Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar

Detalhes bibliográficos
Autor(a) principal: Oliveira, Gabriella Francisco Pereira Borges de
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/13301
Resumo: A descontinuidade do processo de queima da palhada trouxe desafios para as práticas de manejo no cultivo de cana-de-açúcar. Apesar dos benefícios ambientais e agronômicos associados à permanência da palhada no solo, esse sistema de produção pode interferir negativamente na eficiência dos herbicidas para o controle de plantas daninhas. Isso ocorre, porque a palha de cana-de-açúcar tanto funciona como uma barreira física quanto interage com as moléculas dos herbicidas, alterando sua dinâmica no ambiente. A sorção corresponde ao principal mecanismo de retenção dos herbicidas à palhada e pode ser favorecida em função das características físico-químicas das moléculas dos herbicidas e da composição química da palhada. Esses fatores também influenciam no processo de dessorção, o qual está associado à liberação das moléculas na solução do solo. A pendimetalina é um herbicida pré-emergente utilizado no cultivo de cana-de-açúcar no Brasil para controle de gramíneas e algumas plantas daninhas de folhas largas e, por suas características hidrofóbicas, possui elevada capacidade de permanecer retido aos coloides do solo e à palhada. Nesse sentido, o emprego de adjuvantes em herbicidas pré-emergentes, embora não seja uma prática comum, pode alterar sua dinâmica no ambiente, bem como auxiliar na sua eficiência agronômica. O objetivo deste trabalho foi avaliar a sorção e a dessorção, em solo e em palha de cana-de-açúcar, do herbicida pendimetalina isoladamente e em mistura com adjuvante. O ensaio 1 consistiu na análise de estabilidade qualitativa e quantitativa das soluções de pendimetalina nas formulações concentrado emulsionável (EC) e suspensão de encapsulado (CS) e as respectivas misturas com óleo vegetal (Aureo®) a 0,1% (v/v), óleo mineral (Assist®) a 0,5% (v/v) e acetona a 0,1% (v/v). O ensaio 2 correspondeu ao pré-teste para determinação da proporção solo:solução e palha:solução, assim como do tempo de equilíbrio, mais adequados para o ensaio de sorção. O ensaio 3 consistiu na determinação das isotermas de sorção e dessorção. O ensaio de sorção foi realizado utilizando as soluções de pendimetalina na formulação EC isoladamente e em mistura com Aureo® em concentrações entre 2,5 e 40 μg mL-1, por serem consideradas mais estáveis nos ensaios anteriores. O solo foi empregado na proporção de 1:2 (m/v) e a palha na proporção 1:50 (m/v), permanecendo o sistema em agitação pelo período de 12 e 24 horas, respectivamente. O ensaio de dessorção foi realizado, descartando o sobrenadante e adicionando solução aquosa de CaCl2 a 0,01 mol L-1 sem herbicida, permanecendo o sistema em agitação por 24 horas. A concentração de pendimetalina no sobrenadante foi determinada por cromatografia líquida de alta eficiência (CLAE). Os dados foram submetidos à análise de variância (p ≤ 0,05) e foi utilizado o software ISOFIT para obtenção dos parâmetros das isotermas dos modelos de Freundlich e linear. O modelo linear foi o mais adequado para representação das isotermas de sorção e dessorção. O coeficiente de sorção para o solo foi igual a 18,48 mL g-1 para a pendimetalina na formulação EC isoladamente, enquanto os coeficientes para a palha de cana-de-açúcar foram equivalentes a 355,52 e 27,24 mL g-1 para a formulação EC isoladamente e para o sistema EC + Aureo®. Na dessorção, os valores de Kd obtidos foram superiores aos de sorção, indicando que houve retorno do herbicida para a solução. Portanto, a sorção da pendimetalina em palha de cana-de-açúcar, na formulação EC isoladamente é maior em comparação com a mistura com Aureo®, indicando que a adição de adjuvante pode diminuir sua retenção na palhada e, consequentemente, aumentar a eficiência no controle de plantas daninhas
id UFRRJ-1_6b8d683beb1cd142e04bc3548b81294f
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/13301
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Oliveira, Gabriella Francisco Pereira Borges dePinho, Camila Ferreira de004.591.700-07https://orcid.org/0000-0003-2861-2212http://lattes.cnpq.br/3934515090201644Tornisielo, Valdemar Luiz450.332.858-15http://lattes.cnpq.br/0046465397803856Oliveira, Claudia de892.025.000-25-Pinho, Camila Ferreira de004.591.700-07https://orcid.org/0000-0003-2861-2212http://lattes.cnpq.br/3934515090201644Langaro, Ana Claudiahttp://lattes.cnpq.br/7725390846233597Velini, Edivaldo Domingueshttp://lattes.cnpq.br/9855493448161702116.660.247-83http://lattes.cnpq.br/55715400401392882023-12-22T02:45:12Z2023-12-22T02:45:12Z2018-12-12OLIVEIRA, Gabriella Francisco Pereira Borges de. Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar. 2018. 48 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. .https://rima.ufrrj.br/jspui/handle/20.500.14407/13301A descontinuidade do processo de queima da palhada trouxe desafios para as práticas de manejo no cultivo de cana-de-açúcar. Apesar dos benefícios ambientais e agronômicos associados à permanência da palhada no solo, esse sistema de produção pode interferir negativamente na eficiência dos herbicidas para o controle de plantas daninhas. Isso ocorre, porque a palha de cana-de-açúcar tanto funciona como uma barreira física quanto interage com as moléculas dos herbicidas, alterando sua dinâmica no ambiente. A sorção corresponde ao principal mecanismo de retenção dos herbicidas à palhada e pode ser favorecida em função das características físico-químicas das moléculas dos herbicidas e da composição química da palhada. Esses fatores também influenciam no processo de dessorção, o qual está associado à liberação das moléculas na solução do solo. A pendimetalina é um herbicida pré-emergente utilizado no cultivo de cana-de-açúcar no Brasil para controle de gramíneas e algumas plantas daninhas de folhas largas e, por suas características hidrofóbicas, possui elevada capacidade de permanecer retido aos coloides do solo e à palhada. Nesse sentido, o emprego de adjuvantes em herbicidas pré-emergentes, embora não seja uma prática comum, pode alterar sua dinâmica no ambiente, bem como auxiliar na sua eficiência agronômica. O objetivo deste trabalho foi avaliar a sorção e a dessorção, em solo e em palha de cana-de-açúcar, do herbicida pendimetalina isoladamente e em mistura com adjuvante. O ensaio 1 consistiu na análise de estabilidade qualitativa e quantitativa das soluções de pendimetalina nas formulações concentrado emulsionável (EC) e suspensão de encapsulado (CS) e as respectivas misturas com óleo vegetal (Aureo®) a 0,1% (v/v), óleo mineral (Assist®) a 0,5% (v/v) e acetona a 0,1% (v/v). O ensaio 2 correspondeu ao pré-teste para determinação da proporção solo:solução e palha:solução, assim como do tempo de equilíbrio, mais adequados para o ensaio de sorção. O ensaio 3 consistiu na determinação das isotermas de sorção e dessorção. O ensaio de sorção foi realizado utilizando as soluções de pendimetalina na formulação EC isoladamente e em mistura com Aureo® em concentrações entre 2,5 e 40 μg mL-1, por serem consideradas mais estáveis nos ensaios anteriores. O solo foi empregado na proporção de 1:2 (m/v) e a palha na proporção 1:50 (m/v), permanecendo o sistema em agitação pelo período de 12 e 24 horas, respectivamente. O ensaio de dessorção foi realizado, descartando o sobrenadante e adicionando solução aquosa de CaCl2 a 0,01 mol L-1 sem herbicida, permanecendo o sistema em agitação por 24 horas. A concentração de pendimetalina no sobrenadante foi determinada por cromatografia líquida de alta eficiência (CLAE). Os dados foram submetidos à análise de variância (p ≤ 0,05) e foi utilizado o software ISOFIT para obtenção dos parâmetros das isotermas dos modelos de Freundlich e linear. O modelo linear foi o mais adequado para representação das isotermas de sorção e dessorção. O coeficiente de sorção para o solo foi igual a 18,48 mL g-1 para a pendimetalina na formulação EC isoladamente, enquanto os coeficientes para a palha de cana-de-açúcar foram equivalentes a 355,52 e 27,24 mL g-1 para a formulação EC isoladamente e para o sistema EC + Aureo®. Na dessorção, os valores de Kd obtidos foram superiores aos de sorção, indicando que houve retorno do herbicida para a solução. Portanto, a sorção da pendimetalina em palha de cana-de-açúcar, na formulação EC isoladamente é maior em comparação com a mistura com Aureo®, indicando que a adição de adjuvante pode diminuir sua retenção na palhada e, consequentemente, aumentar a eficiência no controle de plantas daninhasCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorAGEVAPFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroElimination of pre-harvest burning has brought challenges for management practices in sugarcane production. Despite of environmental and agronomic benefits associated to the permanence of straw in the soil, this production system may negatively affect herbicides efficiency in weed control. It occurs because sugarcane straw may work as a physical barrier and interact with molecules of the herbicides, changing their dynamics in the environment. The sorption corresponds to the main retention mechanism of the herbicides to the straw and can be favored according to the physical-chemical characteristics of the molecules of the herbicides and the chemical composition of the straw. These factors also influence the desorption process, which is associated with the release of the molecules in the soil solution. Pendimethalin is a pre-emergent herbicide used in the cultivation of sugarcane in Brazil to control grasses and some weeds with broad leaves. Due to its hydrophobic characteristics, it has high sorption capacity in soil and straw. Although there is not a common practice, using adjuvants in pre-emergent herbicides may change their dynamics in the environment as well as improve their agronomic efficiency. The objective of this work was to evaluate sorption and desorption, in soil and sugarcane straw, of pendimethalin alone and in mixture with adjuvant. Assay 1 consisted of qualitative and quantitative stability analysis of pendimethalin solutions in emulsifiable concentrate (EC) and capsule suspension (CS) formulations and mixtures with 0.1% (v/v) of vegetable oil (Aureo®), 0.5% (v/v) of mineral oil (Assist®) and 0.1 % (v/v) of acetone. Assay 2 corresponded to the pre-test to determine soil:solution and straw: solution and equilibrium time best suited for the sorption assay. Assay 3 consisted of determining sorption and desorption isotherms. Sorption assay was performed using pendimethalin in the EC formulation alone and in mixture with Aureo® in concentrations between 2.5 and 40 μg mL-1, because these solutions were considered more stable. Soil was used in the proportion of 1: 2 (w/v) and straw in the proportion of 1:50 (w/v). Systems were in agitation for 12 and 24 hours, respectively. Desorption assay was performed by discarding the supernatant and adding aqueous solution of 0.01 mol L-1 CaCl2 without herbicide. Systems were stirred for 24 hours. Concentration of pendimethalin in the supernatant was determined by high performance liquid chromatography (HPLC). Data were submitted to analysis of variance (p ≤ 0.05) and ISOFIT software were used to obtain the isotherms parameters of the Freundlich and linear models. Linear model was the most suitable for representing the sorption and desorption isotherms. Sorption coefficient for soil was 18.48 mL g-1 for pendimethalin in the EC formulation alone, while the coefficients for sugarcane straw were 355.52 and 27.24 mL g-1 for the EC formulation alone and for the EC + Aureo® system. In desorption experiment, the Kd values obtained were higher than the sorption values, indicating the herbicide returned to the solution. Therefore, the sorption of pendimethalin in straw for the EC formulation alone is higher when in mixture with Aureo®, indicating the addition of adjuvant may decrease its retention in the straw and, consequently, increase the weed control efficiencyapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia Agrícola e AmbientalUFRRJBrasilInstituto de TecnologiaPré-emergenteÓleo mineralÓleo vegetalAdjuvantePre-emergentMineral oilVegetable oilAdjuvantEngenharia AgrícolaSorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcarSorption and desorption of pendimethalin herbicide in soil and sugarcane strawinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13875. Agrotóxicos e afins - Avaliação de compatibilidade físico-química. Rio de Janeiro, 12p., 2014. AGROFIT – AGROFIT. Sistema de Agrotóxicos Fitossanitários. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso: 15/10/2018. AHMAD, R.; KOOKANA, R. S.; ALSTON, A. M.; SKJEMSTAD, J. O. The nature of soil organic matter affects sorption of pesticides. 1. relationships with carbon chemistry as determined by13C CPMAS NMR spectroscopy. Environmental Science & Technology, v.35, n.5, p.878–884, 2001. doi:10.1021/es001446i. ANVISA – Agência Nacional de Vigilância Sanitária. Resolução RE nº 899, de 29/05/2003. Guia para validação de métodos analíticos e bioanalíticos métodos analíticos. Brasília, 2003. Disponível em: http://www.portal.anvisa.gov.br/documents. Acesso em: 10/10/2018. AGUIAR, D. A.; RUDORFF, B. F. T.; SILVA, W. F.; ADAMI, M.; MELLO, M. P. Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo State, Brazil. Remote Sensing, v.3, n.12, p.2682–2703, 2011. doi:10.3390/rs3122682. ALLETTO, L.; COQUET, Y.; BENOIT, P.; HEDDADJ, D.; BARRIUSO, E. Tillage management effects on pesticide fate in soils. A review. Agronomy for Sustainable Development, v.30, n.2, p.367–400, 2010. doi:10.1051/agro/2009018. ALLETTO, L.; BENOIT, P.; BERGHEAUD, V.; COQUET, Y. Variability of retention process of isoxaflutole and its diketonitrile metabolite in soil under conventional and conservation tillage. Pest Management Science, v.68, n.4, p.610–617, 2012. doi:10.1002/ps.2304. ANDR, J.; KOČÁREK, M.; JURSÍK, M.; FENDRYCHOVÁ, V.; TICHÝ, L. Effect of adjuvants on the dissipation, efficacy and selectivity of three different pre-emergent sunflower herbicides. Plant Soil Environment, v.63, n. 9, p.409–415, 2017. doi: 10.17221/365/2017-PSE. ARALDI, R.; VELINI, E. D.; GIOVANNA, L. G. C.; TROPALDI, L.; SILVA, I. P. F. S.; CARBONARI, C. A. Performance of herbicides in sugarcane straw. Ciência Rural, v.45, n.12, p.2106–2112, 2015. doi: 10.1590/0103-8478cr20141244. ASLAM, S.; GARNIER, P.; RUMPEL, C.; PARENT, S. E.; BENOIT, P. Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere, v.91, n.11, 1447–1455, 2013. doi:10.1016/j.chemosphere.2012.12.005. AZANIA, C. A. M.; ROLIM, J. C.; CASAGRANDE, A. A.; LAVORENTI, N. A.; AZANIA, A. A. P. M. Seletividade de herbicidas: III – aplicação de herbicidas em pós emergência inicial e tardia da cana-de-açúcar na época de estiagem. Planta Daninha, v.24, n.3, p.489–495, 2006. doi: 10.1590/S0100-83582006000300010. BAGLIERI, A.; GENNARI, M.; ARENA, M.; ABBATE, C. The adsorption and degradation of chlorpyriphosmethyl, pendimethalin and metalaxyl in solid urban waste compost. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, v.46, n.6, p.454–460, 2011. doi: 10.1080/03601234.2011.583841. BALDOTTO, M. A.; CANELA, M. C.; CANELLAS, L. P.; DOBBS, L. B; VELLOSO, A. C. X. Redox index of soil carbon stability. Revista Brasileira de Ciência do Solo, v.34, n.5, p. 1543–1551, 2010. doi: 10.1590/S0100-06832010000500007. 39 BALDOTTO, M. A.; BALDOTTO, L. E. B. Ácidos húmicos. Revista Ceres, v.61, p.856–881, 2014. doi:10.1590/0034-737x201461000011. BANKS, P. A.; ROBINSON, E. L. The influence of straw mulch on the soil reception and persistence of metribuzin. Weed Science, v.30, n.2, p.164–168, 1982. Doi: 10.1017/S0043174500062263. BANKS, P. A.; ROBINSON, E. L. The fate of oryzalin applied to straw-mulched and nonmulched soils. Weed Science, v.32, n.2, p.269–272, 1984. doi: 10.1017/S0043174500058938. BASF S/A. Disponível em: https://www.basf.com. Acesso em: 15/10/2018. BERTÉ, L. N.; COSTA, N. V.; RAMELLA, J. R. P. Effects of clomazone formulations at the initial development of Jatropha curcas. Pesquisa Agropecuária Tropical, v.45, n.4, p.364–369, 2015. doi: 10.1590/1983-40632015v4535699. BRADL, H. B. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, v.277, n.1, p.1–18, 2004. doi:10.1016/j.jcis.2004.04.005. BRANDANI, C. B.; ABBRUZZINI, T. F.; WILLIAMS, S.; EASTER, M.; PELLEGRINO CERRI, C. E.; PAUSTIAN, K. Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB Bioenergy, v.7, n.4, p.646–657, 2014. doi:10.1111/gcbb.12175. BORDONAL, R. de O.; LAL, R.; RONQUIM, C. C.; DE FIGUEIREDO, E. B.; CARVALHO, J. L. N.; MALDONADO, W.; MILORI, D. M. B. R.; LA SCALA, N. Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems & Environment, v.240, p.54–65, 2017. doi:10.1016/j.agee.2017.02.016. BORDONAL, R. de O.; CARVALHO, J. L. N.; LAL, R.; DE FIGUEIREDO, E. B.; DE OLIVEIRA, B. G.; LA SCALA, N. Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, v.38, n.2, p.13–34, 2018a. doi:10.1007/s13593-018-0490-x. BORDONAL, R. de O.; MENANDRO, L. M. S.; BARBOSA, L. C.; LAL, R.; MILORI, D. M. B. P.; KOLLN, O. T; FRANCO, H. C. J.; CARVALHO, J. L. N. Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, v.328, p.79–90, 2018b. doi:10.1016/j.geoderma.2018.05.003. BUENO, M. R.; ALVES, G. S.; PAULA, A. D. M.; CUNHA, J. P. A. R. Volume de calda e adjuvantes no controle de plantas daninhas com glyphosate. Planta Daninha. v.31, n.3, p.705–713, 2013. doi: 10.1590/S0100-83582013000300022. BUHLER, D.D. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Science, v.35, n.5, p.1247–1258, 1995. doi: 10.2135/cropsci1995.0011183X003500050001x. BURNHAM, K. P.; ANDERSON, D. R. Multimodel Inference. Sociological Methods & Research, v.33, n.2, p.261–304, 2004. doi:10.1177/0049124104268644. CALDEIRA-PIRES, A.; BENOIST, A.; LUZ, S. M. da; SILVERIO, V. C.; SILVEIRA, C. M.; MACHADO, F. S. Implications of removing straw from soil for bioenergy: An LCA of ethanol production using total sugarcane biomass. Journal of Cleaner Production, v.181, p.249–259, 2018. doi:10.1016/j.jclepro.2018.01.119. 40 CARBONARI, C. A.; GOMES, G. L. G. C.; TRINDADE, M. L. B.; SILVA, J. R. M.; VELINI, E. D. Dynamics of Sulfentrazone Applied to Sugarcane Crop Residues. Weed Science, v.64, n.1, p.201–206, 2016. doi:10.1614/ws-d-14-00171.1. CARVALHO, J. L. N.; NOGUEIROL, R. C.; MENANDRO, L. M. S.; BORDONAL, R. de O.; BORGES, C. D.; CANTARELLA, H.; FRANCO, H. C. J. Agronomic and environmental implications of sugarcane straw removal: a major review. Global Change Biology Bioenergy, v.9, n.7, p.1181–1195, 2016. doi:10.1111/gcbb.12410. CARVALHO, J. L. N.; HUDIBURG, T. W.; FRANCO, H. C. J.; DELUCIA, E. H. Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy, v.9, n.8, p.1333–1343, 2017. doi:10.1111/gcbb.12411. CERRI, C. C.; GALDOS, M. V.; MAIA, S. M. F.; BERNOUX, M.; FEIGL, B. J.; POWLSON, D.; CERRI, C. E. P. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science, v.62, n.1, p.23–28, 2011. doi:10.1111/j.1365-2389.2010.01315.x. CHAUHAN, B. S.; GILL, G. S.; PRESTON, C. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Australian Journal of Experimental Agriculture, v.46, n.12, p.1557–1570, 2006. doi:10.1071/ea05291. CHAUHAN, B. S.; SINGH, R. G.; MAHAJAN, G. Ecology and management of weeds under conservation agriculture: A review. Crop Protection, v.38, p.57–65, 2012. doi:10.1016/j.cropro.2012.03.010. CHHOKAR, R. S.; SHARMA, R. K.; SHARMA, I. Weed management strategies in wheat – A review. Journal of Wheat Research, v.4, n.2, p.1–21, 2012. CHRISTOFFOLETI, P. J.; BORGES, A.; NICOLAI, M.; CARVALHO, S. J. P.; LÓPEZ-OVEREJO, R. F.; MONQUERO, P. A. Carfentrazone-ethyl applied in post-emergence to control Ipomoea spp. and Commelina benghalensis in sugarcane crop. Planta Daninha, v.24, n.1, p.83–90, 2006. doi: 10.1590/S0100-83582006000100011. CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar. Safra 2018/2019 - Primeiro levantamento, v.5, Brasília, 2018. Disponível em: http://www.conab.gov.br. Acesso em: 05/09/2018. CORREIA, N. M.; DURIGAN, J. C. Emergência de plantas daninhas em solo coberto com palha de cana-de-açúcar. Planta Daninha, v.22, n.1, p.11–17, 2004. doi: 10.1590/S0100-83582004000100002. CORREIA, N. M.; KRONKA JR., B. Controle químico de plantas dos gêneros Ipomoea e Merremia em cana-soca. Planta Daninha, v.28, n.spe, p.1143–1153, 2010. doi: 10.1590/S0100-83582010000500022. CURRAN, W. S. Persistence of herbicides in soil. Crops & Soils, v.49, n.5, p.16– 21, 2016. doi:10.2134/cs2016-49-0504. DAO, T. H. Field decay of wheat straw and its effects on metribuzin and S-ethyl metribuzin sorption and elution from crop residues. Journal of Environmental Quality, v.20, n.1, p.203–208, 1991. doi: 10.2134/jeq1991.00472425002000010032x. DERR, J.; ROBERTSON, L.; WATSON, E. Leaching behavior of two pendimethalin formulations in a soilless growing medium. Weed Science, v.63, n.2, p.555–560, 2015. doi:10.1614/ws-d-14-00142.1. 41 DICK, D. P.; MARTINAZZO, R.; KNICKER, H.; ALMEIRA, P. S. G. Matéria orgânica em quatro tipos de solos brasileiros: composição química e sorção de atrazina. Química Nova, v.33, n.1, p.14–19, 2010. doi: 10.1590/S0100-40422010000100003. DUARTE, C. G.; GAUDREAU, K.; GIBSON, R. B.; MALHEIROS, T. F. Sustainability assessment of sugarcane-ethanol production in Brazil: A case study of a sugarcane mill in São Paulo state. Ecological Indicators, v.30, p.119–129, 2013. doi:10.1016/j.ecolind.2013.02.011. DUKE, S. O. Overview of Herbicide Mechanisms of Action. Environmental Health Perspectives, v.87, p.263–271, 1990. doi:10.2307/3431034. EMBRAPA - Empresa brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro, 1997, 212 p. FALONE, S. Z.; VIEIRA, E. M. Adsorção / dessorção do explosivo tetril em turfa e em argissolo vermelho amarelo. Química Nova, v.27, n.6, p.849–854, 2004. doi: 10.1590/S0100-40422004000600002. FERCHAUD, F.; VITTE, G.; MARY, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenergy, v.8, n.2, p.290–306, 2016. doi:10.1111/gcbb.12249. FERREIRA, E. A.; PROCÓPIO, S. O.; GALON, L.; FRANCA, A. C.; CONCENÇO, G.; SILVA, A. A.; ASPIAZU, I.; SILVA, A. F.; TIRONI, S. P.; ROCHA, P. R. R. Manejo de plantas daninhas em cana crua. Planta Daninha, v.28, n.4, p.915–925, 2010. doi: 10.1590/S0100-83582010000400025. FILHO, R. V.; CHRISTOFFOLETI, P. J. Manejo de plantas daninhas e produtividade da cana. Visão Agrícola, v.3, n.1, p.32–37, 2004. FORTES, C.; TRIVELIN, P. C. O.; VITTI, A. C. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, v.42, p.189–198, 2012. doi:10.1016/j.biombioe.2012.03.011. FRANCISCO, J. G.; MENDES, K. F.; PIMPINATO, R. F.; TORNISIELO, V. L.; GUIMARÃES, A. C. D. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils. Journal of Environmental Science and Health, Part B, v.52, n.7, p.470–475, 2017. doi:10.1080/03601234.2017.1301758. FRANCO, H. C. J.; PIMENTA, M. T. B.; CARVALHO, J. L. N.; MAGALHÃES, P. S. G.; ROSSELL, C. E. V.; BRAUNBECK, O. A.; VITTI, A. C.; KÖLLN, O. T.; ROSSI NETO, J. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola, v.70, n.5, p.305–312, 2013. doi:10.1590/s0103-90162013000500004. FREITAS, S. P.; OLIVEIRA, A. R.; FREITAS, S. J.; SOARES, L. M. S. Controle químico de Rottboellia exaltata em cana-de-açúcar. Planta Daninha, v.22, n.3, p.461–466, 2004. doi: 10.1590/S0100-83582004000300017. GALDOS, M. V.; CERRI, C. C.; CERRI, C. E. P.; PAUSTIAN, K.; VAN ANTWERPEN, R. Simulation of sugarcane residue decomposition and aboveground growth. Plant Soil, v.326, p.243–259, 2010. doi: 10.1007/s11104-009-0004-3. GALLI, A.; DE SOUZA, D.; MACHADO; S. A. S. Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods. Microchemical Journal, v.98, n.1, p.135–143, 2011. doi:10.1016/j.microc.2010.12.009. GIORI, F. G.; TORNISIELO, V. L.; REGITANO, J. B. The Role of Sugarcane Residues in the Sorption and Leaching of Herbicides in Two Tropical Soils. Water, Air, & Soil Pollution, v.225, n.4, p.1935–1943, 2014. doi:10.1007/s11270-014-1935-8. 42 GUERRA, N.; OLIVEIRA JR, R. S.; CONSTANTIN, J.; OLIVEIRA NETO, A. M.; PUTON, G.; GARRIDO, T. H. P. Influence of precipitation and sugarcane straw in aminocyclopyrachlor and indaziflam control efficiency. Planta Daninha, v.33, n.3, p.535–542, 2015. doi:10.1590/s0100-83582015000300015. GUPTA, S.; GAJBHIYE, V. T.; KALPANA; AGNIHOTRI, N. P. Leaching behavior of imidacloprid formulations in soil. Bulletin of Environmental Contamination and Toxicology, v.68, n.4, p.502–508, 2002. doi:10.1007/s001280283. HARTER, R. D.; NAIDU, R. An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Science Society of America Journal, v.65, p.597-612, 2001. doi:10.2136/sssaj2001.653597x. HASSUANI, S.J; LEAL, M. R. L. V.; MACEDO, I. C. Biomass power generation: sugarcane, bagasse and trash. Programa das Nações Unidas para o Desenvolvimento (PNUD) e Centro de Tecnologia Canavieira (CTC). São Paulo, 2005. HATZINIKOLAOU, A. S.; ELEFTHEROHORINOS, I. G.; VASILAKOGLOU, I. B. Influence of Formulation on the Activity and Persistence of Pendimethalin. Weed Technology, v.18, n.2, p.397–403, 2004. doi:10.1614/wt-03-121r1. HAZEN, J. L. Adjuvants – Terminology, Classification and Chemistry. Weed Technology, v.14, n.7, p.773–784, 2000. doi: 10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2. ISOFIT – Isotherm Fitting Tool. Disponível em: http://www.eng.buffalo.edu/~lsmatott/IsoFit/IsoFitMain.html. Acesso em: 15/06/2018. KAH, M.; HOFMANN, T. Nanopesticide research: Current trends and future priorities. Environment International, v.63, p.224–235, 2014. doi:10.1016/j.envint.2013.11.015. KAUR, P.; MAKKAR, A.; KAUR, P.; SHILPA. Temperature dependent adsorption–desorption behaviour of pendimethalin in Punjab soils. Bulletin of Environmental Contamination and Toxicology, v.100, n.1, p.167–175, 2017. doi:10.1007/s00128-017-2235-y. KAUSHIK, P.; SHAKIL, N. A.; KUMAR, J.; SINGH, M. K.; SINGH, M. K.; YADAV, S. K. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. Journal of Environmental Science and Health, Part B, v.48, n.8, p.677–685, 2013. doi:10.1080/03601234.2013.778614. KISSMANN, K. G. Adjuvantes para caldas de produtos fitossanitários. In: GUEDES, J. V. C.; DORNELLES, S. B. (Org.). Tecnologia e segurança na aplicação de agrotóxicos: novas tecnologias. Santa Maria: Departamento de Defesa Fitossanitária; Sociedade de Agronomia de Santa Maria, p.39–51, 1998. KNOWLES, A. Recent developments of safer formulations of agrochemicals. The Environmentalist, v.28, n.1, p.35–44, 2007. doi:10.1007/s10669-007-9045-4. KNOWLES, A. Global trends in pesticide formulation technology: the development of safer formulations in China. Outlooks on Pest Management, v.20, n.4, p.165–170, 2009. doi:10.1564/20aug06. KOČÁREK, M.; KODEŠOVÁ, R.; SHARIPOV, U.; JURSÍK, M. Effect of adjuvant on pendimethalin and dimethenamid-P behaviour in soil. Journal of Hazardous Materials, v.354, p.266–274, 2018. doi:10.1016/j.jhazmat.2018.04.073. 43 KOGAN, M.; PÉREZ, A. Herbicidas, fundamentos fisiológicos y bioquímicos del modo de acción. Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura, v.31, n.2, 321 p., 2003. doi: 10.7764/rcia.v31i2.299. KPGAH, J.; SHA’ATO, R.; WUANA, R. A.; TOR-ANYIIN, T. A. Kinetics of sorption of pendimethalin on soil samples obtained from the banks of rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, v.4, p.37–42, 2016. doi: 10.4236/gep.2016.41004. KRUTZ, L. J.; SENSEMAN, S. A.; MCINNES, K. J.; ZUBERER, D. A.; TIERNEY, D. P. Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazine in vegetated filter strip and cultivated soil. Journal of Agricultural and Food Chemistry, v.51, n.25, p.7379–7384, 2003. doi:10.1021/jf0348572. KUMAR, T. P.; CHINNAMUTHU, C. R. An attempt to synthesis a new nanoformulation of pendimethalin herbicide for slow release using direct encapsulation technique. Trends in Biosciences, v.7, n.13, p.1687–1692, 2014. LEAL, M. R. L. V.; GALDOS, M. V.; SCARPARE, F. V.; SEABRA, J. E. A.; WALTER, A.; OLIVEIRA, C. O. F. Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, v.53, p.11–19, 2013. doi:10.1016/j.biombioe.2013.03.007. LIU, Y.; XU, Z.; WU, X.; GUI, W.; ZHU, G. Adsorption and desorption behavior of herbicide diuron on various chinese cultivated soils. Journal of Hazardous Materials, v.178, n.1-3, p.462–468, 2010. doi:10.1016/j.jhazmat.2010.01.105. LOCKE, M.A.; BRYSON, C.T. Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Science, v.45, n.2, p.307–320, 1997. doi: 10.1017/S0043174500092882. LOCKE, M. A.; REDDY, K. N.; GASTON, L. A.; ZABLOTOWICZ, R. M. Adjuvant modification of herbicide interactions in aqueous soil suspensions. Soil Science, v.167, n.7, p.444–452, 2002. doi:10.1097/00010694-200207000-00003. LOPES, I. M. Manejo da quantidade de palhada da cana-de-açúcar: qualidade do solo, produção da cultura e emissão de N2O em diferentes condições edafoclimáticas. Tese doutorado, PPG-CS. 2018. LU, J.; WU, L.; NEWMAN, J.; FABER, B.; MERHAUT, D. J.; GAN, J. Sorption and degradation of pesticides in nursery recycling ponds. Journal of Environment Quality, v.35, n.5, p.1795–1802, 2006. doi:10.2134/jeq2006.0123. LUCON, O.; GOLDEMBERG, J. São Paulo – The “other” Brazil: different pathways on climate change for state and federal governments. The Journal of Environment & Development, v.19, n.3, p.335–357, 2010. doi:10.1177/1070496510378092. MACIEL, C. D. G.; VELINI, E. D. Simulação do caminhamento da água da chuva e herbicidas em palhadas utilizadas em sistemas de plantio direto. Planta Daninha, v.23, n.3, p.471–481, 2005. doi: 10.1590/S0100-83582005000300011. MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio: Brasil 2016/2017 a 2026/2027. Assessoria de Gestão Estratégica. Brasília, 2017. Disponível em: http://www.agricultura.gov. Acesso em: 05/09/2018. 44 MARTINS, D.; GONÇALVES, C. G.; JUNIOR, A. C. da S. Cobertura morta de inverno e controle químico sobre plantas daninhas na cultura do milho. Revista Ciência Agronômica, v.47, n.4, p.649–657, 2016. doi: 10.5935/1806-6690.20160078. MARTINS, D.; VELINI, E. D.; MARTINS, C. C.; SOUZA, L. S. de. Emergência em campo de dicotiledôneas infestantes em solo coberto com palha de cana-de-açúcar. Planta Daninha, v.17, n.1, p.151–161, 1999. doi: 10.1590/S0100-83581999000100014. MATOS, A. K. A.; CARBONARI, C. A.; GOMES, L. G. C.; VELINI, E. D. Dynamics of preemergent herbicides in production systems with straw. Revista Brasileira de Herbicidas, v.15, n.1, p.97–106, 2016. doi: 10.7824/rbh.v15i1.441. MATTOS, A. G.; SOBRINHO, N. M. B. do A.; LIMA, E. S. A.; GUEDES, J. N.; SOUSA, F. F. Sorção de Cd e Pb nos solos da região do Médio Paraíba – RJ, Brasil. Revista Ciência Agronômica, v.37, n.1, p.1–12, 2016. doi: 10.5935/1806-6690.20160001. MENANDRO, L. M. S.; CANTARELLA, H.; FRANCO, H. C. J.; KÖLLN, O. T.; PIMENTA, M. T. B.; SANCHES, G. M.; RABELO, S. C.; CARVALHO, J. L. N. Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining, v.11, n.3, p.488–504, 2017. doi:10.1002/bbb.1760. MONQUERO, P. A.; AMARAL, L.R.; BINHA, D. P.; SILVA, P. V., SILVA, A. C.; MARTINS, F. R. A. Mapas de infestação de plantas daninhas em diferentes sistemas de colheita da cana-de-açúcar. Planta Daninha, v.26, n.1, p.47–55, 2008. doi: 10.1590/S0100-83582008000100005. MULQUEEN, P. Recent advances in agrochemical formulation. Advances in Colloid and Interface Science, v.106, n.1-3, p.83–107, 2003. doi:10.1016/s0001-8686(03)00106-4. NICOLAI, M.; CHRISTOFFOLETI, P. J. Interações entre glyphosate e adubos foliares sobre parâmetros agronômicos do herbicida. Boletim Informativo da Sociedade Brasileira da Ciência das Plantas Daninhas, v.15, n.3, p.39–43, 2007. OECD – Organisation for Economic Co-Operation and Development. Adsorption – desorption using a batch equilibrium method. Paris, 44p., 2000. OLIVEIRA, H. C.; STOLF-MOREIRA, R.; MARTINEZ, C. B. R.; GRILLO, R.; DE JESUS, M. B.; FRACETO, L. F. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. Plos One, v.10, n.7, e0132971, 2015. doi:10.1371/journal.pone.0132971. OLIVEIRA JR., R. S.; KOSKINEN, W. C.; FERREIRA, F. A. Sorption and leaching potential of herbicides on Brazilian soils. Weed Research, v.41, n.2, p.97–110, 2001. doi:10.1046/j.1365-3180.2001.00219.x. OLIVEIRA JR., R. S.; REGITANO, J. B. Dinâmica de pesticidas no solo. In: MELO, V. F.; ALLEONI, L. R. F. Química e mineralogia do solo, Viçosa, p.187–248, 2009. OLIVEIRA, M.F.; COLONNA, I.; PRATES, H.T.; MANTOVANI, E.C.; GOMIDE, R.L.; OLIVEIRA JR., R.S. Sorção do herbicida imazaquin em Latossolo sob plantio direto e convencional. Pesquisa Agropecuária Brasileira, v.39, p.787–793, 2004. doi: 10.1590/S0100-204X2004000800009. OLIVEIRA, M. F.; BRIGHENTI, A. M. Comportamento de herbicidas no ambiente. In: OLIVEIRA JÚNIOR, R. S.; CONSTANTIN, J.; INOUE, M. H. Biologia e manejo de plantas daninhas. Curitiba: Omnipax, p.263–304, 2011. 45 PASSOS, A. B. R. J.; FREITAS, M. A. M.; TORRES, L. G.; SILVA, A. A.; QUEIROZ, M. E. L. R.; LIMA, C. F. Sorption and desorption of sulfentrazone in Brazilian soils. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, v.48, n.8, p.646–650, 2013. doi:10.1080/03601234.2013.777313. PENNER, D. Activator Adjuvants1. Weed Technology, v.14, n.4, p.785–791, 2000. doi:10.1614/0890-037x(2000)014[0785:aa]2.0.co;2. PETOSA, A. R.; RAJPUT, F.; SELVAM, O.; ÖHL, C.; TUFENKJI, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, v.111, p.10–17, 2017. doi:10.1016/j.watres.2016.12.030. PINHEIRO, É. F. M.; DE CAMPOS, D. V. B.; DE CARVALHO BALIEIRO, F.; DOS ANJOS, L. H. C.; PEREIRA, M. G. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems, v.132, p.35–39, 2015. doi:10.1016/j.agsy.2014.08.008. PROSDOCIMI, M.; JORDÁN, A.; TAROLLI, P.; KEESSTRA, S.; NOVARA, A.; CERDÀ, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, v.547, p.323–330, 2016. doi:10.1016/j.scitotenv.2015.12.076. RAMASAHAYAM, S. Pendimethalin. Encyclopedia of Toxicology, p.765–767, 2014. doi:10.1016/b978-0-12-386454-3.00417-6. RAMPOLDI, E. A.; HANG, S.; BARRIUSO, E. The fate of glyphosate in crop residues. Soil Science Society of America Journal, v.75, n.2, p.553–559, 2011. doi:10.2136/sssaj2010.0105. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2018. URL: https://www.R-project.org/. RIBANI, M.; BOTTOLI, C. B. G.; COLLINS, C. H.; JARDIM, I. C. S. F.; MELO, L. F. C. Validação em métodos cromatográficos e eletroforéticos. Química Nova, v.27, n.5, p.771–780, 2004. doi: 10.1590/S0100-40422004000500017. RODRIGUES, B.N. Influência da cobertura morta no comportamento dos herbicidas imazaquin e clomazone. Planta Daninha, v.11, n.1–2, p.21–28, 1993. doi: 10.1590/S0100-83581993000100004. RODRÍGUEZ-LIÉBANA, J. A.; MINGORANCE, M. D.; PEÑA, A. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts. Journal of Environmental Management, v.92, n.3, p.650–654, 2011. doi:10.1016/j.jenvman.2010.10.009. SADEGHI, A.M.; ISENSEE, A.R.; SHELTON, D.R. Effect of tillage age on herbicide dissipation: a side-by-side comparison using microplots. Soil Science, v.163, n.11, p.883–890, 1998. doi: 10.1097/00010694-199811000-00005. SARMAH, A. K.; MÜLLER, K.; AHMAD, R. Fate and behaviour of pesticides in the agroecosystem—a review with a New Zealand perspective. Australian Journal of Soil Research, v.42, n.2, p.125–154, 2004. doi:10.1071/sr03100. SANTOS, F. A.; QUEIRÓZ, J. H. de; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES, V. M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, v.35, n.5, p.1004–1010, 2012. doi:10.1590/s0100-40422012000500025. 46 SÃO PAULO. Lei n° 11.241, de 19 de setembro de 2002. Dispõe sobre a eliminação gradativa da queima da palha da cana-de-açúcar e dá providências correlatas. São Paulo, 2002. Disponível em: https://www.al.sp.gov.br. Acesso em: 10/09/2018. SÃO PAULO. Resolução conjunta SMA/SAA – 3, de 6 de abril de 2018. Aprova o regulamento das Diretivas Técnicas do Protocolo Agroambiental “Etanol Mais Verde”. São Paulo, 2018. Disponível em: https://www.ambiente.sp.gov.br. Acesso em: 10/09/2018. SELIM, H. M.; ZHOU, L.; ZHU, H. Herbicide retention in soil as affected by sugarcane mulch residue. Journal of Environment Quality, v.32, n.4, p.1445–1454, 2003. doi:10.2134/jeq2003.1445. SELIM, H. M.; NAQUIN, B. J. Retention of metribuzin by sugarcane residue. Soil Science, v.176, n.10, p.520–526, 2011. doi:10.1097/ss.0b013e31822b3a5c. SELIM, H. M.; NAQUIN, B. J.; LIAO, L. Adsorption and desorption of atrazine retention by sugarcane residue and soils. Soil Science, v.177, n.5, p.332–337, 2012. doi:10.1097/ss.0b013e3182498ca5. SENESI, G. S.; MARTIN-NETO, L.; VILLAS-BOAS, P. R.; NICOLODELLI, G.; MILORI, D. M. B. P. Laser-based spectroscopic methods to evaluate the humification degree of soil organic matter in whole soils: a review. Journal of Soils and Sediments, v.18, n.4, p.1292–1302, 2016. doi:10.1007/s11368-016-1539-6. SENSEMAN, S. A. (Ed.). Herbicide handbook. 9.ed. Lawrence: Weed Science Society of America, 2007. 458 p. SHAH, J.; RASUL JAN, M.; SHEHZAD, F.; ARA, B. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environmental Monitoring and Assessment, v.175, n.1-4, p.103–108, 2010. doi:10.1007/s10661-010-1496-2. SHANG, Q.; SHI, Y.; ZHANG, Y.; ZHENG, T.; SHI, H. Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polymers for Advanced Technologies, v.24, n.2, p.137–143, 2012. doi:10.1002/pat.3060. SHENG, G.; JOHNSTON, C. T.; TEPPEN, B. J.; BOYD, S. A. Potential contributions of smectite clays and organic matter to pesticide retention in soils. Journal of Agricultural and Food Chemistry, v.49, n.6, p.2899–2907, 2001. doi:10.1021/jf001485d. SIGUA, G. C.; ISENSEE, A. R.; SADEGHI, A. M. Influence of rainfall intensity and crop residue on leaching of atrazine through intact no-till soil cores. Soil Science, v.156, n.4, p.225–232, 1993. doi:10.1097/00010694-199310000-00002. SILVA, J. R. V.; COSTA, N. V.; MARTINS, D. Efeito da palhada de cultivares de cana-de-açúcar na emergência de Cyperus rotundus. Planta Daninha, v.21, n.3, p.373–380, 2003. doi: 10.1590/S0100-83582003000300004. SILVA, P. V.; MONQUERO, P. A. Influência da palha no controle químico de plantas daninhas no sistema cana crua. Revista Brasileira de Herbicidas, v.12, n.1, p.94–103, 2013. doi: 10.7824/rbh.v12i1.235. SILVA, A. A., VIVIAN, R., OLIVEIRA Jr., R. S. Herbicidas: comportamento no solo. In: SILVA, A. A.; SILVA, J. F. (Ed.) Tópicos em manejo de plantas daninhas. Viçosa, MG: Universidade Federal de Viçosa, p.189–248, 2013. 47 SOLLINS, P.; HOMANN, P.; CALDWELL, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, v.74, n.1-2, p.65–105, 1996. doi:10.1016/s0016-7061(96)00036-5. SONDHIA, S. Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: an Indian perspective. Indian Journal of Weed Science, v.46, n.1, p.66–85, 2014. SOPEÑA, F.; MAQUEDA, C.; MORILLO, E. Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e Investigación Agraria, v.36, n.1, p.27–42, 2009. doi:10.4067/s0718-16202009000100002. SORENSON, B. A.; SHEA, P. J.; ROETH, F. W. Effects of tillage, application time and rate on metribuzin dissipation. Weed Research, v.31, n.6, p.333–345, 1991. doi:10.1111/j.1365-3180.1991.tb01773.x. SOUSA JUNIOR, J. G. de A.; CHERUBIN, M. R.; OLIVEIRA, B. G.; CERRI, C. E. P.; CERRI, C. C.; FEIGL, B. J. Three-year soil carbon and nitrogen responses to sugarcane straw management. BioEnergy Research, v.11, n.2, p.249–261, 2018. doi:10.1007/s12155-017-9892-x. SYSTAT SOFTWARE Inc. – SSI. Sigmaplot for Windows, version 11.0. 2008. Disponível em: http://www.systat.com/produtcs/sigmaplot. STREIT, B.; RIEGER, S. B.; STAMP, P.; RICHNER, W. Weed populations in winter wheat as affected by crop sequence, intensity of tillage and time of herbicide application in a cool and humid climate. Weed Research, v.43, n.1, p.20–32, 2003. doi:10.1046/j.1365-3180.2003.00310.x. TANDON, S. Dissipation of pendimethalin in soybean crop under field conditions. Bulletin of Environmental Contamination and Toxicology, v.96, n.5, p.694–698, 2016. doi:10.1007/s00128-016-1764-0. THORBURN, P. J.; MEIER, E. A.; COLLINS, K.; ROBERTSON, F. A. Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research, v.120, p.99–111, 2012. doi:10.1016/j.still.2011.11.009. TSUJI, K. Microencapsulation of pesticides and their improved handling safety. Journal of Microencapsulation, v.18, n.2, p.137–147, 2001. doi:10.1080/026520401750063856. TU, M.; HURD, C.; RANDALL, J. M. Weed control methods handbook: tool and techniques for use in natural areas. The Nature Conservancy, 2001. UNDABEYTIA, T.; RECIO, E.; MAQUEDA, C.; SÁNCHEZ-VERDEJO, T.; BALEK, V. Slow diuron release formulations based on clay–phosphatidylcholine complexes. Applied Clay Science, v.55, p.53–61, 2012. doi:10.1016/j.clay.2011.10.005. USEPA – UNITED STATES ENVIRONMENTAL PROTECTION AGENCY. Method 3050, 1998. Disponível em: http://www.epa.gov/SW-846/pdfs/3050b.pdf. Acesso em: 24/06/2018. VARGAS, L.; ROMAN, E. S. Conceitos e aplicações dos adjuvantes. EMBRAPA Trigo, Passo Fundo, RS, 2006. VRYZAS, Z. Pesticide fate in soil-sediment-water environment in relation to contamination preventing actions. Current Opinion in Environmental Science & Health, v.4, p.5–9, 2018. doi:10.1016/j.coesh.2018.03.001. 48 WANG, K.; XING, B. Chemical extractions affect the structure and phenanthrene sorption of soil humin. Environmental Science & Technology, v.39, n.21, p.8333–8340, 2005. doi:10.1021/es050737u. ZAIT, Y.; SEGEV, D.; SCHWEITZER, A.; GOLDWASSER, Y.; RUBIN, B.; MISHAEL, Y. G. Development and Employment of Slow-Release Pendimethalin Formulations for the Reduction of Root Penetration into Subsurface Drippers. Journal of Agricultural and Food Chemistry, v.63, n.6, p.1682–1688, 2015. doi:10.1021/jf504839q. ZHANG, D.; ZHANG, X.; LUO, J.; LI, B.; WEI, Y.; LIU, F. Causation Analysis and Improvement Strategy for Reduced Pendimethalin Herbicidal Activity in the Field after Encapsulation in Polyurea. ACS Omega, v.3, n.1, p.706–716, 2018. doi:10.1021/acsomega.7b01651. ZHENG, S. Q.; COOPER, J. F. Adsorption, desorption, and degradation of three pesticides in different soils. Archives of Environmental Contamination and Toxicology, v.30, n.1, p.15–20, 1996. doi:10.1007/bf00211324. ZIMDAHL, R. L. Herbicide formulation. Fundamentals of Weed Science. 5ed. Academic Press, p.501–509, 2018. doi: 10.1016/B978-0-12-811143-7.00017-2.https://tede.ufrrj.br/retrieve/70225/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5864Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2022-08-11T15:08:44Z No. of bitstreams: 1 2018 - Gabriella Francisco Pereira Borges de Oliveira.pdf: 1993432 bytes, checksum: f42a80ae9c95ddda7b9f50f7c15af19f (MD5)Made available in DSpace on 2022-08-11T15:08:44Z (GMT). No. of bitstreams: 1 2018 - Gabriella Francisco Pereira Borges de Oliveira.pdf: 1993432 bytes, checksum: f42a80ae9c95ddda7b9f50f7c15af19f (MD5) Previous issue date: 2018-12-12info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Gabriella Francisco Pereira Borges de Oliveira.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/1/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2018 - Gabriella Francisco Pereira Borges de Oliveira.pdf.txtExtracted Texttext/plain155042https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/2/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf.txta8fac94d2141df3b195b497648cd76f4MD52ORIGINAL2018 - Gabriella Francisco Pereira Borges de Oliveira.pdf2018 - Gabriella Francisco Pereira Borges de Oliveiraapplication/pdf1993432https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/3/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdff42a80ae9c95ddda7b9f50f7c15af19fMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/133012023-12-21 23:45:12.408oai:rima.ufrrj.br:20.500.14407/13301Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T02:45:12Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
dc.title.alternative.eng.fl_str_mv Sorption and desorption of pendimethalin herbicide in soil and sugarcane straw
title Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
spellingShingle Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
Oliveira, Gabriella Francisco Pereira Borges de
Pré-emergente
Óleo mineral
Óleo vegetal
Adjuvante
Pre-emergent
Mineral oil
Vegetable oil
Adjuvant
Engenharia Agrícola
title_short Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
title_full Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
title_fullStr Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
title_full_unstemmed Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
title_sort Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar
author Oliveira, Gabriella Francisco Pereira Borges de
author_facet Oliveira, Gabriella Francisco Pereira Borges de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Gabriella Francisco Pereira Borges de
dc.contributor.advisor1.fl_str_mv Pinho, Camila Ferreira de
dc.contributor.advisor1ID.fl_str_mv 004.591.700-07
https://orcid.org/0000-0003-2861-2212
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3934515090201644
dc.contributor.advisor-co1.fl_str_mv Tornisielo, Valdemar Luiz
dc.contributor.advisor-co1ID.fl_str_mv 450.332.858-15
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/0046465397803856
dc.contributor.advisor-co2.fl_str_mv Oliveira, Claudia de
dc.contributor.advisor-co2ID.fl_str_mv 892.025.000-25
dc.contributor.advisor-co2Lattes.fl_str_mv -
dc.contributor.referee1.fl_str_mv Pinho, Camila Ferreira de
dc.contributor.referee1ID.fl_str_mv 004.591.700-07
https://orcid.org/0000-0003-2861-2212
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/3934515090201644
dc.contributor.referee2.fl_str_mv Langaro, Ana Claudia
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7725390846233597
dc.contributor.referee3.fl_str_mv Velini, Edivaldo Domingues
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/9855493448161702
dc.contributor.authorID.fl_str_mv 116.660.247-83
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5571540040139288
contributor_str_mv Pinho, Camila Ferreira de
Tornisielo, Valdemar Luiz
Oliveira, Claudia de
Pinho, Camila Ferreira de
Langaro, Ana Claudia
Velini, Edivaldo Domingues
dc.subject.por.fl_str_mv Pré-emergente
Óleo mineral
Óleo vegetal
Adjuvante
topic Pré-emergente
Óleo mineral
Óleo vegetal
Adjuvante
Pre-emergent
Mineral oil
Vegetable oil
Adjuvant
Engenharia Agrícola
dc.subject.eng.fl_str_mv Pre-emergent
Mineral oil
Vegetable oil
Adjuvant
dc.subject.cnpq.fl_str_mv Engenharia Agrícola
description A descontinuidade do processo de queima da palhada trouxe desafios para as práticas de manejo no cultivo de cana-de-açúcar. Apesar dos benefícios ambientais e agronômicos associados à permanência da palhada no solo, esse sistema de produção pode interferir negativamente na eficiência dos herbicidas para o controle de plantas daninhas. Isso ocorre, porque a palha de cana-de-açúcar tanto funciona como uma barreira física quanto interage com as moléculas dos herbicidas, alterando sua dinâmica no ambiente. A sorção corresponde ao principal mecanismo de retenção dos herbicidas à palhada e pode ser favorecida em função das características físico-químicas das moléculas dos herbicidas e da composição química da palhada. Esses fatores também influenciam no processo de dessorção, o qual está associado à liberação das moléculas na solução do solo. A pendimetalina é um herbicida pré-emergente utilizado no cultivo de cana-de-açúcar no Brasil para controle de gramíneas e algumas plantas daninhas de folhas largas e, por suas características hidrofóbicas, possui elevada capacidade de permanecer retido aos coloides do solo e à palhada. Nesse sentido, o emprego de adjuvantes em herbicidas pré-emergentes, embora não seja uma prática comum, pode alterar sua dinâmica no ambiente, bem como auxiliar na sua eficiência agronômica. O objetivo deste trabalho foi avaliar a sorção e a dessorção, em solo e em palha de cana-de-açúcar, do herbicida pendimetalina isoladamente e em mistura com adjuvante. O ensaio 1 consistiu na análise de estabilidade qualitativa e quantitativa das soluções de pendimetalina nas formulações concentrado emulsionável (EC) e suspensão de encapsulado (CS) e as respectivas misturas com óleo vegetal (Aureo®) a 0,1% (v/v), óleo mineral (Assist®) a 0,5% (v/v) e acetona a 0,1% (v/v). O ensaio 2 correspondeu ao pré-teste para determinação da proporção solo:solução e palha:solução, assim como do tempo de equilíbrio, mais adequados para o ensaio de sorção. O ensaio 3 consistiu na determinação das isotermas de sorção e dessorção. O ensaio de sorção foi realizado utilizando as soluções de pendimetalina na formulação EC isoladamente e em mistura com Aureo® em concentrações entre 2,5 e 40 μg mL-1, por serem consideradas mais estáveis nos ensaios anteriores. O solo foi empregado na proporção de 1:2 (m/v) e a palha na proporção 1:50 (m/v), permanecendo o sistema em agitação pelo período de 12 e 24 horas, respectivamente. O ensaio de dessorção foi realizado, descartando o sobrenadante e adicionando solução aquosa de CaCl2 a 0,01 mol L-1 sem herbicida, permanecendo o sistema em agitação por 24 horas. A concentração de pendimetalina no sobrenadante foi determinada por cromatografia líquida de alta eficiência (CLAE). Os dados foram submetidos à análise de variância (p ≤ 0,05) e foi utilizado o software ISOFIT para obtenção dos parâmetros das isotermas dos modelos de Freundlich e linear. O modelo linear foi o mais adequado para representação das isotermas de sorção e dessorção. O coeficiente de sorção para o solo foi igual a 18,48 mL g-1 para a pendimetalina na formulação EC isoladamente, enquanto os coeficientes para a palha de cana-de-açúcar foram equivalentes a 355,52 e 27,24 mL g-1 para a formulação EC isoladamente e para o sistema EC + Aureo®. Na dessorção, os valores de Kd obtidos foram superiores aos de sorção, indicando que houve retorno do herbicida para a solução. Portanto, a sorção da pendimetalina em palha de cana-de-açúcar, na formulação EC isoladamente é maior em comparação com a mistura com Aureo®, indicando que a adição de adjuvante pode diminuir sua retenção na palhada e, consequentemente, aumentar a eficiência no controle de plantas daninhas
publishDate 2018
dc.date.issued.fl_str_mv 2018-12-12
dc.date.accessioned.fl_str_mv 2023-12-22T02:45:12Z
dc.date.available.fl_str_mv 2023-12-22T02:45:12Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv OLIVEIRA, Gabriella Francisco Pereira Borges de. Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar. 2018. 48 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. .
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/13301
identifier_str_mv OLIVEIRA, Gabriella Francisco Pereira Borges de. Sorção e dessorção do herbicida pendimetalina em solo e palha de cana-de-açúcar. 2018. 48 f. Dissertação (Mestrado em Engenharia Agrícola e Ambiental) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018. .
url https://rima.ufrrj.br/jspui/handle/20.500.14407/13301
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 13875. Agrotóxicos e afins - Avaliação de compatibilidade físico-química. Rio de Janeiro, 12p., 2014. AGROFIT – AGROFIT. Sistema de Agrotóxicos Fitossanitários. Disponível em: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. Acesso: 15/10/2018. AHMAD, R.; KOOKANA, R. S.; ALSTON, A. M.; SKJEMSTAD, J. O. The nature of soil organic matter affects sorption of pesticides. 1. relationships with carbon chemistry as determined by13C CPMAS NMR spectroscopy. Environmental Science & Technology, v.35, n.5, p.878–884, 2001. doi:10.1021/es001446i. ANVISA – Agência Nacional de Vigilância Sanitária. Resolução RE nº 899, de 29/05/2003. Guia para validação de métodos analíticos e bioanalíticos métodos analíticos. Brasília, 2003. Disponível em: http://www.portal.anvisa.gov.br/documents. Acesso em: 10/10/2018. AGUIAR, D. A.; RUDORFF, B. F. T.; SILVA, W. F.; ADAMI, M.; MELLO, M. P. Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo State, Brazil. Remote Sensing, v.3, n.12, p.2682–2703, 2011. doi:10.3390/rs3122682. ALLETTO, L.; COQUET, Y.; BENOIT, P.; HEDDADJ, D.; BARRIUSO, E. Tillage management effects on pesticide fate in soils. A review. Agronomy for Sustainable Development, v.30, n.2, p.367–400, 2010. doi:10.1051/agro/2009018. ALLETTO, L.; BENOIT, P.; BERGHEAUD, V.; COQUET, Y. Variability of retention process of isoxaflutole and its diketonitrile metabolite in soil under conventional and conservation tillage. Pest Management Science, v.68, n.4, p.610–617, 2012. doi:10.1002/ps.2304. ANDR, J.; KOČÁREK, M.; JURSÍK, M.; FENDRYCHOVÁ, V.; TICHÝ, L. Effect of adjuvants on the dissipation, efficacy and selectivity of three different pre-emergent sunflower herbicides. Plant Soil Environment, v.63, n. 9, p.409–415, 2017. doi: 10.17221/365/2017-PSE. ARALDI, R.; VELINI, E. D.; GIOVANNA, L. G. C.; TROPALDI, L.; SILVA, I. P. F. S.; CARBONARI, C. A. Performance of herbicides in sugarcane straw. Ciência Rural, v.45, n.12, p.2106–2112, 2015. doi: 10.1590/0103-8478cr20141244. ASLAM, S.; GARNIER, P.; RUMPEL, C.; PARENT, S. E.; BENOIT, P. Adsorption and desorption behavior of selected pesticides as influenced by decomposition of maize mulch. Chemosphere, v.91, n.11, 1447–1455, 2013. doi:10.1016/j.chemosphere.2012.12.005. AZANIA, C. A. M.; ROLIM, J. C.; CASAGRANDE, A. A.; LAVORENTI, N. A.; AZANIA, A. A. P. M. Seletividade de herbicidas: III – aplicação de herbicidas em pós emergência inicial e tardia da cana-de-açúcar na época de estiagem. Planta Daninha, v.24, n.3, p.489–495, 2006. doi: 10.1590/S0100-83582006000300010. BAGLIERI, A.; GENNARI, M.; ARENA, M.; ABBATE, C. The adsorption and degradation of chlorpyriphosmethyl, pendimethalin and metalaxyl in solid urban waste compost. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, v.46, n.6, p.454–460, 2011. doi: 10.1080/03601234.2011.583841. BALDOTTO, M. A.; CANELA, M. C.; CANELLAS, L. P.; DOBBS, L. B; VELLOSO, A. C. X. Redox index of soil carbon stability. Revista Brasileira de Ciência do Solo, v.34, n.5, p. 1543–1551, 2010. doi: 10.1590/S0100-06832010000500007. 39 BALDOTTO, M. A.; BALDOTTO, L. E. B. Ácidos húmicos. Revista Ceres, v.61, p.856–881, 2014. doi:10.1590/0034-737x201461000011. BANKS, P. A.; ROBINSON, E. L. The influence of straw mulch on the soil reception and persistence of metribuzin. Weed Science, v.30, n.2, p.164–168, 1982. Doi: 10.1017/S0043174500062263. BANKS, P. A.; ROBINSON, E. L. The fate of oryzalin applied to straw-mulched and nonmulched soils. Weed Science, v.32, n.2, p.269–272, 1984. doi: 10.1017/S0043174500058938. BASF S/A. Disponível em: https://www.basf.com. Acesso em: 15/10/2018. BERTÉ, L. N.; COSTA, N. V.; RAMELLA, J. R. P. Effects of clomazone formulations at the initial development of Jatropha curcas. Pesquisa Agropecuária Tropical, v.45, n.4, p.364–369, 2015. doi: 10.1590/1983-40632015v4535699. BRADL, H. B. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, v.277, n.1, p.1–18, 2004. doi:10.1016/j.jcis.2004.04.005. BRANDANI, C. B.; ABBRUZZINI, T. F.; WILLIAMS, S.; EASTER, M.; PELLEGRINO CERRI, C. E.; PAUSTIAN, K. Simulation of management and soil interactions impacting SOC dynamics in sugarcane using the CENTURY Model. GCB Bioenergy, v.7, n.4, p.646–657, 2014. doi:10.1111/gcbb.12175. BORDONAL, R. de O.; LAL, R.; RONQUIM, C. C.; DE FIGUEIREDO, E. B.; CARVALHO, J. L. N.; MALDONADO, W.; MILORI, D. M. B. R.; LA SCALA, N. Changes in quantity and quality of soil carbon due to the land-use conversion to sugarcane (Saccharum officinarum) plantation in southern Brazil. Agriculture, Ecosystems & Environment, v.240, p.54–65, 2017. doi:10.1016/j.agee.2017.02.016. BORDONAL, R. de O.; CARVALHO, J. L. N.; LAL, R.; DE FIGUEIREDO, E. B.; DE OLIVEIRA, B. G.; LA SCALA, N. Sustainability of sugarcane production in Brazil. A review. Agronomy for Sustainable Development, v.38, n.2, p.13–34, 2018a. doi:10.1007/s13593-018-0490-x. BORDONAL, R. de O.; MENANDRO, L. M. S.; BARBOSA, L. C.; LAL, R.; MILORI, D. M. B. P.; KOLLN, O. T; FRANCO, H. C. J.; CARVALHO, J. L. N. Sugarcane yield and soil carbon response to straw removal in south-central Brazil. Geoderma, v.328, p.79–90, 2018b. doi:10.1016/j.geoderma.2018.05.003. BUENO, M. R.; ALVES, G. S.; PAULA, A. D. M.; CUNHA, J. P. A. R. Volume de calda e adjuvantes no controle de plantas daninhas com glyphosate. Planta Daninha. v.31, n.3, p.705–713, 2013. doi: 10.1590/S0100-83582013000300022. BUHLER, D.D. Influence of tillage systems on weed population dynamics and management in corn and soybean in the central USA. Crop Science, v.35, n.5, p.1247–1258, 1995. doi: 10.2135/cropsci1995.0011183X003500050001x. BURNHAM, K. P.; ANDERSON, D. R. Multimodel Inference. Sociological Methods & Research, v.33, n.2, p.261–304, 2004. doi:10.1177/0049124104268644. CALDEIRA-PIRES, A.; BENOIST, A.; LUZ, S. M. da; SILVERIO, V. C.; SILVEIRA, C. M.; MACHADO, F. S. Implications of removing straw from soil for bioenergy: An LCA of ethanol production using total sugarcane biomass. Journal of Cleaner Production, v.181, p.249–259, 2018. doi:10.1016/j.jclepro.2018.01.119. 40 CARBONARI, C. A.; GOMES, G. L. G. C.; TRINDADE, M. L. B.; SILVA, J. R. M.; VELINI, E. D. Dynamics of Sulfentrazone Applied to Sugarcane Crop Residues. Weed Science, v.64, n.1, p.201–206, 2016. doi:10.1614/ws-d-14-00171.1. CARVALHO, J. L. N.; NOGUEIROL, R. C.; MENANDRO, L. M. S.; BORDONAL, R. de O.; BORGES, C. D.; CANTARELLA, H.; FRANCO, H. C. J. Agronomic and environmental implications of sugarcane straw removal: a major review. Global Change Biology Bioenergy, v.9, n.7, p.1181–1195, 2016. doi:10.1111/gcbb.12410. CARVALHO, J. L. N.; HUDIBURG, T. W.; FRANCO, H. C. J.; DELUCIA, E. H. Contribution of above- and belowground bioenergy crop residues to soil carbon. GCB Bioenergy, v.9, n.8, p.1333–1343, 2017. doi:10.1111/gcbb.12411. CERRI, C. C.; GALDOS, M. V.; MAIA, S. M. F.; BERNOUX, M.; FEIGL, B. J.; POWLSON, D.; CERRI, C. E. P. Effect of sugarcane harvesting systems on soil carbon stocks in Brazil: an examination of existing data. European Journal of Soil Science, v.62, n.1, p.23–28, 2011. doi:10.1111/j.1365-2389.2010.01315.x. CHAUHAN, B. S.; GILL, G. S.; PRESTON, C. Tillage system effects on weed ecology, herbicide activity and persistence: a review. Australian Journal of Experimental Agriculture, v.46, n.12, p.1557–1570, 2006. doi:10.1071/ea05291. CHAUHAN, B. S.; SINGH, R. G.; MAHAJAN, G. Ecology and management of weeds under conservation agriculture: A review. Crop Protection, v.38, p.57–65, 2012. doi:10.1016/j.cropro.2012.03.010. CHHOKAR, R. S.; SHARMA, R. K.; SHARMA, I. Weed management strategies in wheat – A review. Journal of Wheat Research, v.4, n.2, p.1–21, 2012. CHRISTOFFOLETI, P. J.; BORGES, A.; NICOLAI, M.; CARVALHO, S. J. P.; LÓPEZ-OVEREJO, R. F.; MONQUERO, P. A. Carfentrazone-ethyl applied in post-emergence to control Ipomoea spp. and Commelina benghalensis in sugarcane crop. Planta Daninha, v.24, n.1, p.83–90, 2006. doi: 10.1590/S0100-83582006000100011. CONAB. Companhia Nacional de Abastecimento. Acompanhamento da safra brasileira de cana-de-açúcar. Safra 2018/2019 - Primeiro levantamento, v.5, Brasília, 2018. Disponível em: http://www.conab.gov.br. Acesso em: 05/09/2018. CORREIA, N. M.; DURIGAN, J. C. Emergência de plantas daninhas em solo coberto com palha de cana-de-açúcar. Planta Daninha, v.22, n.1, p.11–17, 2004. doi: 10.1590/S0100-83582004000100002. CORREIA, N. M.; KRONKA JR., B. Controle químico de plantas dos gêneros Ipomoea e Merremia em cana-soca. Planta Daninha, v.28, n.spe, p.1143–1153, 2010. doi: 10.1590/S0100-83582010000500022. CURRAN, W. S. Persistence of herbicides in soil. Crops & Soils, v.49, n.5, p.16– 21, 2016. doi:10.2134/cs2016-49-0504. DAO, T. H. Field decay of wheat straw and its effects on metribuzin and S-ethyl metribuzin sorption and elution from crop residues. Journal of Environmental Quality, v.20, n.1, p.203–208, 1991. doi: 10.2134/jeq1991.00472425002000010032x. DERR, J.; ROBERTSON, L.; WATSON, E. Leaching behavior of two pendimethalin formulations in a soilless growing medium. Weed Science, v.63, n.2, p.555–560, 2015. doi:10.1614/ws-d-14-00142.1. 41 DICK, D. P.; MARTINAZZO, R.; KNICKER, H.; ALMEIRA, P. S. G. Matéria orgânica em quatro tipos de solos brasileiros: composição química e sorção de atrazina. Química Nova, v.33, n.1, p.14–19, 2010. doi: 10.1590/S0100-40422010000100003. DUARTE, C. G.; GAUDREAU, K.; GIBSON, R. B.; MALHEIROS, T. F. Sustainability assessment of sugarcane-ethanol production in Brazil: A case study of a sugarcane mill in São Paulo state. Ecological Indicators, v.30, p.119–129, 2013. doi:10.1016/j.ecolind.2013.02.011. DUKE, S. O. Overview of Herbicide Mechanisms of Action. Environmental Health Perspectives, v.87, p.263–271, 1990. doi:10.2307/3431034. EMBRAPA - Empresa brasileira de Pesquisa Agropecuária. Centro Nacional de Pesquisa de Solos. Manual de métodos de análise de solo. 2.ed. Rio de Janeiro, 1997, 212 p. FALONE, S. Z.; VIEIRA, E. M. Adsorção / dessorção do explosivo tetril em turfa e em argissolo vermelho amarelo. Química Nova, v.27, n.6, p.849–854, 2004. doi: 10.1590/S0100-40422004000600002. FERCHAUD, F.; VITTE, G.; MARY, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB Bioenergy, v.8, n.2, p.290–306, 2016. doi:10.1111/gcbb.12249. FERREIRA, E. A.; PROCÓPIO, S. O.; GALON, L.; FRANCA, A. C.; CONCENÇO, G.; SILVA, A. A.; ASPIAZU, I.; SILVA, A. F.; TIRONI, S. P.; ROCHA, P. R. R. Manejo de plantas daninhas em cana crua. Planta Daninha, v.28, n.4, p.915–925, 2010. doi: 10.1590/S0100-83582010000400025. FILHO, R. V.; CHRISTOFFOLETI, P. J. Manejo de plantas daninhas e produtividade da cana. Visão Agrícola, v.3, n.1, p.32–37, 2004. FORTES, C.; TRIVELIN, P. C. O.; VITTI, A. C. Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, v.42, p.189–198, 2012. doi:10.1016/j.biombioe.2012.03.011. FRANCISCO, J. G.; MENDES, K. F.; PIMPINATO, R. F.; TORNISIELO, V. L.; GUIMARÃES, A. C. D. Aminocyclopyrachlor sorption-desorption and leaching from three Brazilian soils. Journal of Environmental Science and Health, Part B, v.52, n.7, p.470–475, 2017. doi:10.1080/03601234.2017.1301758. FRANCO, H. C. J.; PIMENTA, M. T. B.; CARVALHO, J. L. N.; MAGALHÃES, P. S. G.; ROSSELL, C. E. V.; BRAUNBECK, O. A.; VITTI, A. C.; KÖLLN, O. T.; ROSSI NETO, J. Assessment of sugarcane trash for agronomic and energy purposes in Brazil. Scientia Agricola, v.70, n.5, p.305–312, 2013. doi:10.1590/s0103-90162013000500004. FREITAS, S. P.; OLIVEIRA, A. R.; FREITAS, S. J.; SOARES, L. M. S. Controle químico de Rottboellia exaltata em cana-de-açúcar. Planta Daninha, v.22, n.3, p.461–466, 2004. doi: 10.1590/S0100-83582004000300017. GALDOS, M. V.; CERRI, C. C.; CERRI, C. E. P.; PAUSTIAN, K.; VAN ANTWERPEN, R. Simulation of sugarcane residue decomposition and aboveground growth. Plant Soil, v.326, p.243–259, 2010. doi: 10.1007/s11104-009-0004-3. GALLI, A.; DE SOUZA, D.; MACHADO; S. A. S. Pendimethalin determination in natural water, baby food and river sediment samples using electroanalytical methods. Microchemical Journal, v.98, n.1, p.135–143, 2011. doi:10.1016/j.microc.2010.12.009. GIORI, F. G.; TORNISIELO, V. L.; REGITANO, J. B. The Role of Sugarcane Residues in the Sorption and Leaching of Herbicides in Two Tropical Soils. Water, Air, & Soil Pollution, v.225, n.4, p.1935–1943, 2014. doi:10.1007/s11270-014-1935-8. 42 GUERRA, N.; OLIVEIRA JR, R. S.; CONSTANTIN, J.; OLIVEIRA NETO, A. M.; PUTON, G.; GARRIDO, T. H. P. Influence of precipitation and sugarcane straw in aminocyclopyrachlor and indaziflam control efficiency. Planta Daninha, v.33, n.3, p.535–542, 2015. doi:10.1590/s0100-83582015000300015. GUPTA, S.; GAJBHIYE, V. T.; KALPANA; AGNIHOTRI, N. P. Leaching behavior of imidacloprid formulations in soil. Bulletin of Environmental Contamination and Toxicology, v.68, n.4, p.502–508, 2002. doi:10.1007/s001280283. HARTER, R. D.; NAIDU, R. An assessment of environmental and solution parameter impact on trace-metal sorption by soils. Soil Science Society of America Journal, v.65, p.597-612, 2001. doi:10.2136/sssaj2001.653597x. HASSUANI, S.J; LEAL, M. R. L. V.; MACEDO, I. C. Biomass power generation: sugarcane, bagasse and trash. Programa das Nações Unidas para o Desenvolvimento (PNUD) e Centro de Tecnologia Canavieira (CTC). São Paulo, 2005. HATZINIKOLAOU, A. S.; ELEFTHEROHORINOS, I. G.; VASILAKOGLOU, I. B. Influence of Formulation on the Activity and Persistence of Pendimethalin. Weed Technology, v.18, n.2, p.397–403, 2004. doi:10.1614/wt-03-121r1. HAZEN, J. L. Adjuvants – Terminology, Classification and Chemistry. Weed Technology, v.14, n.7, p.773–784, 2000. doi: 10.1614/0890-037X(2000)014[0773:ATCAC]2.0.CO;2. ISOFIT – Isotherm Fitting Tool. Disponível em: http://www.eng.buffalo.edu/~lsmatott/IsoFit/IsoFitMain.html. Acesso em: 15/06/2018. KAH, M.; HOFMANN, T. Nanopesticide research: Current trends and future priorities. Environment International, v.63, p.224–235, 2014. doi:10.1016/j.envint.2013.11.015. KAUR, P.; MAKKAR, A.; KAUR, P.; SHILPA. Temperature dependent adsorption–desorption behaviour of pendimethalin in Punjab soils. Bulletin of Environmental Contamination and Toxicology, v.100, n.1, p.167–175, 2017. doi:10.1007/s00128-017-2235-y. KAUSHIK, P.; SHAKIL, N. A.; KUMAR, J.; SINGH, M. K.; SINGH, M. K.; YADAV, S. K. Development of controlled release formulations of thiram employing amphiphilic polymers and their bioefficacy evaluation in seed quality enhancement studies. Journal of Environmental Science and Health, Part B, v.48, n.8, p.677–685, 2013. doi:10.1080/03601234.2013.778614. KISSMANN, K. G. Adjuvantes para caldas de produtos fitossanitários. In: GUEDES, J. V. C.; DORNELLES, S. B. (Org.). Tecnologia e segurança na aplicação de agrotóxicos: novas tecnologias. Santa Maria: Departamento de Defesa Fitossanitária; Sociedade de Agronomia de Santa Maria, p.39–51, 1998. KNOWLES, A. Recent developments of safer formulations of agrochemicals. The Environmentalist, v.28, n.1, p.35–44, 2007. doi:10.1007/s10669-007-9045-4. KNOWLES, A. Global trends in pesticide formulation technology: the development of safer formulations in China. Outlooks on Pest Management, v.20, n.4, p.165–170, 2009. doi:10.1564/20aug06. KOČÁREK, M.; KODEŠOVÁ, R.; SHARIPOV, U.; JURSÍK, M. Effect of adjuvant on pendimethalin and dimethenamid-P behaviour in soil. Journal of Hazardous Materials, v.354, p.266–274, 2018. doi:10.1016/j.jhazmat.2018.04.073. 43 KOGAN, M.; PÉREZ, A. Herbicidas, fundamentos fisiológicos y bioquímicos del modo de acción. Ciencia e investigación agraria: revista latinoamericana de ciencias de la agricultura, v.31, n.2, 321 p., 2003. doi: 10.7764/rcia.v31i2.299. KPGAH, J.; SHA’ATO, R.; WUANA, R. A.; TOR-ANYIIN, T. A. Kinetics of sorption of pendimethalin on soil samples obtained from the banks of rivers Katsina-Ala and Benue, Central Nigeria. Journal of Geoscience and Environment Protection, v.4, p.37–42, 2016. doi: 10.4236/gep.2016.41004. KRUTZ, L. J.; SENSEMAN, S. A.; MCINNES, K. J.; ZUBERER, D. A.; TIERNEY, D. P. Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazine in vegetated filter strip and cultivated soil. Journal of Agricultural and Food Chemistry, v.51, n.25, p.7379–7384, 2003. doi:10.1021/jf0348572. KUMAR, T. P.; CHINNAMUTHU, C. R. An attempt to synthesis a new nanoformulation of pendimethalin herbicide for slow release using direct encapsulation technique. Trends in Biosciences, v.7, n.13, p.1687–1692, 2014. LEAL, M. R. L. V.; GALDOS, M. V.; SCARPARE, F. V.; SEABRA, J. E. A.; WALTER, A.; OLIVEIRA, C. O. F. Sugarcane straw availability, quality, recovery and energy use: A literature review. Biomass and Bioenergy, v.53, p.11–19, 2013. doi:10.1016/j.biombioe.2013.03.007. LIU, Y.; XU, Z.; WU, X.; GUI, W.; ZHU, G. Adsorption and desorption behavior of herbicide diuron on various chinese cultivated soils. Journal of Hazardous Materials, v.178, n.1-3, p.462–468, 2010. doi:10.1016/j.jhazmat.2010.01.105. LOCKE, M.A.; BRYSON, C.T. Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Science, v.45, n.2, p.307–320, 1997. doi: 10.1017/S0043174500092882. LOCKE, M. A.; REDDY, K. N.; GASTON, L. A.; ZABLOTOWICZ, R. M. Adjuvant modification of herbicide interactions in aqueous soil suspensions. Soil Science, v.167, n.7, p.444–452, 2002. doi:10.1097/00010694-200207000-00003. LOPES, I. M. Manejo da quantidade de palhada da cana-de-açúcar: qualidade do solo, produção da cultura e emissão de N2O em diferentes condições edafoclimáticas. Tese doutorado, PPG-CS. 2018. LU, J.; WU, L.; NEWMAN, J.; FABER, B.; MERHAUT, D. J.; GAN, J. Sorption and degradation of pesticides in nursery recycling ponds. Journal of Environment Quality, v.35, n.5, p.1795–1802, 2006. doi:10.2134/jeq2006.0123. LUCON, O.; GOLDEMBERG, J. São Paulo – The “other” Brazil: different pathways on climate change for state and federal governments. The Journal of Environment & Development, v.19, n.3, p.335–357, 2010. doi:10.1177/1070496510378092. MACIEL, C. D. G.; VELINI, E. D. Simulação do caminhamento da água da chuva e herbicidas em palhadas utilizadas em sistemas de plantio direto. Planta Daninha, v.23, n.3, p.471–481, 2005. doi: 10.1590/S0100-83582005000300011. MAPA. Ministério da Agricultura, Pecuária e Abastecimento. Projeções do Agronegócio: Brasil 2016/2017 a 2026/2027. Assessoria de Gestão Estratégica. Brasília, 2017. Disponível em: http://www.agricultura.gov. Acesso em: 05/09/2018. 44 MARTINS, D.; GONÇALVES, C. G.; JUNIOR, A. C. da S. Cobertura morta de inverno e controle químico sobre plantas daninhas na cultura do milho. Revista Ciência Agronômica, v.47, n.4, p.649–657, 2016. doi: 10.5935/1806-6690.20160078. MARTINS, D.; VELINI, E. D.; MARTINS, C. C.; SOUZA, L. S. de. Emergência em campo de dicotiledôneas infestantes em solo coberto com palha de cana-de-açúcar. Planta Daninha, v.17, n.1, p.151–161, 1999. doi: 10.1590/S0100-83581999000100014. MATOS, A. K. A.; CARBONARI, C. A.; GOMES, L. G. C.; VELINI, E. D. Dynamics of preemergent herbicides in production systems with straw. Revista Brasileira de Herbicidas, v.15, n.1, p.97–106, 2016. doi: 10.7824/rbh.v15i1.441. MATTOS, A. G.; SOBRINHO, N. M. B. do A.; LIMA, E. S. A.; GUEDES, J. N.; SOUSA, F. F. Sorção de Cd e Pb nos solos da região do Médio Paraíba – RJ, Brasil. Revista Ciência Agronômica, v.37, n.1, p.1–12, 2016. doi: 10.5935/1806-6690.20160001. MENANDRO, L. M. S.; CANTARELLA, H.; FRANCO, H. C. J.; KÖLLN, O. T.; PIMENTA, M. T. B.; SANCHES, G. M.; RABELO, S. C.; CARVALHO, J. L. N. Comprehensive assessment of sugarcane straw: implications for biomass and bioenergy production. Biofuels, Bioproducts and Biorefining, v.11, n.3, p.488–504, 2017. doi:10.1002/bbb.1760. MONQUERO, P. A.; AMARAL, L.R.; BINHA, D. P.; SILVA, P. V., SILVA, A. C.; MARTINS, F. R. A. Mapas de infestação de plantas daninhas em diferentes sistemas de colheita da cana-de-açúcar. Planta Daninha, v.26, n.1, p.47–55, 2008. doi: 10.1590/S0100-83582008000100005. MULQUEEN, P. Recent advances in agrochemical formulation. Advances in Colloid and Interface Science, v.106, n.1-3, p.83–107, 2003. doi:10.1016/s0001-8686(03)00106-4. NICOLAI, M.; CHRISTOFFOLETI, P. J. Interações entre glyphosate e adubos foliares sobre parâmetros agronômicos do herbicida. Boletim Informativo da Sociedade Brasileira da Ciência das Plantas Daninhas, v.15, n.3, p.39–43, 2007. OECD – Organisation for Economic Co-Operation and Development. Adsorption – desorption using a batch equilibrium method. Paris, 44p., 2000. OLIVEIRA, H. C.; STOLF-MOREIRA, R.; MARTINEZ, C. B. R.; GRILLO, R.; DE JESUS, M. B.; FRACETO, L. F. Nanoencapsulation Enhances the Post-Emergence Herbicidal Activity of Atrazine against Mustard Plants. Plos One, v.10, n.7, e0132971, 2015. doi:10.1371/journal.pone.0132971. OLIVEIRA JR., R. S.; KOSKINEN, W. C.; FERREIRA, F. A. Sorption and leaching potential of herbicides on Brazilian soils. Weed Research, v.41, n.2, p.97–110, 2001. doi:10.1046/j.1365-3180.2001.00219.x. OLIVEIRA JR., R. S.; REGITANO, J. B. Dinâmica de pesticidas no solo. In: MELO, V. F.; ALLEONI, L. R. F. Química e mineralogia do solo, Viçosa, p.187–248, 2009. OLIVEIRA, M.F.; COLONNA, I.; PRATES, H.T.; MANTOVANI, E.C.; GOMIDE, R.L.; OLIVEIRA JR., R.S. Sorção do herbicida imazaquin em Latossolo sob plantio direto e convencional. Pesquisa Agropecuária Brasileira, v.39, p.787–793, 2004. doi: 10.1590/S0100-204X2004000800009. OLIVEIRA, M. F.; BRIGHENTI, A. M. Comportamento de herbicidas no ambiente. In: OLIVEIRA JÚNIOR, R. S.; CONSTANTIN, J.; INOUE, M. H. Biologia e manejo de plantas daninhas. Curitiba: Omnipax, p.263–304, 2011. 45 PASSOS, A. B. R. J.; FREITAS, M. A. M.; TORRES, L. G.; SILVA, A. A.; QUEIROZ, M. E. L. R.; LIMA, C. F. Sorption and desorption of sulfentrazone in Brazilian soils. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, v.48, n.8, p.646–650, 2013. doi:10.1080/03601234.2013.777313. PENNER, D. Activator Adjuvants1. Weed Technology, v.14, n.4, p.785–791, 2000. doi:10.1614/0890-037x(2000)014[0785:aa]2.0.co;2. PETOSA, A. R.; RAJPUT, F.; SELVAM, O.; ÖHL, C.; TUFENKJI, N. Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, v.111, p.10–17, 2017. doi:10.1016/j.watres.2016.12.030. PINHEIRO, É. F. M.; DE CAMPOS, D. V. B.; DE CARVALHO BALIEIRO, F.; DOS ANJOS, L. H. C.; PEREIRA, M. G. Tillage systems effects on soil carbon stock and physical fractions of soil organic matter. Agricultural Systems, v.132, p.35–39, 2015. doi:10.1016/j.agsy.2014.08.008. PROSDOCIMI, M.; JORDÁN, A.; TAROLLI, P.; KEESSTRA, S.; NOVARA, A.; CERDÀ, A. The immediate effectiveness of barley straw mulch in reducing soil erodibility and surface runoff generation in Mediterranean vineyards. Science of The Total Environment, v.547, p.323–330, 2016. doi:10.1016/j.scitotenv.2015.12.076. RAMASAHAYAM, S. Pendimethalin. Encyclopedia of Toxicology, p.765–767, 2014. doi:10.1016/b978-0-12-386454-3.00417-6. RAMPOLDI, E. A.; HANG, S.; BARRIUSO, E. The fate of glyphosate in crop residues. Soil Science Society of America Journal, v.75, n.2, p.553–559, 2011. doi:10.2136/sssaj2010.0105. R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2018. URL: https://www.R-project.org/. RIBANI, M.; BOTTOLI, C. B. G.; COLLINS, C. H.; JARDIM, I. C. S. F.; MELO, L. F. C. Validação em métodos cromatográficos e eletroforéticos. Química Nova, v.27, n.5, p.771–780, 2004. doi: 10.1590/S0100-40422004000500017. RODRIGUES, B.N. Influência da cobertura morta no comportamento dos herbicidas imazaquin e clomazone. Planta Daninha, v.11, n.1–2, p.21–28, 1993. doi: 10.1590/S0100-83581993000100004. RODRÍGUEZ-LIÉBANA, J. A.; MINGORANCE, M. D.; PEÑA, A. Sorption of hydrophobic pesticides on a Mediterranean soil affected by wastewater, dissolved organic matter and salts. Journal of Environmental Management, v.92, n.3, p.650–654, 2011. doi:10.1016/j.jenvman.2010.10.009. SADEGHI, A.M.; ISENSEE, A.R.; SHELTON, D.R. Effect of tillage age on herbicide dissipation: a side-by-side comparison using microplots. Soil Science, v.163, n.11, p.883–890, 1998. doi: 10.1097/00010694-199811000-00005. SARMAH, A. K.; MÜLLER, K.; AHMAD, R. Fate and behaviour of pesticides in the agroecosystem—a review with a New Zealand perspective. Australian Journal of Soil Research, v.42, n.2, p.125–154, 2004. doi:10.1071/sr03100. SANTOS, F. A.; QUEIRÓZ, J. H. de; COLODETTE, J. L.; FERNANDES, S. A.; GUIMARÃES, V. M.; REZENDE, S. T. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova, v.35, n.5, p.1004–1010, 2012. doi:10.1590/s0100-40422012000500025. 46 SÃO PAULO. Lei n° 11.241, de 19 de setembro de 2002. Dispõe sobre a eliminação gradativa da queima da palha da cana-de-açúcar e dá providências correlatas. São Paulo, 2002. Disponível em: https://www.al.sp.gov.br. Acesso em: 10/09/2018. SÃO PAULO. Resolução conjunta SMA/SAA – 3, de 6 de abril de 2018. Aprova o regulamento das Diretivas Técnicas do Protocolo Agroambiental “Etanol Mais Verde”. São Paulo, 2018. Disponível em: https://www.ambiente.sp.gov.br. Acesso em: 10/09/2018. SELIM, H. M.; ZHOU, L.; ZHU, H. Herbicide retention in soil as affected by sugarcane mulch residue. Journal of Environment Quality, v.32, n.4, p.1445–1454, 2003. doi:10.2134/jeq2003.1445. SELIM, H. M.; NAQUIN, B. J. Retention of metribuzin by sugarcane residue. Soil Science, v.176, n.10, p.520–526, 2011. doi:10.1097/ss.0b013e31822b3a5c. SELIM, H. M.; NAQUIN, B. J.; LIAO, L. Adsorption and desorption of atrazine retention by sugarcane residue and soils. Soil Science, v.177, n.5, p.332–337, 2012. doi:10.1097/ss.0b013e3182498ca5. SENESI, G. S.; MARTIN-NETO, L.; VILLAS-BOAS, P. R.; NICOLODELLI, G.; MILORI, D. M. B. P. Laser-based spectroscopic methods to evaluate the humification degree of soil organic matter in whole soils: a review. Journal of Soils and Sediments, v.18, n.4, p.1292–1302, 2016. doi:10.1007/s11368-016-1539-6. SENSEMAN, S. A. (Ed.). Herbicide handbook. 9.ed. Lawrence: Weed Science Society of America, 2007. 458 p. SHAH, J.; RASUL JAN, M.; SHEHZAD, F.; ARA, B. Quantification of pendimethalin in soil and garlic samples by microwave-assisted solvent extraction and HPLC method. Environmental Monitoring and Assessment, v.175, n.1-4, p.103–108, 2010. doi:10.1007/s10661-010-1496-2. SHANG, Q.; SHI, Y.; ZHANG, Y.; ZHENG, T.; SHI, H. Pesticide-conjugated polyacrylate nanoparticles: novel opportunities for improving the photostability of emamectin benzoate. Polymers for Advanced Technologies, v.24, n.2, p.137–143, 2012. doi:10.1002/pat.3060. SHENG, G.; JOHNSTON, C. T.; TEPPEN, B. J.; BOYD, S. A. Potential contributions of smectite clays and organic matter to pesticide retention in soils. Journal of Agricultural and Food Chemistry, v.49, n.6, p.2899–2907, 2001. doi:10.1021/jf001485d. SIGUA, G. C.; ISENSEE, A. R.; SADEGHI, A. M. Influence of rainfall intensity and crop residue on leaching of atrazine through intact no-till soil cores. Soil Science, v.156, n.4, p.225–232, 1993. doi:10.1097/00010694-199310000-00002. SILVA, J. R. V.; COSTA, N. V.; MARTINS, D. Efeito da palhada de cultivares de cana-de-açúcar na emergência de Cyperus rotundus. Planta Daninha, v.21, n.3, p.373–380, 2003. doi: 10.1590/S0100-83582003000300004. SILVA, P. V.; MONQUERO, P. A. Influência da palha no controle químico de plantas daninhas no sistema cana crua. Revista Brasileira de Herbicidas, v.12, n.1, p.94–103, 2013. doi: 10.7824/rbh.v12i1.235. SILVA, A. A., VIVIAN, R., OLIVEIRA Jr., R. S. Herbicidas: comportamento no solo. In: SILVA, A. A.; SILVA, J. F. (Ed.) Tópicos em manejo de plantas daninhas. Viçosa, MG: Universidade Federal de Viçosa, p.189–248, 2013. 47 SOLLINS, P.; HOMANN, P.; CALDWELL, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma, v.74, n.1-2, p.65–105, 1996. doi:10.1016/s0016-7061(96)00036-5. SONDHIA, S. Herbicides residues in soil, water, plants and non-targeted organisms and human health implications: an Indian perspective. Indian Journal of Weed Science, v.46, n.1, p.66–85, 2014. SOPEÑA, F.; MAQUEDA, C.; MORILLO, E. Controlled release formulations of herbicides based on micro-encapsulation. Ciencia e Investigación Agraria, v.36, n.1, p.27–42, 2009. doi:10.4067/s0718-16202009000100002. SORENSON, B. A.; SHEA, P. J.; ROETH, F. W. Effects of tillage, application time and rate on metribuzin dissipation. Weed Research, v.31, n.6, p.333–345, 1991. doi:10.1111/j.1365-3180.1991.tb01773.x. SOUSA JUNIOR, J. G. de A.; CHERUBIN, M. R.; OLIVEIRA, B. G.; CERRI, C. E. P.; CERRI, C. C.; FEIGL, B. J. Three-year soil carbon and nitrogen responses to sugarcane straw management. BioEnergy Research, v.11, n.2, p.249–261, 2018. doi:10.1007/s12155-017-9892-x. SYSTAT SOFTWARE Inc. – SSI. Sigmaplot for Windows, version 11.0. 2008. Disponível em: http://www.systat.com/produtcs/sigmaplot. STREIT, B.; RIEGER, S. B.; STAMP, P.; RICHNER, W. Weed populations in winter wheat as affected by crop sequence, intensity of tillage and time of herbicide application in a cool and humid climate. Weed Research, v.43, n.1, p.20–32, 2003. doi:10.1046/j.1365-3180.2003.00310.x. TANDON, S. Dissipation of pendimethalin in soybean crop under field conditions. Bulletin of Environmental Contamination and Toxicology, v.96, n.5, p.694–698, 2016. doi:10.1007/s00128-016-1764-0. THORBURN, P. J.; MEIER, E. A.; COLLINS, K.; ROBERTSON, F. A. Changes in soil carbon sequestration, fractionation and soil fertility in response to sugarcane residue retention are site-specific. Soil and Tillage Research, v.120, p.99–111, 2012. doi:10.1016/j.still.2011.11.009. TSUJI, K. Microencapsulation of pesticides and the
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Agrícola e Ambiental
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/1/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/2/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/3/2018%20-%20Gabriella%20Francisco%20Pereira%20Borges%20de%20Oliveira.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13301/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
a8fac94d2141df3b195b497648cd76f4
f42a80ae9c95ddda7b9f50f7c15af19f
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108144254189568