel e os menores valores de perda de massa. As análises de DSC mostraram que nas amostras com mel, o mel pode não só interferir no movimento das cadeias amorfas, como também no empacotamento das cadeias de PVA. Na análise de liberação de mel, observou-se que há o máximo de liberação em 48 h. No modelo cinético, observou-se expoente de difusão n<1, atestando que a reticulação física foi favorável, onde o desvio relativo médio (DRM) estava entre 2,5 % e 17,65 %. Os géis não apresentaram atividade contra S. aureus, porém o mel puro apresentou atividade antibacteriana e diluições de mel superiores à 25 % mel apresentaram atividade bacteriostática.
publishDate 2019
dc.date.issued.fl_str_mv 2019-01-23
dc.date.accessioned.fl_str_mv 2023-12-22T02:47:07Z
dc.date.available.fl_str_mv 2023-12-22T02:47:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Antonia Mônica Neres. Blendas de PVA – polímeros naturais carregados com mel de manuka. 2019. 51 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/13470
identifier_str_mv SANTOS, Antonia Mônica Neres. Blendas de PVA – polímeros naturais carregados com mel de manuka. 2019. 51 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/13470
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AFSHARI, M. J.; SHEIKH, N.; AFARIDEH, H. PVA/CM-chitosan/honey hydrogels prepared by using the combined technique of irradiation followed by freeze-thawing. Radiation Physics and Chemistry, v. 113, p. 28-35, 2015. AHMAD, Zuraida et al. Swelling properties of gamma irradiated starch-based hydrogel dressing. International Journal of Innovative Science, Engineering & Technology, v. 2, n. 8, p. 933-936, 2015. AJOVALASIT, Alessia et al. Xyloglucan-based hydrogel films for wound dressing: Structureproperty relationships. Carbohydrate polymers, v. 179, p. 262-272, 2018. ALAMARIA, Abdulhakim M.; NAWAWI, M. Ghazali M.; ZAMRUD, Zafifah. Sago/PVA blend membranes for the recovery of ethyl acetate from water. Arabian Journal of Chemistry, 2015. ALANDEJANI, Talal et al. Effectiveness of honey on S. aureus and P. aeruginosa biofilms. Otolaryngology–Head and Neck Surgery, v. 139, n. 2_suppl, p. P107-P107, 2008. ALANDEJANI, Talal et al. Effectiveness of honey on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Otolaryngology—Head and Neck Surgery, v. 141, n. 1, p. 114-118, 2009. ALVES, Claudio Nahum et al. Ácidos fenólicos, flavonoides e atividade antioxidante em méis de Melipona fasciculata, M. flavolineata (Apidae, Meliponini) e Apis mellifera (Apidae, Apini) da Amazônia. 2012. AMBROSIO, L.; DEMITRI, C.; SANNINO, A. Superabsorbent cellulose-based hydrogels for biomedical applications. In: Biomedical Hydrogels. 2011. p. 25-50. ASTM - American Society for Testing and Materials. E2180-7: Standard Test Method for Determining the Activity of Incorporated Antimicrobial Agent (s) In Polymeric or Hydrophobic Materials, 2012 BAKER, Richard William. Controlled release delivery system by an osmotic bursting mechanism. U.S. Patent n. 3,952,741, 27 abr. 1976. BARBA, Bin Jeremiah D. et al. Hemostatic granules and dressing prepared from formulations of carboxymethyl cellulose, kappa-carrageenan and polyethylene oxide crosslinked by gamma radiation. Radiation Physics and Chemistry, v. 144, p. 180-188, 2018. BAUER, A. W. et al. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, v. 45, n. 4_ts, p. 493-496, 1966. BISPO, Viviane Mota. Estudo do efeito da reticulação por genipin em suportesbiocompatíveis de quitosana-PVA. 2009. Tese de Doutorado. Universidade Federal de Minas Gerais. BISWAL, D. R.; SINGH, R. P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydrate polymers, v. 57, n. 4, p. 379-387, 2004. 43 BURSALI, Elif Ant et al. Synthesis, characterization and in vitro antimicrobial activities of boron/starch/polyvinyl alcohol hydrogels. Carbohydrate polymers, v. 83, n. 3, p. 1377-1383, 2011. CAPANEMA, Nádia SV et al. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. International journal of biological macromolecules, v. 106, p. 1218-1234, 2018. CASABURI, Agustina et al. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocolloids, v. 75, p. 147-156, 2018. CHARERNSRIWILAIWAT, Natthan et al. Electrospun chitosan/polyvinyl alcohol nanofibre mats for wound healing. International wound journal, v. 11, n. 2, p. 215-222, 2014. CHEN, Yong Mei et al. Self-healing and photoluminescent carboxymethyl cellulose-based hydrogels. European Polymer Journal, v. 94, p. 501-510, 2017. CHIOU, Bor-Sen et al. Properties of electrospun pollock gelatin/poly (vinyl alcohol) and pollock gelatin/poly (lactic acid) fibers. International journal of biological macromolecules, v. 55, p. 214-220, 2013. CONTI, S. et al. Matrices containing NaCMC and HPMC: 2. Swelling and release mechanism study. International Journal of pharmaceutics, v. 333, n. 1-2, p. 143-151, 2007. DA COSTA, Danyelle Rodrigues. Hidrogéis de pva-NaCMC para aplicação em curativos. 2012. Tese de Doutorado. Universidade Federal do Rio de Janeiro. DAS, Kunal et al. Preparation and characterization of cross-linked starch/poly (vinyl alcohol) green films with low moisture absorption. Industrial & Engineering Chemistry Research, v. 49, n. 5, p. 2176-2185, 2010. DE SOUZA COSTA JR, Ezequiel; MANSUR, Herman Sander. Preparação e caracterização de blendas de quitosana/poli (álcool vinílico) reticuladas quimicamente com glutaraldeído para aplicação em engenharia de tecido. Quim. Nova, v. 31, n. 6, p. 1460-1466, 2008. DOS SANTOS, G S. Hidrogéis de PVA/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. DUTRA, J. A. P. et al. Papain wound dressings obtained from poly (vinyl alcohol) /calcium alginate blends as new pharmaceutical dosage form: Preparation and preliminary evaluation. European Journal of Pharmaceutics and Biopharmaceutics, v. 113, p. 11-23, 2017. EISENBUD, David et al. Hydrogel wound dressings: where do we stand in 2003? Ostomy/wound management, v. 49, n. 10, p. 52-57, 2003. EL-MALEK, Fady F. Abd; YOUSEF, Amany S.; EL-ASSAR, Samy A. Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of global antimicrobial resistance, v. 11, p. 171-176, 2017. 44 EMRE, Arif et al. Comparison of intraperitoneal honey and sodium hyaluronatecarboxymethylcellulose (SeprafilmTM) for the prevention of postoperative intra-abdominal adhesions. Clinics, v. 64, n. 4, p. 363-368, 2009. FAN, Lihong et al. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydrate polymers, v. 146, p. 427-434, 2016. FERNANDES, Kátia F. PVA/polysaccharides blended films: mechanical properties. Journal of Materials, v. 2013, 2013. FERREIRA, E. L. et al. Descriptive sensory analysis and acceptance of stingless bee honey. Food Science and Technology International, v. 15, n. 3, p. 251-258, 2009. GIBAS, Iwona; JANIK, Helena. Synthetic polymer hydrogels for biomedical applications. 2010. GOK, Seher et al. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis. Food chemistry, v. 170, p. 234-240, 2015. HANANI, ZA Nur et al. Manufacture and characterization of gelatin films derived from beef, pork and fish sources using twin screw extrusion. Journal of Food Engineering, v. 113, n. 4, p. 606-614, 2012. HE, Huawei et al. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International journal of biological macromolecules, v. 104, p. 457-464, 2017. HOFFMAN, Allan S. Hydrogels for biomedical applications. Advanced drug delivery reviews, v. 64, p. 18-23, 2012. HU, Dongying; QIANG, Tiangang; WANG, Lijuan. Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. Wound Medicine, v. 16, p. 15-21, 2017. IBRAHIM, Maha M. et al. Evaluation of cellulose and carboxymethyl cellulose/poly (vinyl alcohol) membranes. Carbohydrate polymers, v. 95, n. 1, p. 414-420, 2013. JIANG, Xiancai et al. Studies of the plasticizing effect of different hydrophilic inorganic salts on starch/poly (vinyl alcohol) films. International journal of biological macromolecules, v. 82, p. 223-230, 2016. JIVAN, Mehdi Jalali; YARMAND, Mohamadsaeed; MADADLOU, Ashkan. Preparation of cold water-soluble potato starch and its characterization. Journal of food science and technology, v. 51, n. 3, p. 601-605, 2014. JODAR, K. D. S. P. Desenvolvimento e caracterizaão de hidogel de PVA (álcool polivinílico) e dextrana com sulfadiazina de prata para aplicação tópica. Universidade de Sorocoba. Sorocaba-SP, p. 121. 2014. 45 KAMOUN, Elbadawy A. et al. Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: characterization and bio-evaluation. Arabian Journal of Chemistry, v. 8, n. 1, p. 38-47, 2015. KAMOUN, Elbadawy A.; KENAWY, El-Refaie S.; CHEN, Xin. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of advanced research, v. 8, n. 3, p. 217-233, 2017. KARASAWA, Koji et al. Novel assay of antibacterial components in manuka honey using lucigenin-chemiluminescence-HPLC. Analytica chimica acta, v. 954, p. 151-158, 2017. KHAN, N. M. B. Production of plasticized thermoplastic starch by spray drying. University of Groningen. Mianwali, Pakistan, p. 165. 2013. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. KORSMEYER, Richard W. et al. Mechanisms of solute release from porous hydrophilic polymers. International journal of pharmaceutics, v. 15, n. 1, p. 25-35, 1983. LAKSHMI, Duraikkannu Shanthana; TRIVEDI, Nitin; REDDY, C. R. K. Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydrate polymers, v. 157, p. 1604-1610, 2017. LAM, Johnny et al. Data describing the swelling behavior and cytocompatibility of biodegradable polyelectrolyte hydrogels incorporating poly (L-lysine) for applications in cartilage tissue engineering. Data in brief, v. 7, p. 614-619, 2016. LANCELOTTI, Cindia. Preparação e caracterização de hidrogéis neutros de colágeno aniônico: gelatina: extrato de semente de uva. 2014. Tese de Doutorado. Universidade de São Paulo. LENSON, Dsouza; MARINA, Koland. Bilayer Film Type of Unfolding Drug Delivery System for the Dual Release of Proton Pump Inhibitor and H. Asian Journal of Pharmaceutics, v. 10, n. 2, p. S76, 2016. LIM, Franklin; SUN, Anthony M. Microencapsulated islets as bioartificial endocrine pancreas. Science, v. 210, n. 4472, p. 908-910, 1980. MALEKI, H.; GHAREHAGHAJI, A. A.; DIJKSTRA, P. J. A novel honey‐ based nanofibrous scaffold for wound dressing application. Journal of Applied Polymer Science, v. 127, n. 5, p. 4086-4092, 2013. MASRI, Christopher; CHAGNON, Gregory; FAVIER, Denis. Influence of processing parameters on the macroscopic mechanical behavior of PVA hydrogels. Materials Science and Engineering: C, v. 75, p. 769-776, 2017. MC GANN, Michael J. et al. The synthesis of novel pH-sensitive poly (vinyl alcohol) composite hydrogels using a freeze/thaw process for biomedical applications. International Journal of Pharmaceutics, v. 372, n. 1-2, p. 154-161, 2009. 46 MOUSSA, Ahmed et al. Additive potential of ginger starch on antifungal potency of honey against Candida albicans. Asian Pacific journal of tropical biomedicine, v. 2, n. 4, p. 253, 2012. NG, Shiow-Fern; JUMAAT, Nafisah. Carboxymethyl cellulose wafers containing antimicrobials: a modern drug delivery system for wound infections. European Journal of Pharmaceutical Sciences, v. 51, p. 173-179, 2014. NGWABEBHOH, Fahanwi Asabuwa; GAZI, Mustafa; OLADIPO, Akeem Adeyemi. Adsorptive removal of multi-azo dye from aqueous phase using a semi-IPN superabsorbent chitosan-starch hydrogel. Chemical Engineering Research and Design, v. 112, p. 274-288, 2016. NHO, Young-Chang; PARK, Jong-Seok; LIM, Youn-Mook. Preparation of hydrogel by radiation for the healing of diabetic ulcer. Radiation Physics and Chemistry, v. 94, p. 176- 180, 2014. NKHWA, Shathani et al. Poly (vinyl alcohol): physical approaches to designing biomaterials for biomedical applications. In: Conference Papers in Science. Hindawi, 2014. NOGUEIRA NETO, Paulo. Vida e criação de abelhas indígenas sem ferrão. Nogueirapis, 1997. OLIVEIRA, R. N. Caracterização de um hidrogel nanocompósito pva-prata para uso potencial como curativo. 2014. Tese de doutorado. Universidade Federal do Rio de Janeiro. OLIVEIRA, Renata N. et al. PVA hydrogels loaded with a Brazilian propolis for burn wound healing applications. Journal of Applied Polymer Science, v. 132, n. 25, 2015. ORYAN, Ahmad; ALEMZADEH, Esmat; MOSHIRI, Ali. Biological properties and therapeutic activities of honey in wound healing: a narrative review and meta-analysis. Journal of tissue viability, v. 25, n. 2, p. 98-118, 2016. PAUKKONEN, Heli et al. Nanofibrillar cellulose hydrogels and reconstructed hydrogels as matrices for controlled drug release. International journal of pharmaceutics, v. 532, n. 1, p. 269-280, 2017. PEPPAS, N. A. Analysis of Fickian and non-Fickian drug release from polymers. 1985. PIGHINELLI, Luciano; KUCHARSKA, Magdalena. Chitosan–hydroxyapatite composites. Carbohydrate polymers, v. 93, n. 1, p. 256-262, 2013. POPESCU, Maria-Cristina. Structure and sorption properties of CNC reinforced PVA films. International journal of biological macromolecules, v. 101, p. 783-790, 2017. RIYAJAN, Sa-Ad; SUKHLAAIED, Wattana; KEAWMANG, Woranut. Preparation and properties of a hydrogel of maleated poly (vinyl alcohol)(PVAM) grafted with cassava starch. Carbohydrate polymers, v. 122, p. 301-307, 2015. RODRIGUES, N. O. L. Estudo da Liberação Controlada de Fármacos por Hidrógeis de PVA/Atapulgita. 2012. 47 RÜCKRIEMEN, Jana; KLEMM, Oliver; HENLE, Thomas. Manuka honey (Leptospermum scoparium) inhibits jack bean urease activity due to methylglyoxal and dihydroxyacetone. Food chemistry, v. 230, p. 540-546, 2017. SANTOS, G. S. dos. Hidrogéis de pva/NaCMC em camadas carregados com mel para tratamento de feridas. 2016. SHAHEEN, Sharif M.; YAMAURA, Kazuo. Preparation of theophylline hydrogels of atactic poly (vinyl alcohol)/NaCl/H2O system for drug delivery system. Journal of controlled release, v. 81, n. 3, p. 367-377, 2002. SHAMLOO, Amir et al. Accelerated full-thickness wound healing via sustained bFGF delivery based on a PVA/chitosan/gelatin hydrogel incorporating PCL microspheres. International journal of pharmaceutics, v. 537, n. 1-2, p. 278-289, 2018. SIONKOWSKA, A. et al. Molecular interactions in collagen and chitosan blends. Biomaterials, v. 25, n. 5, p. 795-801, 2004. SIQUEIRA, E. J.; SALON, M.-C. Brochier; MAURET, E. The effects of sodium chloride (NaCl) and residues of cellulosic fibres derived from sodium carboxymethylcellulose (NaCMC) synthesis on thermal and mechanical properties of CMC films. Industrial Crops and Products, v. 72, p. 87-96, 2015. SIVAKESAVA, S.; IRUDAYARAJ, J. Detection of inverted beet sugar adulteration of honey by FTIR spectroscopy. Journal of the Science of Food and Agriculture, v. 81, n. 8, p. 683- 690, 2001. SPRUNG, P.; HOU, Z.; LADIN, D. A. Hydrogels and hydrocolloids: an objective product comparison. Ostomy/wound management, v. 44, n. 1, p. 36-42, 44, 46 passim, 1998. SVEČNJAK, Lidija et al. Characterization of Satsuma mandarin (Citrus unshiu Marc.) nectarto-honey transformation pathway using FTIR-ATR spectroscopy. Food chemistry, v. 232, p. 286-294, 2017. TAKINAMI, Patrícia Yoko Inamura. Obtenção de biopolímeros de gelatina por radiação ionizante. 2014. Tese de Doutorado. Universidade de São Paulo. TALEB, Manal F. Abou; EL-MOHDY, HL Abd; EL-REHIM, HA Abd. Radiation preparation of PVA/CMC copolymers and their application in removal of dyes. Journal of hazardous materials, v. 168, n. 1, p. 68-75, 2009. TAVAKOLI, Javad; TANG, Youhong. Honey/PVA hybrid wound dressings with controlled release of antibiotics: Structural, physico-mechanical and in-vitro biomedical studies. Materials Science and Engineering: C, v. 77, p. 318-325, 2017. TEIXEIRA, Raquel Simas Pereira. Sistemas poliméricos reticulados por radiação uv como modificadores das propriedades mecânicas das formações durante a perfuração de poços de petróleo. 2013. Tese de doutorado. Universidade Federal do Rio de Janeiro. TERENCE, Mauro César et al. Efeito da radiacao gama na estrutura molecular do poli (alcool vinilico). Revista Brasileira de Pesquisa e Desenvolvimento. 48 TORLEY, P. J. et al. Effect of honey types and concentration on starch gelatinization. LWTFood Science and Technology, v. 37, n. 2, p. 161-170, 2004. VERNON, Tracy. Intrasite Gel and Intrasite Conformable: the hydrogel range. British Journal of Community Nursing, v. 5, n. 10, p. 511-516, 2000. VINKLÁRKOVÁ, Lenka et al. Film wound dressing with local anesthetic based on insoluble carboxymethycellulose matrix. Journal of Applied Biomedicine, v. 15, n. 4, p. 313-320, 2017. WALKER, M. et al. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL®) and alginate dressings. Biomaterials, v. 24, n. 5, p. 883-890, 2003. WANG, Min et al. Radiation synthesis of PVP/CMC hydrogels as wound dressing. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, v. 265, n. 1, p. 385-389, 2007. WANG, Ping; HE, Ji-Huan. Electrospun polyvinyl alcohol-honey nanofibers. Thermal Science, v. 17, n. 5, p. 1549-1550, 2013. WANG, Tao et al. Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate polymers, v. 88, n. 1, p. 75-83, 2012. WARREN, Frederick J.; GIDLEY, Michael J.; FLANAGAN, Bernadine M. Infrared spectroscopy as a tool to characterise starch ordered structure-a joint FTIR-ATR, NMR, XRD and DSC study. Carbohydrate polymers, v. 139, p. 35-42, 2016. WAY, D. Estudo da Reação de Produção de Partículas de Gelatina para Aplicação na Liberação Controlada de Doxiciclina. Mestrado. Universidade Federal do Rio de Janeiro, 2013. XING, Qi et al. Increasing mechanical strength of gelatin hydrogels by divalent metal ion removal. Scientific reports, v. 4, p. 4706, 2014. YADAV, Mithilesh; RHEE, Kyong Yop; PARK, S. J. Synthesis and characterization of graphene oxide/carboxymethylcellulose/alginate composite blend films. Carbohydrate polymers, v. 110, p. 18-25, 2014. YANNAS, Ioannis V. et al. Crosslinked collagen-mucopolysaccharide composite materials. U.S. Patent n. 4,280,954, 28 jul. 1981. YANNAS, Ioannis V.; FORBES, Martin J. Procedures for preparing composite materials from collagen and glycosaminoglycan. U.S. Patent n. 4,350,629, 21 set. 1982. YUSOF, Norimah et al. Development of honey hydrogel dressing for enhanced wound healing. Radiation Physics and Chemistry, v. 76, n. 11-12, p. 1767-1770, 2007. ZANELA, J. Blendas polimérica de amido e poli(vinil-álcool) -PVA: Efeitos do tipo de PVA, amidos modificados e uso de fibras no desenvolvimento de materiais biodegradáveis. 2016. Tese de doutorado. Universidade Estadual de Londrina. ZHAI, Maolin et al. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers, v. 50, n. 3, p. 295-303, 2002.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/1/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/2/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/3/2019%20-%20Antonia%20M%c3%b4nica%20Neres%20dos%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13470/4/license.txt
bitstream.checksum.fl_str_mv db7f292f2c1017e10ebdc2757c8fdeed
e8a3f215092d55f0a252c6608420f0d9
a3a7754b63ea87edabe4778e819125eb
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108105141256192