Investigação do mecanismo de reação de Biginelli de derivados cumarínicos

Detalhes bibliográficos
Autor(a) principal: Tejero, Tatiane Nicola
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/14610
Resumo: As reações multicomponentes receberam grande atenção na síntese orgânica e química medicinal, pois permitem o design de novas moléculas e produtos farmacêuticos, em especial, com grande complexidade estrutural e excelentes rendimentos. Na reação de Biginelli, os reagentes são aldeído, β-cetoéster e ureia ou tioureia levando a dihidropirimidinonas/tionas. A partir das possíveis combinações dos reagentes, podem ser esperadas três vias de reação: a via de Knoevenagel, a via do íon imínio e a via de enamina, sendo a segunda apontada, tanto por trabalhos experimentais como teóricos (com β-cetoésteres aromáticos e alifáticos comuns) como a via de iniciação mais provável. No entanto, se um β-cetoéster derivado de cumarina é usado, a via de Knovenagel passa a prevalecer. Para entender as diferenças entre essas vias de reação, este trabalho foi proposto visando os cálculos dos possíveis caminhos de reação usando β-cetoéster derivado de cumarina + benzaldeído + ureia e à compreensão da contribuição do núcleo de cumarina presente no β-cetoéster para as mudanças no mecanismo de reação. Os cálculos foram realizados em nível M06-2X/6-31+G(d,p), B3LYP/6-31+G(d,p) e BHandHLYP/6-31+G(d,p), afim de comparar os dados obtidos neste trabalho com dados descritos na literatura. Para descrever o efeito do solvente foi adotado cálculos CPCM e IEFPCM. O caminho que passa pelos pontos estacionários de energias relativas mais baixas é o de Knoevenagel. A barreira calculada para a reação entre o β-cetoéster + benzaldeído (que inicia o canal de Knoevenagel) variam entre 8,76 – 14,84 kcal mol-1 (em relação aos reagentes protonados isolados, essa variação refere-se ao nível de cálculo utilizado). Para a via enamina, a barreira varia entre 27,11 e 33,03 kcal mol-1, (dependendo do nível de calculado utilizado, a via de enamina é iniciada a partir da reação de β-cetoéster + ureia) e para a via do íon imínio a barreira varia entre (dependendo do nível de cálculo observado, e esta via é iniciada pela reação de ureia + benzaldeído). O produto de reação na via de Knoevenagel é também o mais estabilizado (ficando entre -14,74 e -20,44 kcal mol-1, enquanto os produtos nas vias de enamina e do íon imínio 8,76 - – 12,16 e -6,74 e -9,13 kcal mol-1, respectivamente). O segundo passo em todas as vias é a desidratação, e as alturas de barreira variam entre 31,12 – 36,13, 32,60 - 36,25 e 28,85 - 31,99 (Knoevenagel, íon imínio e enamina, respectivamente). As etapas finais dizem respeito à adição do terceiro reagente, e os intermediários e estados de transição pertencentes à via de Knoevenagel continuam sendo os pontos estacionários de energias mais baixas. Assim, a via de Knoevenagel é finalmente atribuída como a via de reação mais provável neste mecanismo complexo. Estes resultados se comparam satisfatoriamente com as observações empíricas e demonstram que o núcleo de cumarina presente no β-cetoéster promove a mudança do mecanismo de iniciação do íon imínio para a via de Knoevenagel.
id UFRRJ-1_6340723ab4222d098d08257e797e60be
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/14610
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Tejero, Tatiane NicolaBauerfeldt, Glauco Favilla069.023.487-23Kümmerle, Arthur Eugen053.978.487-78Sant'Anna, Carlos Maurícío Rabetlo deCarneiro, José Walkímar de Mesquita419.463.258-30http://lattes.cnpq.br/74765650699819772023-12-22T03:03:28Z2023-12-22T03:03:28Z2019-05-14TEJERO, Tatiane Nicola. Investigação do mecanismo de reação de Biginelli de derivados cumarínicos. 2019. 184 f. Dissertação (Mestrado em Química) - Instituto de Química, Departamento de Química Fundamental, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/14610As reações multicomponentes receberam grande atenção na síntese orgânica e química medicinal, pois permitem o design de novas moléculas e produtos farmacêuticos, em especial, com grande complexidade estrutural e excelentes rendimentos. Na reação de Biginelli, os reagentes são aldeído, β-cetoéster e ureia ou tioureia levando a dihidropirimidinonas/tionas. A partir das possíveis combinações dos reagentes, podem ser esperadas três vias de reação: a via de Knoevenagel, a via do íon imínio e a via de enamina, sendo a segunda apontada, tanto por trabalhos experimentais como teóricos (com β-cetoésteres aromáticos e alifáticos comuns) como a via de iniciação mais provável. No entanto, se um β-cetoéster derivado de cumarina é usado, a via de Knovenagel passa a prevalecer. Para entender as diferenças entre essas vias de reação, este trabalho foi proposto visando os cálculos dos possíveis caminhos de reação usando β-cetoéster derivado de cumarina + benzaldeído + ureia e à compreensão da contribuição do núcleo de cumarina presente no β-cetoéster para as mudanças no mecanismo de reação. Os cálculos foram realizados em nível M06-2X/6-31+G(d,p), B3LYP/6-31+G(d,p) e BHandHLYP/6-31+G(d,p), afim de comparar os dados obtidos neste trabalho com dados descritos na literatura. Para descrever o efeito do solvente foi adotado cálculos CPCM e IEFPCM. O caminho que passa pelos pontos estacionários de energias relativas mais baixas é o de Knoevenagel. A barreira calculada para a reação entre o β-cetoéster + benzaldeído (que inicia o canal de Knoevenagel) variam entre 8,76 – 14,84 kcal mol-1 (em relação aos reagentes protonados isolados, essa variação refere-se ao nível de cálculo utilizado). Para a via enamina, a barreira varia entre 27,11 e 33,03 kcal mol-1, (dependendo do nível de calculado utilizado, a via de enamina é iniciada a partir da reação de β-cetoéster + ureia) e para a via do íon imínio a barreira varia entre (dependendo do nível de cálculo observado, e esta via é iniciada pela reação de ureia + benzaldeído). O produto de reação na via de Knoevenagel é também o mais estabilizado (ficando entre -14,74 e -20,44 kcal mol-1, enquanto os produtos nas vias de enamina e do íon imínio 8,76 - – 12,16 e -6,74 e -9,13 kcal mol-1, respectivamente). O segundo passo em todas as vias é a desidratação, e as alturas de barreira variam entre 31,12 – 36,13, 32,60 - 36,25 e 28,85 - 31,99 (Knoevenagel, íon imínio e enamina, respectivamente). As etapas finais dizem respeito à adição do terceiro reagente, e os intermediários e estados de transição pertencentes à via de Knoevenagel continuam sendo os pontos estacionários de energias mais baixas. Assim, a via de Knoevenagel é finalmente atribuída como a via de reação mais provável neste mecanismo complexo. Estes resultados se comparam satisfatoriamente com as observações empíricas e demonstram que o núcleo de cumarina presente no β-cetoéster promove a mudança do mecanismo de iniciação do íon imínio para a via de Knoevenagel.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorMulticomponent reactions (MCR) have received great attention in organic synthesis and medicinal chemistry, since they allow the design of new molecules and pharmaceuticals, in special, with great structural complexity and excellent yields. In the Biginelli reaction, the reactants are an aldehyde, a β-ketoester and urea or thiourea leading to a myriad of dihydropyrimidinones/thiones. From the possible combinations of the reactants, three reaction pathways can be expected: the Knoevenagel pathway, the iminium ion pathway and the enamine pathway, being the second pointed out, from both experimental and theoretical works with common aromatic and aliphatic β-ketoesters, as the most probable initiation route. However, if a coumarin β-ketoester derivative is used, the Knovenagel pathway seems to prevail. In order to understand the differences between these reaction pathways, this work has been proposed aiming to the calculations of the possible reaction paths in the coumarin β-ketoester + benzaldehyde + urea MCR and to the understanding of the contribution of the coumarin nucleus in the β-ketoester moiety for the changes in the reaction mechanism. Geometry optimizations have been then performed at the Density Functional Theory (DFT) level, adopting the M06-2X, B3LYP and BHandHLYP fuctionals and the 6-31+G(d,p) basis set. From our calculations, the stationary points with lower relative energies belong to the Knoevenagel reaction path. All reaction pathways are initiated with the formation of an ion-dipole pre-barrier complex, stabilized by 8.76 – 14.84 kcal mol-1 (relative to the isolated protonated reactants). The calculated barrier height for the reaction between the coumarin β-ketoester and benzaldehyde (which initiates the Knoevenagel channel) is -18.10 kcal mol-1 (relative to the isolated protonated reactants). For the enamine and iminium ion pathways, barrier heights are 6.21 kcal mol-1 and -16.27 kcal mol-1, respectively (the enamine pathway is initiated from the coumarin β-ketoester and urea reaction and the iminium ion is initiated form the urea and benzaldehyde reaction). Therefore, the barrier height of the first step in the Knoevenagel pathway is ca. 24 and 2 kcal mol-1 lower than the barrier heights of the first step in the enamine and iminium ion pathways, respectively. The reaction product in the Knoevenagel pathway is also the most stabilized (20.44 kcal mol-1 below the isolated protonated reactants, while the products in the enamine and iminium ion pathways are located, with respect the isolated reactants, at 5.85 and -25.04 kcal mol-1, respectively). The second step in all pathways is the dehydration, and barrier heights are 31.12 and 36.13, 28.85 and 31.99 and 32.60 and 36.25 kcal mol-1 (Knoevenagel, enamine and iminium ion, respectively). The final steps concern the addition of the third reactant, and the intermediates and transition states belonging to the Knoevenagel pathway remain the lowest energy structures. Thus, the Knoevenagel pathway is finally attributed as the lowest energy pathway in this complex mechanism for the coumarin β-ketoester + benzaldehyde + urea MCR. These results satisfactorily compare to the experimental observations and demonstrate that the coumarin nucleus in the β-ketoester moiety promotes the change of the mechanism initiation from the iminium ion to the Knoevenagel pathway.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaReação MulticomponenteReação Biginelliintermediário KnoevenagelMulticomponent ReactionBiginelli ReactionKnoevenagel intermediateQuímicaInvestigação do mecanismo de reação de Biginelli de derivados cumarínicosInvestigation of the Biginelli reaction mechanisminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAL-MASOUDI, N. A.; AL-SALIHI, N. J.; MARICH, Y. A.; MARKUS, T. Synthesis and Fluorescence Properties of new Monastrol Analogs Conjugated Fluorescent Coumarin Scaffolds. Journal of Fluorescence, v. 26, p. 31–35, 2016. ALVIM, H. G. O.; DA SILVA JÚNIOR, E. N.; NETO, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. Royal Society of Chemistry Advances, v. 4, n. 97, p. 54282–54299, 2014. ALVIM, H. G. O.; DE LIMA, T. B.; DE OLIVEIRA, H. C. B.; GOZZO, F. C.; MACEDO, J. L. De; ABDELNUR, P. V; SILVA, W. A.; NETO, B. A. D. Ionic Liquid E ff ect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis. Journal of American Chemical Society Catalysis, v. 3, p. 1420–1430, 2013. ALVIM, H. G. O.; LIMA, T. B.; DE OLIVEIRA, A. L.; DE OLIVEIRA, H. C. B.; SILVA, F. M.; GOZZO, F. C.; SOUZA, R. Y.; DA SILVA, W. A.; NETO, B. A. D. Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for? The Journal of Organic Chemistry, v. 79, n. 8, p. 3383–3397, 2014. BATALHA, P. N. Recent Advances in Multicomponent Reactions: A Perspective Between the Years of 2008 and 2011. Revista Virtual de Química, v. 4, n. 1, p. 13–45, 2012. BIENAYMÉ, H.; HULME, C.; ODDON, G.; SCHMITT, P. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry - A European Journal, v. 6, n. 18, p. 3321–3329, 2000. BIGINELLI, P. Ueber Aldehyduramide des Acetessigäthers. Berichte der deutschen chemischen Gesellschaft, v. 24, n. 1, p. 1317–1319, 1 jan. 1891a. BIGINELLI, P. Ueber Aldehyduramide des Acetessigäthers. II. Berichte der deutschen chemischen Gesellschaft, v. 24, n. 2, p. 2962–2967, 1 jul. 1891b. BIGINELLI, P. Derivati aldeidureidici degli eteri acetil-ed ossal-acetico. La Gazzetta chimica italiana, p. 360–416, 1893. CEPANEC, I.; LITVIĆ, M.; FILIPAN-LITVIĆ, M.; GRÜNGOLD, I. Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron, v. 63, n. 48, p. 11822–11827, 2007. CHEON, N.; JACQUEMIN, D.; FLEURAT-LESSARD, P. A qualitative failure of B3LYP for textbook organic reactionsw. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, v. 14, n. 14, p. 7170–7175, 2012. CLARK, J. H.; MACQUARRIE, D. J.; SHERWOOD, J. The Combined Role of Catalysis and Solvent Effects on the Biginelli Reaction: Improving Efficiency and Sustainability. Chemistry - A European Journal, v. 19, n. 16, p. 5174–5182, 15 abr. 2013. DE SOUZA, R. O. M. A.; DA PENHA, E. T.; MILAGRE, H. M. S.; GARDEN, S. J.; ESTEVES, P. M.; EBERLIN, M. N.; ANTUNES, O. A. C. The Three-Component Biginelli Reaction: A Combined Experimental and Theoretical Mechanistic Investigation. Chemistry - A European Journal, v. 15, n. 38, p. 9799–9804, 2009. DE SOUZA, V. P. SÍNTESE de dihidropirimidinonas fluorescentes via reação multicomponente de biginelli e estudo fotofísico visando aplicação como sondas moleculares. 2017. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, 2017. DELGADO, G. Y. S. Estrutura e reatividade de complexos metálicos. 2017. Universidade Federal de Juiz de Fora, 2017. FARHADI, A.; NOEI, J.; ALIYARI, R. H.; ALBAKHTIYARI, M.; TAKASSI, M. A. Experimental and theoretical study on a one-pot, three-component route to 3,4-dihydropyrimidin-2(1H)-ones/thiones TiCl<inf>3</inf>OTf-[bmim]Cl. Research on Chemical Intermediates, v. 42, n. 2, p. 1401–1409, 2016. FESENKO, A. A.; GRIGORIEV, M. S.; SHUTALEV, A. D. Nucleophile-Mediated Ring Expansion of 5-Acyl-substituted 4-Mesyloxymethyl-1,2,3,4-tetrahydropyrimidin-2-ones in the Synthesis of 7-Membered Analogues of Biginelli Compounds and Related Heterocycles. The Journal of Organic Chemistry, v. 82, n. 15, p. 8085–8110, 2017. FOLKERS, K.; HARWOOD, H. J.; TREAT, B. J. Researches on pyrimidines. CXXX. Synthesis of 2-keto-1,2,3,4-tetrahydropyrimidines. Journal of the American Chemical Society, v. 54, n. 9, p. 3751–3758, 1932. FOLKERS, K.; JOHNSON, T. B. Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction. Journal of the American Chemical Society, v. 55, n. 9, p. 3784–3791, 1933. GODOI, M. N.; COSTENARO, H. S.; KRAMER, E.; MACHADO, P. S.; MONTES, M. G.; OCA, D. SÍNTESE DO MONASTROL E NOVOS COMPOSTOS DE BIGINELLI PROMOVIDA POR In(OTf) 3. Química Nova Nova, v. 28, n. 6, p. 1010–1013, 2005. GOULART, P. N.; DA SILVA, C. O.; WIDMALM, G. The importance of orientation of exocyclic groups in a naphthoxyloside: A specific rotation calculation study. Journal of Physical Organic Chemistry, v. 30, n. 12, p. 1–11, 2017. GUGGILAPU, S. D.; PRAJAPTI, S. K.; NAGARSENKAR, A.; LALITA, G.; NAIDU VEGI, G. M.; BABU, B. N. MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New Journal of Chemistry, v. 40, n. 1, p. 838–843, 2015. HACK, C. R. L. Síntese de novos organocatalisadores sulfâmicos e aplicação na reação multicomponente de biginelli. 2017. Universidade Federal do Rio Grande, 2017. HANTZSCH, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebig’s Annalen der Chemie, v. 215, n. 1, p. 1–82, 1882. IBRAHIM, M. M.; EL-SHESHTAWY, H. S.; EL-KEMARY, M.; AL-JUAID, S.; YOUSSEF, M.; EL-AZAB, I. H. Synthesis, structure characterization, and anticancer activity of a novel oxygen-bridged tricyclic Biginelli adduct. Journal of Molecular Structure, v. 1137, p. 714–719, 2017. KAPPE, C. O. 100 Years of the Biginelli Dihydropyrimidine Synthesis. Tetrahedron, v. 49, n. 32, p. 6937–6963, 1993. KAPPE, C. O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis . Support for an N - Acyliminium ion intermediate. Journal of Organic Chemistry, v. 62, n. 21, p. 7201–7204, 1997. KAPPE, C. O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Research Accounts of Chemical, v. 33, n. 12, p. 879–888, 2000a. KAPPE, C. O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. European journal of medicinal chemistry, v. 35, p. 1043–1052, 2000b. KAPPE, C. O. The Generation of Dihydropyrimidine Libraries Utilizing Biginelli Multicomponent Chemistry. QSAR & Combinatorial Science, v. 22, n. 6, p. 630–645, 2003. KAPPE, C. O.; FABIAN, W. M. F.; SEMONES, M. A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, v. 53, n. 8, p. 2803–2816, 1997. KHEDKAR, S.; AUTI, P. 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules. Mini-Reviews in Medicinal Chemistry, v. 14, n. 3, p. 282–290, fev. 2014. KISS, K.; CSÁMPAI, A.; SOHÁR, P. New ferrocenyl-substituted heterocycles. Formation under Biginelli conditions, DFT modelling, and structure determination. Journal of Organometallic Chemistry, v. 695, n. 15–16, p. 1852–1857, 2010. LIMA, F. B. De. Modelagem estrutural em solução por métodos contínuos de solvatação. 2016. Universidade Federal Rural de Pernambuco, 2016. LU, N.; CHEN, D.; ZHANG, G.; LIU, Q. Theoretical Investigation on Enantioselective Biginelli Reaction Catalyzed by Natural Tartaric Acid. International Journal of Quantum Chemistry, v. 111, n. 9, p. 2031–2038, 2010. MA, J. G.; ZHANG, J. M.; JIANG, H. H.; MA, W. Y.; ZHOU, J. H. DFT study on mechanism of the classical Biginelli reaction. Chinese Chemical Letters, v. 19, n. 3, p. 375–378, 2008. MANNICH, C.; KRÖSCHE, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Archiv der Pharmazie, v. 250, n. 1, p. 647–667, 1912. MARQUES, M. V.; BISOL, T. B.; SÁ, M. M. Reações multicomponentes de biginelli e de mannich nas aulas de química orgânica experimental. Uma abordagem didática de conceitos da química verde. Quimica Nova, v. 35, n. 8, p. 1696–1699, 2012. MARQUES, M. V.; RUSSOWSKY, D.; FONTOURA, L. A. M. Análise conformacional de compostos de Biginelli com atividade antineoplásica. Ecletica Quimica, v. 35, n. 4, p. 33–38, 2010. MEDEIROS, M. de A. Transformação de olefinas alil aromáticas pela seqüência: hidroformilação/ condensação de knoevenagel / hidrogenação. 2006. Universidade Federal de Minas Gerais, 2006. OLIVEIRA, V. P. Estudo teórico das contribuições energéticas envolvidas na formação dos complexos: [mg(h2o)n-base nucleica]2+. 2013. Universidade de Brasília, 2013. PLIEGO JUNIOR, J. R. Modelos contínuos do solvente: Fundamentos. Quimica Nova, v. 29, n. 3, p. 535–542, 2006. RAMOS, L. M. Reações de biginelli promovidas por um novo catalisador de ferro ionicamente marcado. 2012. Universidade de Brasília, 2012. RAMOS, L. M.; PONCE DE LEON Y TOBIO, A. Y.; DOS SANTOS, M. R.; DE OLIVEIRA, H. C. B.; GOMES, A. F.; GOZZO, F. C.; DE OLIVEIRA, A. L.; NETO, B. A. D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: Evidence for the reactive intermediates and the role of the reagents. Journal of Organic Chemistry, v. 77, n. 22, p.10184–10193, 2012. RAVISHANKARA, A. R. Heterogeneous and multiphase chemistry in the upper troposphere and the lower stratosphere. Science, v. 276, n. May, p. 1058–1065, 1997. RIBEIRO, F. V. SÍNTESE de biginelli aplicada ao desenvolvimento de novas cumarino-diidropirimidinonas com potencial uso no diagnóstico e tratamento de cânceres associados à hsp 90. 2015. Universidade Federal Rural do Rio de Janeiro, 2015. ROGERIO, K. R.; VITÓRIO, F.; KUMMERLE, A. E.; GRAEBIN, C. S. Reações Multicomponentes: Um breve Histórico e a Versatilidade destas Reações na Síntese de Moléculas Bioativas. Revista Virtual de Quimica, v. 8, n. 6, p. 1934–1962, 2016. SAHER, L.; MAKHLOUFI-CHEBLI, M.; DERMECHE, L.; BOUTEMEUR-KHEDIS, B.; RABIA, C.; SILVA, A. M. S.; HAMDI, M. Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: Experimental and theoretical studies. Tetrahedron Letters, v. 57, n. 13, p. 1492–1496, 2016. SAMEERA, W. M. C.; MAEDA, S.; MOROKUMA, K. Computational Catalysis Using the Artificial Force Induced Reaction Method. Accounts of Chemical Research, v. 49, n. 4, p. 763–773, 2016. SHEN, Z.; XU, X.; JI, S. Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reaction : An Efficient Synthesis of 4 , 5 , 6-Triaryl-3 , 4-dihydropyrimidin- 2 ( 1 H ) -one and Mechanistic Study. Journal of Organic Chemistry, v. 75, n. 4, p. 1162–1167, 2010. SILVA, D. L. Da. Reação de biginelli : uso de ácidos p-sulfônico-calix [ n ] arenos como catalisadores na síntese de 3 , 4-diidropirimidinonas de interesse biológico. 2011. Universidade Federal de Minas Gerais como, 2011. SILVA, G. C. O.; CORREA, J. R.; RODRIGUES, M. O.; ALVIM, H. G. O.; GUIDO, B. C.; GATTO, C. C.; WANDERLEY, K. A.; FIORAMONTE, M.; GOZZO, F. C.; DE SOUZA, R. O. M. A.; NETO, B. A. D. The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. Royal Society of Chemistry Advances, v. 5, p. 48506–48515, 2015. SRIVASTAVA, V. An improved protocol for Biginelli reaction. Green and Sustainable Chemistry, v. 3, n. 2A, p. 38–40, 2013. STRECKER, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper; Justus Liebigs Annalen der Chemie, v. 75, n. 1, p. 27–45, 1850. STRÜBING, D.; NEUMANN, H.; KLAUS, S.; HÜBNER, S.; BELLER, M. A facile and efficient synthesis of enyne-reaction precursors by multicomponent reactions. Tetrahedron, v. 61, n. 48, p. 11333–11344, 2005. SWEET, F.; FISSEKIS, J. D. On the Synthesis of 3,4-Dihydro-2(1H)-Pyrimidinones and the Mechanism of the Biginelli Reaction. Journal of the American Chemical Society, v. 95, n. 26, p. 8741–8749, 1973. UGI, I.; MEYR, R.; FETZER, U.; STEINBRUCKNER, C. Studies on isonitriles. Angewandte Chemie, v. 71, n. 11, p. 386, 7 jun. 1959. VIEIRA, Y. W. A reação de diels-alder de p-benzoquinonas em versão multicomponente. 2005. Universidade Federal de São Carlos, 2005. VITORIO, F.; PEREIRA, T. M.; CASTRO, R. N.; GUEDES, G. P.; GRAEBIN, C. S.; KUMMERLE, A. E. Synthesis and mechanism of novel fluorescent coumarin-dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New Journal of Chemistry, v. 39, p. 2323–2332, 2015. YILDIRIM, A.; KAYA, Y. Sustainable synthetic approaches using [C16Im][Oxa] as a flexible organocatalyst and DFT studies toward 3,4-dihydropyrimidinones and benzoxazines. Monatshefte fur Chemie, v. 148, n. 6, p. 1–10, 2017. ZHU, J. Recent Developments in the Isonitrile-Based Multicomponent Synthesis of Heterocycles. European Journal of Organic Chemistry, v. 7, p. 1133–1144, 2003.https://tede.ufrrj.br/retrieve/67012/2019%20-%20Tatiane%20Nicola%20Tejero.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5108Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-10-04T02:08:23Z No. of bitstreams: 1 2019 - Tatiane Nicola Tejero.pdf: 7737286 bytes, checksum: 996ab1bc23d602165ea59ec16f311972 (MD5)Made available in DSpace on 2021-10-04T02:08:23Z (GMT). No. of bitstreams: 1 2019 - Tatiane Nicola Tejero.pdf: 7737286 bytes, checksum: 996ab1bc23d602165ea59ec16f311972 (MD5) Previous issue date: 2019-05-14info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Tatiane Nicola Tejero.pdf.jpgGenerated Thumbnailimage/jpeg3968https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/1/2019%20-%20Tatiane%20Nicola%20Tejero.pdf.jpg1e56011482c118a062ccadeec92b1969MD51TEXT2019 - Tatiane Nicola Tejero.pdf.txtExtracted Texttext/plain274407https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/2/2019%20-%20Tatiane%20Nicola%20Tejero.pdf.txt1f4574c77acdebfee6f3e57da79443d5MD52ORIGINAL2019 - Tatiane Nicola Tejero.pdfapplication/pdf5646437https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/3/2019%20-%20Tatiane%20Nicola%20Tejero.pdf060db433819ea1aeb9f063ef4e93eb9fMD53LICENSElicense.txttext/plain2165https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/4/license.txtbd3efa91386c1718a7f26a329fdcb468MD5420.500.14407/146102023-12-22 00:03:28.094oai:rima.ufrrj.br:20.500.14407/14610Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:03:28Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
dc.title.alternative.eng.fl_str_mv Investigation of the Biginelli reaction mechanism
title Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
spellingShingle Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
Tejero, Tatiane Nicola
Reação Multicomponente
Reação Biginelli
intermediário Knoevenagel
Multicomponent Reaction
Biginelli Reaction
Knoevenagel intermediate
Química
title_short Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
title_full Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
title_fullStr Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
title_full_unstemmed Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
title_sort Investigação do mecanismo de reação de Biginelli de derivados cumarínicos
author Tejero, Tatiane Nicola
author_facet Tejero, Tatiane Nicola
author_role author
dc.contributor.author.fl_str_mv Tejero, Tatiane Nicola
dc.contributor.advisor1.fl_str_mv Bauerfeldt, Glauco Favilla
dc.contributor.advisor1ID.fl_str_mv 069.023.487-23
dc.contributor.advisor-co1.fl_str_mv Kümmerle, Arthur Eugen
dc.contributor.advisor-co1ID.fl_str_mv 053.978.487-78
dc.contributor.referee1.fl_str_mv Sant'Anna, Carlos Maurícío Rabetlo de
dc.contributor.referee2.fl_str_mv Carneiro, José Walkímar de Mesquita
dc.contributor.authorID.fl_str_mv 419.463.258-30
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7476565069981977
contributor_str_mv Bauerfeldt, Glauco Favilla
Kümmerle, Arthur Eugen
Sant'Anna, Carlos Maurícío Rabetlo de
Carneiro, José Walkímar de Mesquita
dc.subject.por.fl_str_mv Reação Multicomponente
Reação Biginelli
intermediário Knoevenagel
topic Reação Multicomponente
Reação Biginelli
intermediário Knoevenagel
Multicomponent Reaction
Biginelli Reaction
Knoevenagel intermediate
Química
dc.subject.eng.fl_str_mv Multicomponent Reaction
Biginelli Reaction
Knoevenagel intermediate
dc.subject.cnpq.fl_str_mv Química
description As reações multicomponentes receberam grande atenção na síntese orgânica e química medicinal, pois permitem o design de novas moléculas e produtos farmacêuticos, em especial, com grande complexidade estrutural e excelentes rendimentos. Na reação de Biginelli, os reagentes são aldeído, β-cetoéster e ureia ou tioureia levando a dihidropirimidinonas/tionas. A partir das possíveis combinações dos reagentes, podem ser esperadas três vias de reação: a via de Knoevenagel, a via do íon imínio e a via de enamina, sendo a segunda apontada, tanto por trabalhos experimentais como teóricos (com β-cetoésteres aromáticos e alifáticos comuns) como a via de iniciação mais provável. No entanto, se um β-cetoéster derivado de cumarina é usado, a via de Knovenagel passa a prevalecer. Para entender as diferenças entre essas vias de reação, este trabalho foi proposto visando os cálculos dos possíveis caminhos de reação usando β-cetoéster derivado de cumarina + benzaldeído + ureia e à compreensão da contribuição do núcleo de cumarina presente no β-cetoéster para as mudanças no mecanismo de reação. Os cálculos foram realizados em nível M06-2X/6-31+G(d,p), B3LYP/6-31+G(d,p) e BHandHLYP/6-31+G(d,p), afim de comparar os dados obtidos neste trabalho com dados descritos na literatura. Para descrever o efeito do solvente foi adotado cálculos CPCM e IEFPCM. O caminho que passa pelos pontos estacionários de energias relativas mais baixas é o de Knoevenagel. A barreira calculada para a reação entre o β-cetoéster + benzaldeído (que inicia o canal de Knoevenagel) variam entre 8,76 – 14,84 kcal mol-1 (em relação aos reagentes protonados isolados, essa variação refere-se ao nível de cálculo utilizado). Para a via enamina, a barreira varia entre 27,11 e 33,03 kcal mol-1, (dependendo do nível de calculado utilizado, a via de enamina é iniciada a partir da reação de β-cetoéster + ureia) e para a via do íon imínio a barreira varia entre (dependendo do nível de cálculo observado, e esta via é iniciada pela reação de ureia + benzaldeído). O produto de reação na via de Knoevenagel é também o mais estabilizado (ficando entre -14,74 e -20,44 kcal mol-1, enquanto os produtos nas vias de enamina e do íon imínio 8,76 - – 12,16 e -6,74 e -9,13 kcal mol-1, respectivamente). O segundo passo em todas as vias é a desidratação, e as alturas de barreira variam entre 31,12 – 36,13, 32,60 - 36,25 e 28,85 - 31,99 (Knoevenagel, íon imínio e enamina, respectivamente). As etapas finais dizem respeito à adição do terceiro reagente, e os intermediários e estados de transição pertencentes à via de Knoevenagel continuam sendo os pontos estacionários de energias mais baixas. Assim, a via de Knoevenagel é finalmente atribuída como a via de reação mais provável neste mecanismo complexo. Estes resultados se comparam satisfatoriamente com as observações empíricas e demonstram que o núcleo de cumarina presente no β-cetoéster promove a mudança do mecanismo de iniciação do íon imínio para a via de Knoevenagel.
publishDate 2019
dc.date.issued.fl_str_mv 2019-05-14
dc.date.accessioned.fl_str_mv 2023-12-22T03:03:28Z
dc.date.available.fl_str_mv 2023-12-22T03:03:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TEJERO, Tatiane Nicola. Investigação do mecanismo de reação de Biginelli de derivados cumarínicos. 2019. 184 f. Dissertação (Mestrado em Química) - Instituto de Química, Departamento de Química Fundamental, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/14610
identifier_str_mv TEJERO, Tatiane Nicola. Investigação do mecanismo de reação de Biginelli de derivados cumarínicos. 2019. 184 f. Dissertação (Mestrado em Química) - Instituto de Química, Departamento de Química Fundamental, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/14610
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AL-MASOUDI, N. A.; AL-SALIHI, N. J.; MARICH, Y. A.; MARKUS, T. Synthesis and Fluorescence Properties of new Monastrol Analogs Conjugated Fluorescent Coumarin Scaffolds. Journal of Fluorescence, v. 26, p. 31–35, 2016. ALVIM, H. G. O.; DA SILVA JÚNIOR, E. N.; NETO, B. A. D. What do we know about multicomponent reactions? Mechanisms and trends for the Biginelli, Hantzsch, Mannich, Passerini and Ugi MCRs. Royal Society of Chemistry Advances, v. 4, n. 97, p. 54282–54299, 2014. ALVIM, H. G. O.; DE LIMA, T. B.; DE OLIVEIRA, H. C. B.; GOZZO, F. C.; MACEDO, J. L. De; ABDELNUR, P. V; SILVA, W. A.; NETO, B. A. D. Ionic Liquid E ff ect over the Biginelli Reaction under Homogeneous and Heterogeneous Catalysis. Journal of American Chemical Society Catalysis, v. 3, p. 1420–1430, 2013. ALVIM, H. G. O.; LIMA, T. B.; DE OLIVEIRA, A. L.; DE OLIVEIRA, H. C. B.; SILVA, F. M.; GOZZO, F. C.; SOUZA, R. Y.; DA SILVA, W. A.; NETO, B. A. D. Facts, Presumptions, and Myths on the Solvent-Free and Catalyst-Free Biginelli Reaction. What is Catalysis for? The Journal of Organic Chemistry, v. 79, n. 8, p. 3383–3397, 2014. BATALHA, P. N. Recent Advances in Multicomponent Reactions: A Perspective Between the Years of 2008 and 2011. Revista Virtual de Química, v. 4, n. 1, p. 13–45, 2012. BIENAYMÉ, H.; HULME, C.; ODDON, G.; SCHMITT, P. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chemistry - A European Journal, v. 6, n. 18, p. 3321–3329, 2000. BIGINELLI, P. Ueber Aldehyduramide des Acetessigäthers. Berichte der deutschen chemischen Gesellschaft, v. 24, n. 1, p. 1317–1319, 1 jan. 1891a. BIGINELLI, P. Ueber Aldehyduramide des Acetessigäthers. II. Berichte der deutschen chemischen Gesellschaft, v. 24, n. 2, p. 2962–2967, 1 jul. 1891b. BIGINELLI, P. Derivati aldeidureidici degli eteri acetil-ed ossal-acetico. La Gazzetta chimica italiana, p. 360–416, 1893. CEPANEC, I.; LITVIĆ, M.; FILIPAN-LITVIĆ, M.; GRÜNGOLD, I. Antimony(III) chloride-catalysed Biginelli reaction: a versatile method for the synthesis of dihydropyrimidinones through a different reaction mechanism. Tetrahedron, v. 63, n. 48, p. 11822–11827, 2007. CHEON, N.; JACQUEMIN, D.; FLEURAT-LESSARD, P. A qualitative failure of B3LYP for textbook organic reactionsw. Phys. Chem. Chem. Phys. Phys. Chem. Chem. Phys, v. 14, n. 14, p. 7170–7175, 2012. CLARK, J. H.; MACQUARRIE, D. J.; SHERWOOD, J. The Combined Role of Catalysis and Solvent Effects on the Biginelli Reaction: Improving Efficiency and Sustainability. Chemistry - A European Journal, v. 19, n. 16, p. 5174–5182, 15 abr. 2013. DE SOUZA, R. O. M. A.; DA PENHA, E. T.; MILAGRE, H. M. S.; GARDEN, S. J.; ESTEVES, P. M.; EBERLIN, M. N.; ANTUNES, O. A. C. The Three-Component Biginelli Reaction: A Combined Experimental and Theoretical Mechanistic Investigation. Chemistry - A European Journal, v. 15, n. 38, p. 9799–9804, 2009. DE SOUZA, V. P. SÍNTESE de dihidropirimidinonas fluorescentes via reação multicomponente de biginelli e estudo fotofísico visando aplicação como sondas moleculares. 2017. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL, 2017. DELGADO, G. Y. S. Estrutura e reatividade de complexos metálicos. 2017. Universidade Federal de Juiz de Fora, 2017. FARHADI, A.; NOEI, J.; ALIYARI, R. H.; ALBAKHTIYARI, M.; TAKASSI, M. A. Experimental and theoretical study on a one-pot, three-component route to 3,4-dihydropyrimidin-2(1H)-ones/thiones TiCl<inf>3</inf>OTf-[bmim]Cl. Research on Chemical Intermediates, v. 42, n. 2, p. 1401–1409, 2016. FESENKO, A. A.; GRIGORIEV, M. S.; SHUTALEV, A. D. Nucleophile-Mediated Ring Expansion of 5-Acyl-substituted 4-Mesyloxymethyl-1,2,3,4-tetrahydropyrimidin-2-ones in the Synthesis of 7-Membered Analogues of Biginelli Compounds and Related Heterocycles. The Journal of Organic Chemistry, v. 82, n. 15, p. 8085–8110, 2017. FOLKERS, K.; HARWOOD, H. J.; TREAT, B. J. Researches on pyrimidines. CXXX. Synthesis of 2-keto-1,2,3,4-tetrahydropyrimidines. Journal of the American Chemical Society, v. 54, n. 9, p. 3751–3758, 1932. FOLKERS, K.; JOHNSON, T. B. Researches on Pyrimidines. CXXXVI. The Mechanism of Formation of Tetrahydropyrimidines by the Biginelli Reaction. Journal of the American Chemical Society, v. 55, n. 9, p. 3784–3791, 1933. GODOI, M. N.; COSTENARO, H. S.; KRAMER, E.; MACHADO, P. S.; MONTES, M. G.; OCA, D. SÍNTESE DO MONASTROL E NOVOS COMPOSTOS DE BIGINELLI PROMOVIDA POR In(OTf) 3. Química Nova Nova, v. 28, n. 6, p. 1010–1013, 2005. GOULART, P. N.; DA SILVA, C. O.; WIDMALM, G. The importance of orientation of exocyclic groups in a naphthoxyloside: A specific rotation calculation study. Journal of Physical Organic Chemistry, v. 30, n. 12, p. 1–11, 2017. GUGGILAPU, S. D.; PRAJAPTI, S. K.; NAGARSENKAR, A.; LALITA, G.; NAIDU VEGI, G. M.; BABU, B. N. MoO2Cl2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: recyclability, fluorescence and biological studies. New Journal of Chemistry, v. 40, n. 1, p. 838–843, 2015. HACK, C. R. L. Síntese de novos organocatalisadores sulfâmicos e aplicação na reação multicomponente de biginelli. 2017. Universidade Federal do Rio Grande, 2017. HANTZSCH, A. Ueber die Synthese pyridinartiger Verbindungen aus Acetessigäther und Aldehydammoniak. Justus Liebig’s Annalen der Chemie, v. 215, n. 1, p. 1–82, 1882. IBRAHIM, M. M.; EL-SHESHTAWY, H. S.; EL-KEMARY, M.; AL-JUAID, S.; YOUSSEF, M.; EL-AZAB, I. H. Synthesis, structure characterization, and anticancer activity of a novel oxygen-bridged tricyclic Biginelli adduct. Journal of Molecular Structure, v. 1137, p. 714–719, 2017. KAPPE, C. O. 100 Years of the Biginelli Dihydropyrimidine Synthesis. Tetrahedron, v. 49, n. 32, p. 6937–6963, 1993. KAPPE, C. O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis . Support for an N - Acyliminium ion intermediate. Journal of Organic Chemistry, v. 62, n. 21, p. 7201–7204, 1997. KAPPE, C. O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Research Accounts of Chemical, v. 33, n. 12, p. 879–888, 2000a. KAPPE, C. O. Biologically active dihydropyrimidones of the Biginelli-type--a literature survey. European journal of medicinal chemistry, v. 35, p. 1043–1052, 2000b. KAPPE, C. O. The Generation of Dihydropyrimidine Libraries Utilizing Biginelli Multicomponent Chemistry. QSAR & Combinatorial Science, v. 22, n. 6, p. 630–645, 2003. KAPPE, C. O.; FABIAN, W. M. F.; SEMONES, M. A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies. Tetrahedron, v. 53, n. 8, p. 2803–2816, 1997. KHEDKAR, S.; AUTI, P. 1, 4-Dihydropyridines: A Class of Pharmacologically Important Molecules. Mini-Reviews in Medicinal Chemistry, v. 14, n. 3, p. 282–290, fev. 2014. KISS, K.; CSÁMPAI, A.; SOHÁR, P. New ferrocenyl-substituted heterocycles. Formation under Biginelli conditions, DFT modelling, and structure determination. Journal of Organometallic Chemistry, v. 695, n. 15–16, p. 1852–1857, 2010. LIMA, F. B. De. Modelagem estrutural em solução por métodos contínuos de solvatação. 2016. Universidade Federal Rural de Pernambuco, 2016. LU, N.; CHEN, D.; ZHANG, G.; LIU, Q. Theoretical Investigation on Enantioselective Biginelli Reaction Catalyzed by Natural Tartaric Acid. International Journal of Quantum Chemistry, v. 111, n. 9, p. 2031–2038, 2010. MA, J. G.; ZHANG, J. M.; JIANG, H. H.; MA, W. Y.; ZHOU, J. H. DFT study on mechanism of the classical Biginelli reaction. Chinese Chemical Letters, v. 19, n. 3, p. 375–378, 2008. MANNICH, C.; KRÖSCHE, W. Ueber ein Kondensationsprodukt aus Formaldehyd, Ammoniak und Antipyrin. Archiv der Pharmazie, v. 250, n. 1, p. 647–667, 1912. MARQUES, M. V.; BISOL, T. B.; SÁ, M. M. Reações multicomponentes de biginelli e de mannich nas aulas de química orgânica experimental. Uma abordagem didática de conceitos da química verde. Quimica Nova, v. 35, n. 8, p. 1696–1699, 2012. MARQUES, M. V.; RUSSOWSKY, D.; FONTOURA, L. A. M. Análise conformacional de compostos de Biginelli com atividade antineoplásica. Ecletica Quimica, v. 35, n. 4, p. 33–38, 2010. MEDEIROS, M. de A. Transformação de olefinas alil aromáticas pela seqüência: hidroformilação/ condensação de knoevenagel / hidrogenação. 2006. Universidade Federal de Minas Gerais, 2006. OLIVEIRA, V. P. Estudo teórico das contribuições energéticas envolvidas na formação dos complexos: [mg(h2o)n-base nucleica]2+. 2013. Universidade de Brasília, 2013. PLIEGO JUNIOR, J. R. Modelos contínuos do solvente: Fundamentos. Quimica Nova, v. 29, n. 3, p. 535–542, 2006. RAMOS, L. M. Reações de biginelli promovidas por um novo catalisador de ferro ionicamente marcado. 2012. Universidade de Brasília, 2012. RAMOS, L. M.; PONCE DE LEON Y TOBIO, A. Y.; DOS SANTOS, M. R.; DE OLIVEIRA, H. C. B.; GOMES, A. F.; GOZZO, F. C.; DE OLIVEIRA, A. L.; NETO, B. A. D. Mechanistic studies on Lewis acid catalyzed Biginelli reactions in ionic liquids: Evidence for the reactive intermediates and the role of the reagents. Journal of Organic Chemistry, v. 77, n. 22, p.10184–10193, 2012. RAVISHANKARA, A. R. Heterogeneous and multiphase chemistry in the upper troposphere and the lower stratosphere. Science, v. 276, n. May, p. 1058–1065, 1997. RIBEIRO, F. V. SÍNTESE de biginelli aplicada ao desenvolvimento de novas cumarino-diidropirimidinonas com potencial uso no diagnóstico e tratamento de cânceres associados à hsp 90. 2015. Universidade Federal Rural do Rio de Janeiro, 2015. ROGERIO, K. R.; VITÓRIO, F.; KUMMERLE, A. E.; GRAEBIN, C. S. Reações Multicomponentes: Um breve Histórico e a Versatilidade destas Reações na Síntese de Moléculas Bioativas. Revista Virtual de Quimica, v. 8, n. 6, p. 1934–1962, 2016. SAHER, L.; MAKHLOUFI-CHEBLI, M.; DERMECHE, L.; BOUTEMEUR-KHEDIS, B.; RABIA, C.; SILVA, A. M. S.; HAMDI, M. Keggin and Dawson-type polyoxometalates as efficient catalysts for the synthesis of 3,4-dihydropyrimidinones: Experimental and theoretical studies. Tetrahedron Letters, v. 57, n. 13, p. 1492–1496, 2016. SAMEERA, W. M. C.; MAEDA, S.; MOROKUMA, K. Computational Catalysis Using the Artificial Force Induced Reaction Method. Accounts of Chemical Research, v. 49, n. 4, p. 763–773, 2016. SHEN, Z.; XU, X.; JI, S. Brønsted Base-Catalyzed One-Pot Three-Component Biginelli-Type Reaction : An Efficient Synthesis of 4 , 5 , 6-Triaryl-3 , 4-dihydropyrimidin- 2 ( 1 H ) -one and Mechanistic Study. Journal of Organic Chemistry, v. 75, n. 4, p. 1162–1167, 2010. SILVA, D. L. Da. Reação de biginelli : uso de ácidos p-sulfônico-calix [ n ] arenos como catalisadores na síntese de 3 , 4-diidropirimidinonas de interesse biológico. 2011. Universidade Federal de Minas Gerais como, 2011. SILVA, G. C. O.; CORREA, J. R.; RODRIGUES, M. O.; ALVIM, H. G. O.; GUIDO, B. C.; GATTO, C. C.; WANDERLEY, K. A.; FIORAMONTE, M.; GOZZO, F. C.; DE SOUZA, R. O. M. A.; NETO, B. A. D. The Biginelli reaction under batch and continuous flow conditions: catalysis, mechanism and antitumoral activity. Royal Society of Chemistry Advances, v. 5, p. 48506–48515, 2015. SRIVASTAVA, V. An improved protocol for Biginelli reaction. Green and Sustainable Chemistry, v. 3, n. 2A, p. 38–40, 2013. STRECKER, A. Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper; Justus Liebigs Annalen der Chemie, v. 75, n. 1, p. 27–45, 1850. STRÜBING, D.; NEUMANN, H.; KLAUS, S.; HÜBNER, S.; BELLER, M. A facile and efficient synthesis of enyne-reaction precursors by multicomponent reactions. Tetrahedron, v. 61, n. 48, p. 11333–11344, 2005. SWEET, F.; FISSEKIS, J. D. On the Synthesis of 3,4-Dihydro-2(1H)-Pyrimidinones and the Mechanism of the Biginelli Reaction. Journal of the American Chemical Society, v. 95, n. 26, p. 8741–8749, 1973. UGI, I.; MEYR, R.; FETZER, U.; STEINBRUCKNER, C. Studies on isonitriles. Angewandte Chemie, v. 71, n. 11, p. 386, 7 jun. 1959. VIEIRA, Y. W. A reação de diels-alder de p-benzoquinonas em versão multicomponente. 2005. Universidade Federal de São Carlos, 2005. VITORIO, F.; PEREIRA, T. M.; CASTRO, R. N.; GUEDES, G. P.; GRAEBIN, C. S.; KUMMERLE, A. E. Synthesis and mechanism of novel fluorescent coumarin-dihydropyrimidinone dyads obtained by the Biginelli multicomponent reaction. New Journal of Chemistry, v. 39, p. 2323–2332, 2015. YILDIRIM, A.; KAYA, Y. Sustainable synthetic approaches using [C16Im][Oxa] as a flexible organocatalyst and DFT studies toward 3,4-dihydropyrimidinones and benzoxazines. Monatshefte fur Chemie, v. 148, n. 6, p. 1–10, 2017. ZHU, J. Recent Developments in the Isonitrile-Based Multicomponent Synthesis of Heterocycles. European Journal of Organic Chemistry, v. 7, p. 1133–1144, 2003.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/1/2019%20-%20Tatiane%20Nicola%20Tejero.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/2/2019%20-%20Tatiane%20Nicola%20Tejero.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/3/2019%20-%20Tatiane%20Nicola%20Tejero.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14610/4/license.txt
bitstream.checksum.fl_str_mv 1e56011482c118a062ccadeec92b1969
1f4574c77acdebfee6f3e57da79443d5
060db433819ea1aeb9f063ef4e93eb9f
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108093756866560