Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o

Detalhes bibliográficos
Autor(a) principal: Almeida, Julio Cesar Gomes de
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/6497
Resumo: The oil reserves discovered in recent years in Brazil and in the world are mostly made up of heavy oils. For the processing of these oils, it is increasingly necessary the presence of an active matrix in catalysts for catalytic cracking in fluidized bed. Zeolites can be used as catalysts or support for catalysts in separation processes. Thus, it has a wide application in oil refining processes, in the petrochemical and chemical industry and in environmental control. These properties are associated with the presence of pores in its structure, which guarantee a high specific area. One of the most important processes in oil refining is the catalytic cracking of gas oil, which is formed by a complex mixture of hydrocarbons, the molecules of some of which exceed the pore diameter of zeolite Y. This zeolite has the largest pore diameter (~7.4 ?). Thus, the molecules were unable to access the active sites inside the zeolite Y crystals. In order to overcome this difficulty, in this work original microporous Mordenite zeolites were synthesized, and through post-synthesis alkaline treatments, it was tried to transform them from microporous Mordenites, (~ 7.4x10-10 m), into mesoporous Mordenites ( ~7.4x10-9 m). Therefore, the materials and methods used to synthesize, alkaline treat, characterize and catalytically evaluate the Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40 were presented. Mordenite zeolites were synthesized with the following molar compositions: 20 SiO2 : 1.0 Al2O3 : 6.0 Na2O : 600 H2O and 40 SiO2 : 1.0 Al2O3 : 12.0 Na2O : 1600 H2O. The alkaline treatments had: 2 types of temperature, 2 types of hydroxides, 3 types of concentrations and the presence or not of a surfactant. In addition to the alkaline treatment, the samples also underwent ion exchange and calcination at 550?C. To be sure that the synthesis of microporous mordenite and the possible transformation into mesoporous mordenite occurred, the characterization and catalytic evaluation techniques were used. For the characterization were used the techniques of X-ray diffraction (XRD), energy dispersive X-ray fluorescence spectrometry (EDX), nitrogen adsorption/desorption, temperatureprogrammed ammonia desorption (TPD-NH3) and Catalytic Evaluation. It was observed that XRD confirmed the formation of Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40, and that they have excellent crystallinity. EDX showed that all samples had lower SAR than the synthesis gel and that there was very low desilication in the treated samples. The textural analysis showed that the samples do not have a large amount of mesopores. The TPD showed that the samples have predominantly weak to moderate acid strength. The catalytic evaluation showed that the samples treated in the presence of CTABr had a lower rate of deactivation and that the samples that were treated with Tetramethylammonium hydroxide had a higher initial catalytic activity than the samples treated with Sodium Hydroxide. In the experiments of this work, There was no significant formation of mesopores in the mordenite zeolites, by alkaline treatments after desilicon synthesis.
id UFRRJ-1_6f802bb9e5e179bb0f203d3e8e8e3414
oai_identifier_str oai:localhost:jspui/6497
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Fernandes, Lindoval Domiciano837.359.257-15https://orcid.org/0000-0002-6509-5552http://lattes.cnpq.br/7921814684730923Fernandes, Lindoval Domicianohttps://orcid.org/0000-0002-6509-5552http://lattes.cnpq.br/7921814684730923Dantas, Sandra Cristinahttps://orcid.org/0000-0003-4775-040Xhttp://lattes.cnpq.br/7030857553317983Machado J?nior, H?lio Fernandeshttp://lattes.cnpq.br/3462534255321209006.320.097-05http://lattes.cnpq.br/9507736557209597Almeida, Julio Cesar Gomes de2023-04-04T12:38:17Z2021-03-17Almeida, Julio Cesar Gomes de. Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o. 2021. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.https://tede.ufrrj.br/jspui/handle/jspui/6497The oil reserves discovered in recent years in Brazil and in the world are mostly made up of heavy oils. For the processing of these oils, it is increasingly necessary the presence of an active matrix in catalysts for catalytic cracking in fluidized bed. Zeolites can be used as catalysts or support for catalysts in separation processes. Thus, it has a wide application in oil refining processes, in the petrochemical and chemical industry and in environmental control. These properties are associated with the presence of pores in its structure, which guarantee a high specific area. One of the most important processes in oil refining is the catalytic cracking of gas oil, which is formed by a complex mixture of hydrocarbons, the molecules of some of which exceed the pore diameter of zeolite Y. This zeolite has the largest pore diameter (~7.4 ?). Thus, the molecules were unable to access the active sites inside the zeolite Y crystals. In order to overcome this difficulty, in this work original microporous Mordenite zeolites were synthesized, and through post-synthesis alkaline treatments, it was tried to transform them from microporous Mordenites, (~ 7.4x10-10 m), into mesoporous Mordenites ( ~7.4x10-9 m). Therefore, the materials and methods used to synthesize, alkaline treat, characterize and catalytically evaluate the Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40 were presented. Mordenite zeolites were synthesized with the following molar compositions: 20 SiO2 : 1.0 Al2O3 : 6.0 Na2O : 600 H2O and 40 SiO2 : 1.0 Al2O3 : 12.0 Na2O : 1600 H2O. The alkaline treatments had: 2 types of temperature, 2 types of hydroxides, 3 types of concentrations and the presence or not of a surfactant. In addition to the alkaline treatment, the samples also underwent ion exchange and calcination at 550?C. To be sure that the synthesis of microporous mordenite and the possible transformation into mesoporous mordenite occurred, the characterization and catalytic evaluation techniques were used. For the characterization were used the techniques of X-ray diffraction (XRD), energy dispersive X-ray fluorescence spectrometry (EDX), nitrogen adsorption/desorption, temperatureprogrammed ammonia desorption (TPD-NH3) and Catalytic Evaluation. It was observed that XRD confirmed the formation of Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40, and that they have excellent crystallinity. EDX showed that all samples had lower SAR than the synthesis gel and that there was very low desilication in the treated samples. The textural analysis showed that the samples do not have a large amount of mesopores. The TPD showed that the samples have predominantly weak to moderate acid strength. The catalytic evaluation showed that the samples treated in the presence of CTABr had a lower rate of deactivation and that the samples that were treated with Tetramethylammonium hydroxide had a higher initial catalytic activity than the samples treated with Sodium Hydroxide. In the experiments of this work, There was no significant formation of mesopores in the mordenite zeolites, by alkaline treatments after desilicon synthesis.As reservas de petr?leo descobertas nos ?ltimos anos no Brasil e no mundo s?o constitu?das em sua maior parte por ?leos pesados. Para o processamento destes ?leos, se faz necess?ria cada vez mais a presen?a de uma matriz ativa nos catalisadores de craqueamento catal?tico em leito fluidizado. As ze?litas podem ser usadas como catalisadores ou suporte para catalisadores em processos de separa??o. Tendo assim, vasta aplica??o em processos do refino do petr?leo, na ind?stria petroqu?mica, qu?mica e no controle ambiental. Essas propriedades est?o associadas com a presen?a de poros em sua estrutura, que garantem elevada ?rea espec?fica. Um dos processos mais importantes no refino do petr?leo ? o craqueamento catal?tico de gas?leo, que ? formado por uma mistura complexa de hidrocarbonetos, sendo que as mol?culas de alguns destes ultrapassam o di?metro dos poros da ze?lita Y. Esta ze?lita ? a que possui o maior di?metro de poro (~ 7,4 ?). Assim, aquelas mol?culas n?o conseguem ter acesso aos s?tios ?cidos localizados no interior dos cristais de ze?lita Y. A fim de superar essa dificuldade, neste trabalho foi sintetizado ze?litas Mordenitas originais, microporosas, e atrav?s de tratamentos alcalinos p?s-s?nteses, tentou-se transform?las de Mordenitas microporosas, (~ 7,4x10-10 m), em Mordenitas mesoporosas (~ 7,4x10-9 m). Assim sendo, foi apresentado os materiais e os m?todos utilizados para sintetizar, tratar alcalinamente, caracterizar e avaliar catalicamente as Ze?litas Mordenitas com dois tipos de rela??es molares SiO2/Al2O3, SAR 20 e SAR 40. Foram sintetizadas ze?litas mordenitas com as seguintes composi??es molares: 20 SiO2 : 1,0 Al2O3 : 6,0 Na2O : 600 H2O e 40 SiO2 : 1,0 Al2O3 : 12,0 Na2O : 1600 H2O. Os tratamentos alcalinos tiveram: 2 tipos de temperatura, 2 tipos de hidr?xidos, 3 tipos de concentra??es e a presen?a ou n?o de um tensoativo. Al?m do tratamento alcalino as amostras tamb?m passaram por troca i?nica e calcina??o a 550?C. Para ter a certeza que ocorreu a s?ntese de mordenita microporosa e a poss?vel transforma??o em mordenita mesoporosa foram utilizadas as t?cnicas de caracteriza??o e avalia??o catal?tica. Para a caracteriza??o foram utilizadas as t?cnicas de difra??o de Raios X (DRX), espectrometria de fluoresc?ncia de raios X por energia dispersiva (EDX), a adsor??o/dessor??o de nitrog?nio, a dessor??o de am?nia a temperatura programada (TPDNH3) e a Avalia??o Catal?tica. Observou-se que o DRX confirmou a forma??o das Ze?litas Mordenitas com dois tipos de rela??es molares SiO2/Al2O3, SAR 20 e SAR 40, e que as mesmas possuem excelente Cristalinidade. O EDX mostrou que todas as amostras apresentaram SAR menor do que o gel de s?ntese e que houve uma baix?ssima dessilica??o nas amostras tratadas. A an?lise textural mostrou que as amostras n?o apresentam grande quantidade de mesoporos. O TPD mostrou que as amostram tem for?a ?cida predominantemente de fraca a moderada. A avalia??o catal?tica mostrou que as amostras tratadas na presen?a de CTABr apresenta menor taxa de desativa??o e que as amostras que foram tratada com Hidr?xido de Tetrametilam?nio tiveram atividade catal?tica inicial maior do que as amostras tratadas com Hidr?xido de S?dio. Nos experimentos deste trabalho, N?o houve forma??o significativa de mesoporos nas ze?litas mordenitas, por tratamentos alcalino p?s-sintese de dessilica??o.Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-04-04T12:38:17Z No. of bitstreams: 1 2021 - Julio Cesar Gomes de Almeida.pdf: 9787354 bytes, checksum: a6bcabbf4edd155f0095f62c717591ac (MD5)Made available in DSpace on 2023-04-04T12:38:17Z (GMT). No. of bitstreams: 1 2021 - Julio Cesar Gomes de Almeida.pdf: 9787354 bytes, checksum: a6bcabbf4edd155f0095f62c717591ac (MD5) Previous issue date: 2021-03-17CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/72870/2021%20-%20Julio%20Cesar%20Gomes%20de%20Almeida.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Engenharia Qu?micaUFRRJBrasilInstituto de Tecnologia1) SZOSTAK, R. Molecular Sieves Principles of Synthesis and Identification. New York: 1989. 524. 2) ESCOBAR, M. F. A.; Batista, M. S; Urquieta-Gonz?lez, E. A.; Quim. Nova 2000, 23, 303; Dimitrova, R.; Gunduz, G.; Dimitrov, L.; Tsoncheva, T.; Yialmaz, S.; Urquieta-Gonzalez, E. A.; J. Mol. Catal. A: Chem. 2004, 214, 265; Grecco, S. T. F.; Gomes, L. P.; Reyes, P.; Oportus, M.; Rangel, M. C.; Stud. Surf. Sci. Catal. 2005, 158, 1937; Ramos, M. S.; Grecco, S. T.; Gomes, L. P.; Oliveira, A. C.; Reyes, P.; Oportus, M.; Rangel, M. C.; Stud. Surf. Sci. Catal. 2005, 156, 809; Pereira, A. L. C.; Gonz?lez- Carballo, J. M.; P?rez-Alonso, F. J.; Rojas, S.; Fierro, J. L. G.; Rangel, M. D. C.; Top. Catal. 2011, 54, 179; Fonseca, J. D. S. L.; J?nior, A. D. C. F.; Grau, J. M.; Rangel, M. D. C.; Appl. Catal. A 2010, 386, 201. 3) CORMA, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev., v. 97, p. 2373?2419, 1997. 4) RABO, J.;?Zeolite Chemistry and Catalysis?, American Chemical Society ? Washigton Washington, DC, 1976, Cap. 2. 5) ERTL, G.; KN?ZINGER, H.; SCH?TH, F.; WEITKAMP, J. Handbook of heterogeneous catalysis. Wheinheim, Germany: v.1, 3865 p., 2008. 6) OGURA, M.; ZHANG, Y.; ELANGOVAN, S. P.; OKUBO, T. Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, v. 101, n. 1-2 SPEC. ISS., p. 224?230, 2007. 7) MAJANO G.; MINTOVA S.; OVSITSER O.; MIHAILOVA B.; BEIN T. Zeolite Beta Nanosized Assemblies. Microporous and Mesoporous Materials, v. 80, p. 227, 2005. 8) CORMA, A. et al. Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites 1996, 16, 7-14. 9) LANDAU, M. V. et al. Colloidal nanocrystals of zeolite _ stabilized in alumina matrix. Chem. Mater., v. 11, n. 8, p. 2030?2037, 1999. 10) YANG, H. et al. Synthesis of nanocrystal zeolite Y and its host effect. In: Zeolites and Mesoporous Materials at the Dawn of the 21st Century. [S.l.]: Elsevier Sci. Pub., 2001, (Studies in Surface Science and Catalysis, v. 135). p. 1?8. 11) TAO, Y. et al. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev., v. 106, p. 896?910, 2006. 12) EGEBLAD, K.; CHRISTENSEN, C. H.; KUSTOVA, M.; CHRISTENSEN, C. H. Templating Mesoporous Zeolites. Chemistry Materials, v. 20, p. 946, 2008. 131 13) BRECK, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use. Malabar: Robert E. Krieger Publishing Company, 1984 14) KLEIN, C.; HURLBUT, C. S. Manual of Mineralogy. 21st Edition, New York: Jonh Wiley & Sons, INC., 1977. 15) P?REZ-PARIENTE, J. Qu?mica Estructural de Materiales Zeol?ticos, In: P?REZPARIENTE, J.; MART?NEZ, J. G. Materiales Zeol?ticos: S?ntesis, Propriedades y Aplicaciones. San Vicente: Universidad Alicante, 2002. Cap. 1. 16) IZA: http://www.iza-structure.org/databases. Acessado em 20/06/2013. 17) VIEIRA, L. H.; RODRIGUES, M. V.; MARTIN, L. Cristaliza??o Convencional de Ze?litas e Induzida por Sementes. Quim. Nova, v. 37, n. 9, p. 1515-1524, 2014. 18) BRAGA, A. A. C.; MORGON, N. H. Descri??es Estruturais Cristalinas de Ze?litos. Quim. Nova, v. 30, n. 1, p. 178-188, 2007. 19) MIGNONI, M. L. Ze?litas obtidas com l?quidos i?nicos como direcionadores de estrutura: s?ntese e reatividade. 2012. 147 (Doutorado). Instituto de Qu?mica, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul. 20) MASCARENHAS, A. J. S.; OLIVEIRA;, E. C.; PASTORE., H. O. Peneiras Moleculares: Selecionado as Mol?culas por seu Tamanho. Qu?mica Nova, p. 25-34, 2001. 21) FLANIGEN, E. M. Zeolites and molecular sieves: an historical perspective. Studies in Surface Science and Catalysis, v.58. p.13-16, 1991. 22) FLANIGEN, E. M., 1980; In: REES, L. V.C. Proceedings of the fifth international conference on zeolites. London, p. 760-780, 1980. 23) WEITKAMP, J. Zeolites and Catalysis. Solid State Ionics, v. 131, p. 175, 2000. 24) BARRER, R. M. Synthesis of a Zeolitic Mineral with Chabazite-Like Sorptive Properties Journal of the Chemical Society, 1948, 127. 25) MILTON, R. M. Zeolite Synthesis, OCCELLI, M. L., ROBSON, H. E. (Eds.), ACS Symposium Series, American Chemical Society, v. 398, Washington, 1989. 26) SHERMAN, J. D.; Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3471. 27) BRAGA, A. A. C.; MORGON, N. H. Descri??es Estruturais Cristalinas de Ze?litos. Quim. Nova, v. 30, n. 1, p. 178-188, 2007. 28) DAVIS, M. E.; LOBO, R. F. Zeolite and Molecular Sieve Synthesis. Chemistry of Materials, v.4, n.4, p.156-768, 1992. 132 29) PAYRA, P.; DUTTA, P. K. Zeolites: A Primer, In: AUERBOCH, S. M.; CARRADO, K. A.; DUTTA, P. K. Handboook of Zeolites Science and Technology, New York: Marcel Dekker Inc, 2003. Cap. 1. 30) GUISNET, M.; RIBEIRO, F. R. Ze?litos: Um Nanomundo ao Servi?o da Cat?lise. Lisboa: Funda??o Calouste Gulbenkian, 2004. 31) AUERBACH, S.; CARRADO, K.; DUTTA, P. Handbook of Zeolite Science and Technology. New York: 2003. 32) LUZ, A. B. DA. Ze?litas: Propriedades e Usos Industriais. S?rie: Tecnologia Mineral, CETEM/MCT, Rio de Janeiro, v. 68, 36-37 p. 1995. 33) WRIGHT, P. A.; LOZINSKA, M. Structural Chemistry and Properties of Zeolites, In: MART?NEZ, C.; PEREZ-PARIENTE, J. Zeolites and Ordered Porous Solids: Fundamentals and Applications, Valencia: Universitat Polit?cnica de Val?ncia, 2011. Cap 1. 34) YANG, R. T. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003. 35) AFONSO, J. C. et al. Reciclagem qu?mica de ze?litas comerciais desativadas. Qu?mica Nova, v. 27, p. 315-319, 2004. ISSN 0100-4042. Dispon?vel em: < http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 40422004000200024&nrm=iso >. 36) WEITKAMP, J.; PUPPE, L. Catalysis and Zeolites: Fundamentals and Applications. Journal of Materials Chemistry.1. ed. New York, 564 p., 1999. 37) KERR, G. Forty years of zeolite research, 4? Semin?rio Brasileiro de Cat?lise ? IBP, p.1-15, 1989. 38) MACEDO, J. L. Prepara??o e Caracteriza??o de Materiais com Base Zeol?tica para Aplica??o em Cat?lise. Tese (Doutorado) 119 f. Curso de Qu?mica, Instituto de Qu?mica, Universidade de Bras?lia, Bras?lia - DF, 2007. 39) LUNA, F. J.; SCHUCHARDT, U. Modifica??o de ze?litas para uso em cat?lise. Quimica Nova, v. 24, n. 6, p. 885?892, 2001. 40) SHINZATO, M. C. Remo??o de metais pesados em solu??o por ze?litas naturais: Revis?o cr?tica. Revista do Istituto Geol?gico, v. 27-28, n. 1/2, p. 65?78, 2007. 41) GRECCO, S. T. F.; RANGEL, M. C.; URQUIETA-GONZ?LEZ, E. A. Ze?litas Hierarquicamente Estruturadas. Quimica Nova, v. 36, p. 131, 2013 42) ROZANSKA, X.; VAN SANTEN, R. A. Reaction Mechanisms in Zeolite Catalysis. ChemInform, v. 35, n. 26, p. 49, 2004. 43) SMART, L. E.; MOORE, E. A. SOLID STATE CHEMISTRY: An Introduction. Chapman & Hall. 3. ed. London, 2005. 133 44) CIESLA, U.; SCH?TH, F. Ordered mesoporous materials. Microporous and Mesoporous Materials, v. 27, n. 2?3, p. 131-149, 2// 1999. ISSN 1387-1811. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S1387181198002492>. 45) CORMA, A. State of the Art Future Challenges of Zeolites as Catalysts. Journal of Catalysis, v. 216, p. 298, 2003. 46) SOUSA-AGUIAR, E. F.; CORREA, R. J. Principios de La Cat?lisis por Zeolitas, In: P?REZPARIENTE, J.; MART?NEZ, J. G. Materiales Zeol?ticos: S?ntesis, Propriedades y Aplicaciones. San Vicente: Universidad Alicante, 2002. Cap. 6. 47) MORENO, E. L.; RAJAGOPAL, K. Desafios da acidez na cat?lise em estado s?lido. Qu?mica Nova, v. 32, p. 538, 2009. 48) XU, B.; BORDIGA, S.; PRINS, R.; VAN BOKHOVEN, J. A. Effect of Framework Si/Al Ratio and Extra-Framework Aluminum on the Catalytic Activity of Y Zeolite. Applied Catalysis A: General, v. 333, p. 245, 2007. 49) NUR, H.; RAMLI, Z.; EFENDI, J.; RAHMAN, A. N. A.; CHANDREN, S.; YUAN, L. S. Synergistic role of Lewis and Br?nsted acidities in Friedel?Crafts alkylation of resorcinol over gallium-zeolite beta. Catalysis Communications, v. 12, 822, 2011. 50) MISTRY, S. R.; MAHERIA, K. C. Synthesis of diarylpyrimidinones (DAPMs) using large pore ze?litas. Journal of Molecular Catalysis A: Chemical, v. 355, p. 210, 2012. 51) AUGUSTINE, R. L.; Heterogeneous Catalysis for the Synthetic Chemist, Marcel Dekker, New Jersey, 1995. 52) CORMA, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 95, n. 3, p. 559 - 614, 1995. 53) SCHERER, E. K. Transforma??o de cicloexano e metilcicloexano sobre as ze?litas HMCM-22 , HZSM-5 e HUSY ? Rendimento e seletividade a hidrocarbonetos leves. Disserta??o (Mestrado), 124 f. Departamento de Engenharia Qu?mica, Universidade Federal de S?o Carlos, S?o Carlos, 2009. 54) THOMAS, J.M. Solid acid catalysts. Scientific American, v. 226, p. 112-118, n. 4, 1992. 55) GUISNET, M.; MAGNOUX, P. Coking and deactivation of zeolites: influence of the pore structure. Applied Catalysis, v. 54, p. 1, 1989. 56) JEWUR, S. S. Qu?mica de ze?litas e cat?lise. Qu?mica Nova, v. 8, n. 2, p. 99?105, 1985. 57) VACLAVIK, F. D. Avalia??o E Otimiza??o Do Uso De Ze?litas No Tratamento Terci?rio. Disserta??o (Mestrado), 71 p. Instituto de Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010. 58) DYER, A.; An Introduction to Zeolite Molecular Sieves, John Wiley & Sons ? University of Salford, Reino Unido, 1988. 134 59) OPREA, C.; POPESCU, V.; BIRGHILA, S. New Studies About The Modified Mordenites National Conference on Applied Physics, v. 53, p. 231?239, 2008. 60) International Zeolite Association (IZA). Disponivel em: <http://www.izastructure. org/databases/> acessado em 01 de outubro de 2015 as 19:00h. 61) BAERLOCHER, C.; McCUSKER, L. B.; OLSON, D. H. Atlas of zeolite framework types. 6. ed. Elsevier, Amsterdam, 2007. 62) MACEDO, J. L. Caracteriza??o da Acidez de Ze?litas por M?todos T?rmicos e Espectrosc?picos. Disserta??o (Mestrado) 90 f. Curso de Qu?mica, Instituto de Qu?mica, Universidade de Bras?lia, Bras?lia - DF, 2003. 63) SHIOKAWA, K.; ITO, M.; ITABASHI, K. Cristal structure of synthetic mordenites. Zeolites, v. 9, n. 3, p. 170-176, 1989. 64) LEI, G. D.; CARVILL, B. T.; SACHTLER, W. M. H. Single file diffusion in mordenite channels: neopentane conversion and H/D Exchange as catalytic probes. Appl. Catal. A, v. 142, p. 347-359, 1996. 65) Fonte: Dispon?vel em <https://www.maxwell.vrac.puc-rio.br/12172/12172_3.PDF> Acessado em 30 de janeiro de 2021. 66) SHINZATO, M. C. et al. Caracteriza??o tecnol?gica das ze?litas naturais associadas ?s rochas eruptivas da Forma??o Serra Geral, na regi?o de Piraju-Ourinhos (SP). Revista Brasileira de Geoci?ncias, p. 525-532, 2008. 67) NIWA, M.; KATADA, N.; OKUMURA, K. Characterization and Design of Zeolite Catalysts- Solid Acidity, Shape Selectivity and Loading Properties. 2010. ISBN 978-3- 642-12619-2. 68) LU, B.; OUMI, Y.; SANO, T. Convenient synthesis of large mordenite crystals. Journal of Crystal Growth, v. 291, n. 2, p. 521?526, 2006. 69) CHUMBHALE, V. R.; CHANDWADKAR, A. J.; RAO, B. S. Characterization of siliceous mordenite obtained by direct synthesis or by dealumination. Zeolites, v. 12, n. 1, p. 63?69, 1992. 70) BAJPAI, P. K. Synthesis of mordenite type zeolite. Zeolites, v. 6, n. 1, p. 2-8, 1986. ISSN 0144-2449. 71) ALY, H. M.; MOUSTAFA, M. E.; ABDELRAHMAN, E. A. Synthesis of Mordenite Zeolite in Absence of Organic Template. Advanced Powder Technology, v. 23, p. 757, 2012. 72) CEJKA, J. et al. Introduction to Zeolite Science and Practice. Amsterdan: Elsevier, 2007. 135 73) FERNANDES, A. A. S?ntese de ze?litas e wolastonita ? partir da cinza da casca do arroz. Tese (Doutorado), 108 f. Instituto de Pesquisas Energ?ticas e Nucleares, Universidade de S?o Paulo, S?o Paulo, 2006. 74) BEKKUM, H. V. et al. Introduction to Zeolite Science and Practice. . Amsterdan: Elsevier, 2001. 75) K?HL, G. Source materials for zeolite synthesis. In: ROBSON, H., Verified Synthesis of Zeolitic Material. 2. ed. Amsterdam: Elsevier, p. 19-20, 2001. 76) BRECK. D. W. Zeolite Molecular Sieve: Structure, Chemistry and Use. John Wiley & Sons, Nova Iorque, 771 p.,1974. 77) THOMPSON, R. W.; ROBSON, K. P. H. Nucleation, growth, and seeding in zeolite synthesis. Verifield Syntheses of Zeolitic Materials, Elsevier, p. 21-23, 2001. 78) FALAMAKI, et al. Zeolites 19, 2 p., 1987. In: FERNANDES, A. A. S?ntese de ze?litas e wolastonita ? partir da cinza da casca do arroz. Tese (Doutorado), 108 f. Instituto de Pesquisas Energ?ticas e Nucleares, Universidade de S?o Paulo, S?o Paulo, 2006. 79) LI, X.; PRINSA, R.; VAN BOKHOVEN, J. A. Synthesis and characterization of mesoporous mordenite. Journal of Catalysis, v. 262, p. 257, 2009. 80) SU, B.-L.; SANCHEZ, C.; YANG, X.-Y. Hierarchically Structured Porous Materials From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Wiley, 2011. 655. 81) THOMAS, A.; GOETTMANN, F.; ANTONIETTI, M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials?. Chemistry of Materials, v. 20, n. 3, p. 738-755, 2008/02/01 2008. ISSN 0897-4756. Dispon?vel em: <http://dx.doi.org/10.1021/cm702126j >. 82) ZHOU, J.; HUA, Z.; LIU, Z.; WU, W.; ZHU, Y., SHI, J. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catalysis, v. 1, n. 4, p. 287?291, 2011. 83) PAL, N.; BHAUMIK, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic?inorganic hybrid and purely organic solids. Advances in Colloid and Interface Science, v. 189?190, p. 21-41, 3// 2013. ISSN 0001-8686.Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0001868612001686>. 84) CH?VEZ, E. et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy & Pharmaceutical Sciences, v. 9, n. 3, p. 339-358, 2006. 85) TADROS, T. F. Applied Surfatants Principles and Applications. Wiley, 2005. 136 86) BUENO, M. R. P. Materiais nanoestruturados sint?ticos tipo esmectitas: sua s?ntese, caracteriza??o e aplica??o em nanocomp?sitos de polietileno 2008. 187 (Mestrado). UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 87) MARTINEZ, G. J.; LI, K. Mesoporous Zeolites - Preparation, Characterization and Applications. 2015. 608. 88) SZOSTAK, R. Handbook of Molecular Sieves. Eds Van Nostrand Reinhold, New York, 557 p. 1992. 89) CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, v. 82, n. 1-2, p. 1?78, 2005. 90) YU, J. Synthesis of zeolites. In: EJKA, J.; VAN BEKKUM, H.; CORMA, A.; SCH?TH, F. Introduction to zeolite science and practice. Elsevier, 3th edition, vol. 168, p. 39-103, 2007. 91) CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev., vol 103, p. 663-701. 2003. 92) VALD?S, M. G., P?REZ-CORDOVES, A. I., D?AZ-GARC?A, M. E. Zeolites and ze?lita-based materials in analytical chemistry. Trends in Analytical Chemistry, Amsterdam, v. 25 p. 24-30, 2006. 92) XU, R.; PANG, W.; YU, J.; HUO, Q.; CHEN, J. Chemistry of zeolites and related porous materials: synthesis and structure. Ed. John Wiley & Sons, 2007. 93) NISHI, K.; THOMPSON, R. W. Synthesis of classical zeolites. In: SCHUTH, F; SING, K. A; DUTTA, P. K. (eds). Handbook of porous solids. V. 2 Weinheim: Wiley-VCH, p. 736-814, 2002. 94) DONK, S. V. Adsorption, Diffusion and Reaction Studies of Hydrocarbons on Zeolite Catalysts. PdD Dissertation, Utrecht University, Netherlands, 2002. 95) CHRISTENSEN, C. H.; JOHANNSEN, K.; T?RNQVIST, E.; SCMIDT, I.; TOPS?E, H.; CHRISTENSEN, C. H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis today, v. 128, p. 117?122, 2007. 96) JACOBSEN, C. J. H.; MADSEN, C.; HOUZVICKA, J.; SCHMIDT, I.; CARLSSON, A. Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, v. 122, p. 7116, 2000. 97) OGURA, M. Towards realization of a micro- and mesoporous composite silicate catalyst. Catalysis Surveys from Asia, v. 12, n. 1, p. 16?27, 2008. 137 98) ZHU, H.; LIU, Z.; KONG, D.; WANG, Y.; YUAN, X.; XIE, Z. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. Journal of Colloid and Interface Science, v. 331, n. 2, p. 432?438, 2009. 99) GROEN, J. C.; MOULIJIN, J. A.; RAM?REZ, J. P. Desilication: on the controlled generaton of mesoporosity in MFI zeolites. J. Mater. Chem., v. 16, p. 2121-2131, 2006. 100) ALVES, I. C.; NASCIMENTO, T. L. P. M.; VELOSO, C. O.; ZOTIN, F. M. Z.; HENRIQUES, C. A. Gera??o de mesoporos em ze?litas ZSM-5 e seus efeitos na convers?o do etanol em olefinas. Quimica Nova, v. 35, n. 8, p. 1554?1559, 2012. 101) GROEN, J. C. et al. Mesoporosity development in ZSM-5 Zeolite upon optimizad desilication conditions in Alkaline medium. Elsevier, p. 53?58, p. 13062?13065, July 2004 102) GROEN, J. C. et al. Alkaline-mediated mesoporous mordenite zeolites for acidcatalyzed conversions. J. Catal., v. 251, p. 21?27, 2007. 103) KIM, G.; AHN, W. Direct synthesis and characterization of high-sio2-content mordenites.Zeolites, v. 11, p. 745?750, 1991. 104) SILVESTRE-ALBERO, A. et al. Desilication of TS-1 zeolite for the oxidation of bulky molecules. CATALYSIS COMMUNICATIONS, 44, n. SI, p. 35?39, JAN 10 2014. ISSN 1566-7367. 105) SACHSE, A. et al. Development of intracrystalline mesoporosity in zeolites through surfactant-templating. Crystal Growth & Design, v. 17, n. 8, p. 4289?4305, 2017. Dispon?vel em: <https://doi.org/10.1021/acs.cgd.7b00619>. 106) PEREGO, G. Characterization of heterogeneous catalysts by X-ray diffraction techniques. Catalysis Today, v. 41, n. 1?3, p. 251-259, 5/28/ 1998. ISSN 0920-5861. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0920586198000546>. 107) CHORKENDORFF, I.; NIEMANTSVERDRIET, J. W. Concepts o Modern Catalysis and Kinetics. 1. Ed. WILEY-VCH, Weinheim, 452 p., 2003. 108) CALLISTER, W. D.; RETHWISCH, D. G. Fundamentals of Materials Science and Engineering An Integrated Approach. 3. JOHN WILEY & SONS, INC., 2008. 109) SKOOG, D. A; HOLLER, F. J.; NIEMAN, T. A. Pric?pios de An?lise Instrumental, 5? ed. Porto Alegre: Bookman, 2006, p. 252-274. 110) FERNANDES, L. D. Estudo sobre Catalisadores Bifuncionais na Rea??o de Hidroisomeriza??o de n-Alcanos e de Etilbenzeno. Tese (Doutorado) 193 f. COPPE/UFRJ, Universidade Federal do Rio de Janeiro, 1996. 111) TREACY, M. M. J.; HIGGINS, J. B., Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, 5th Revised Edition, 2007. 138 112) ITABASHI, Keiji; FUKUSHIMA, Toshihisa e IGAWA, Kazushige, Synthesis and characteristic properties of siliceous mordenite, Chemical Research Laboratory, Toyo Soda Manufacturing Co., Ltd. Shinnayo, Yamaguchi, Japan. 1984. 113) RAMOS, F. S. O.; MUNSIGNATTI, E. C. O.; PASTORE, H. O. 2D?3D Structures: The Hydrothermal Transformation of a Layered Sodium Silicate, Na-RUB-18, into Mordenite Zeolite. Microporous and Mesoporous Materials, v. 177, p. 143, 2013. 114) RAYALU, S. S.; UDHOJI, J. S.; MESHRAM, S. U.; NAIDU, R. R.; DEVOTTA, S. Estimation of crystallinity in flyash-based zeolite-A using XRD and IR spectroscopy. Current Science, v. 89, p. 2147, 2005. 115) TEIXEIRA, Alete Paix?o. Determina??o de elementos essenciais em arroz empregando espectrometria de fluoresc?ncia de raios X de energia dispersiva. Disserta??o de Mestrado ? UFBA ? Salvador, 2010. 116) JENKIS, R. X-ray fluorescence spectrometry. 2 ed. New York: Wiley Interscience, 1999 117) NAGATA, N. Uso de m?todos de calibra??o multivariada na an?lise de amostras de interesse industrial e esp?cies de import?ncia ambiental por fluoresc?ncia de raios-X. 2001. Tese (Doutorado em Qu?mica) ? Instituto de Qu?mica, Universidade Estadual de Campinas, Campinas, 2001. 118) SCHNEIDER, P.; HUDEC, P.; SOLCOVA, O. Pore-volume and surface area in microporous-mesoporous solids. Microporous and Mesoporous Materials, v. 115, n. 3, p. 491?496, 2008. 119) GROEN, J. C.; PEFFER, L. A. A.; P?REZ-RAM?REZ, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, v. 60, n. 1-3, p. 1?17, 2003. 120) FOGLER, H. S. Elements of Chemical Reaction Engineering. 3. New Delhi: 2009. 967. 121) BURWELL, R. L. J. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, v. 46, n. 4, p. 577?638, 1975. 122) ARA?JO, N. F. DE. Estudo de vari?veis operacionais na s?ntese da peneira molecular mesoporosa Al-SBA-15. Disserta?ao (Metrado), 77 f.Instituto de Tenologia, Universidade Federal Rural do Rio de Janeiro, 2013. 123) CONDON, J. Surface Area and porosity Determinations by Physisorption, measurements and Theory. Journal of Chemical Information and Modeling. Elsevier. v. 53, n. 9, 297 p., 2013. 124) BRUNAUER, S.; Deming, L. S.; Deming, W. S.; Teller, E.; On the theory of the van der Waals adsorption gases. J. Am. Chem. Soc. v. 62, p. 1723-1732, 1940. 139 125) GREGG, S. J.; SING, K. S. W. Adsorption, Surface Area and Porosity, ed. 2. Academic Press, London, 1982. 126) GON?ALVES, M. L. S?lidos Micro-Mesoestruturados Tipo Ze?lita Zsm-5/Peneira Molecular Mcm-41 - S?ntese E Estudo De Propriedades. Disserta??o (Mestrado), 130 f. Centro de Ci?ncias Exatas e de Tecnologia, Universidade Federal de S?o Carlos, S?o Carlos, 2006. 127) PALIK, E. S. Specific surface ?rea measurements on ceramic powders. Powder technology, v. 18, n. 1., p. 45-48, 1977. 128) BARRET, E. P.; JOYNER, L. G.; HALENDA, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, v. 73, p. 373, 1951. 129) HUDEC, P. et al. Determination of microporous structure of zeolites by t-plot method? State-of-the-art. Studies in Surface Science and Catalysis, v. 142, p. 1587?1594, 2002. 130) MINTOVA, S.; CEJKA,J. Chapter 9 ? Micro/mesoporous composites. In: JIR? CEJKA, et al. (Ed.). Studies in surface science and Catalysis: Elsevier, v. 168, p. 301-326, 2007. 131) LOK, B. M.; MARCUS, B. K.; ANGELL, C. L. Characterization of zeolite acidity. II. Measurement of zeolite acidity by ammonia temperature programmed desorption and FTi.r. spectroscopy techniques. Zeolites, v. 6, n. 3, p. 185-194, 5// 1986. ISSN 0144-2449. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/0144244986900461>. 132) L?NYI, F.; VALYON, J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and Hmordenite. Microporous and Mesoporous Materials, v. 47, 293, 2001. 133) TRIANTAFYLLIDIS, K. S. et al. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater., v. 75, p. 89?100, 2004. 134) CHEN, N. Y.; GARWOOD, W. E. Industrial applications of chape selective catalysis, Catal. Rev. ? Sci. Eng. v. 28, p. 185, 1986. 135) SILVA, J. B.; RODRIGUES, J. A. J.; NONO, M. D. C. D. A. Caracteriza??o de Materiais Catal?ticos. 2008. 71 (Doutorado). Engenharia e Tecnologia Espaciais/Ci?ncia e Tecnologia de Materiais e Sensores, S?o Jos? dos Campos-SP. 136) GON?ALVES, A. A. S. Craqueamento de Cicloexano sobre Ze?litas Acidas: Atividade, Seletividade e Influ?ncia da Presen?a de Mesoporosidade. Disserta??o (Mestrado). Centro de Ci?ncias Exatas e de Tecnologia, Universidade Federal de S?o Carlos, S?o Carlos, 2012. 137) Lopes, Glenda Cristina da Silva, Produ??o de mordenita mesoporosa por s?ntese direta usando diferentes direcionadores / Glenda Cristina da Silva Lopes. ? 2016 138) SCHNEIDER, P. Adsorption Isotherms of Microporous-Mesoporous Solids Revisited. Applied Catalysis A: General, v. 129, p. 157, 1995. 140 139) RAMOS, M. S.; GRECCO, S. T.; GOMES, L. P.; OLIVEIRA, A. C.; REYES, P.; OPORTUS, M.; RANGEL, M. C. Evaluation of MY Zeolites (M= Pt, Pd, Ni) in the Transalkylation of Trimethylbenzene with Benzene. Studies in Surface Science and Catalysis, v. 156, p. 809, 2005. 140) WANG, J.; HUANG, L.; CHEN, H.; LI, Q. Acid Function of Al MCM 41 Supported Platinum Catalysts in Hydrogenation of Benzene, Toluene O Xylene. Catalysis Letters, v. 55, p. 157, 1998.Ze?lita mesoporosaMordenitaTratamento alcalinoDessilica??oMicroporosMesoporosMesoporous zeoliteMordeniteAlkaline treatmentDesiccationMicroporesMesoporesEngenharia Qu?micaEstudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??oStudy of the formation of mesopores in mordenite zeolites, by post-synthesis desilication treatmentsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Julio Cesar Gomes de Almeida.pdf.jpg2021 - Julio Cesar Gomes de Almeida.pdf.jpgimage/jpeg3920http://localhost:8080/tede/bitstream/jspui/6497/4/2021+-+Julio+Cesar+Gomes+de+Almeida.pdf.jpga156b812e2e807fd8b2d710f7f696a26MD54TEXT2021 - Julio Cesar Gomes de Almeida.pdf.txt2021 - Julio Cesar Gomes de Almeida.pdf.txttext/plain421706http://localhost:8080/tede/bitstream/jspui/6497/3/2021+-+Julio+Cesar+Gomes+de+Almeida.pdf.txtd9b5b984f818473f6b5563b354e76d97MD53ORIGINAL2021 - Julio Cesar Gomes de Almeida.pdf2021 - Julio Cesar Gomes de Almeida.pdfapplication/pdf9787354http://localhost:8080/tede/bitstream/jspui/6497/2/2021+-+Julio+Cesar+Gomes+de+Almeida.pdfa6bcabbf4edd155f0095f62c717591acMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6497/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/64972023-04-05 01:01:24.353oai:localhost:jspui/6497Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-04-05T04:01:24Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
dc.title.alternative.eng.fl_str_mv Study of the formation of mesopores in mordenite zeolites, by post-synthesis desilication treatments
title Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
spellingShingle Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
Almeida, Julio Cesar Gomes de
Ze?lita mesoporosa
Mordenita
Tratamento alcalino
Dessilica??o
Microporos
Mesoporos
Mesoporous zeolite
Mordenite
Alkaline treatment
Desiccation
Micropores
Mesopores
Engenharia Qu?mica
title_short Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
title_full Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
title_fullStr Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
title_full_unstemmed Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
title_sort Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o
author Almeida, Julio Cesar Gomes de
author_facet Almeida, Julio Cesar Gomes de
author_role author
dc.contributor.advisor1.fl_str_mv Fernandes, Lindoval Domiciano
dc.contributor.advisor1ID.fl_str_mv 837.359.257-15
https://orcid.org/0000-0002-6509-5552
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7921814684730923
dc.contributor.referee1.fl_str_mv Fernandes, Lindoval Domiciano
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-6509-5552
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7921814684730923
dc.contributor.referee2.fl_str_mv Dantas, Sandra Cristina
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0003-4775-040X
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/7030857553317983
dc.contributor.referee3.fl_str_mv Machado J?nior, H?lio Fernandes
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/3462534255321209
dc.contributor.authorID.fl_str_mv 006.320.097-05
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9507736557209597
dc.contributor.author.fl_str_mv Almeida, Julio Cesar Gomes de
contributor_str_mv Fernandes, Lindoval Domiciano
Fernandes, Lindoval Domiciano
Dantas, Sandra Cristina
Machado J?nior, H?lio Fernandes
dc.subject.por.fl_str_mv Ze?lita mesoporosa
Mordenita
Tratamento alcalino
Dessilica??o
Microporos
Mesoporos
Mesoporous zeolite
Mordenite
Alkaline treatment
Desiccation
Micropores
Mesopores
topic Ze?lita mesoporosa
Mordenita
Tratamento alcalino
Dessilica??o
Microporos
Mesoporos
Mesoporous zeolite
Mordenite
Alkaline treatment
Desiccation
Micropores
Mesopores
Engenharia Qu?mica
dc.subject.cnpq.fl_str_mv Engenharia Qu?mica
description The oil reserves discovered in recent years in Brazil and in the world are mostly made up of heavy oils. For the processing of these oils, it is increasingly necessary the presence of an active matrix in catalysts for catalytic cracking in fluidized bed. Zeolites can be used as catalysts or support for catalysts in separation processes. Thus, it has a wide application in oil refining processes, in the petrochemical and chemical industry and in environmental control. These properties are associated with the presence of pores in its structure, which guarantee a high specific area. One of the most important processes in oil refining is the catalytic cracking of gas oil, which is formed by a complex mixture of hydrocarbons, the molecules of some of which exceed the pore diameter of zeolite Y. This zeolite has the largest pore diameter (~7.4 ?). Thus, the molecules were unable to access the active sites inside the zeolite Y crystals. In order to overcome this difficulty, in this work original microporous Mordenite zeolites were synthesized, and through post-synthesis alkaline treatments, it was tried to transform them from microporous Mordenites, (~ 7.4x10-10 m), into mesoporous Mordenites ( ~7.4x10-9 m). Therefore, the materials and methods used to synthesize, alkaline treat, characterize and catalytically evaluate the Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40 were presented. Mordenite zeolites were synthesized with the following molar compositions: 20 SiO2 : 1.0 Al2O3 : 6.0 Na2O : 600 H2O and 40 SiO2 : 1.0 Al2O3 : 12.0 Na2O : 1600 H2O. The alkaline treatments had: 2 types of temperature, 2 types of hydroxides, 3 types of concentrations and the presence or not of a surfactant. In addition to the alkaline treatment, the samples also underwent ion exchange and calcination at 550?C. To be sure that the synthesis of microporous mordenite and the possible transformation into mesoporous mordenite occurred, the characterization and catalytic evaluation techniques were used. For the characterization were used the techniques of X-ray diffraction (XRD), energy dispersive X-ray fluorescence spectrometry (EDX), nitrogen adsorption/desorption, temperatureprogrammed ammonia desorption (TPD-NH3) and Catalytic Evaluation. It was observed that XRD confirmed the formation of Mordenite Zeolites with two types of molar ratios SiO2/Al2O3, SAR 20 and SAR 40, and that they have excellent crystallinity. EDX showed that all samples had lower SAR than the synthesis gel and that there was very low desilication in the treated samples. The textural analysis showed that the samples do not have a large amount of mesopores. The TPD showed that the samples have predominantly weak to moderate acid strength. The catalytic evaluation showed that the samples treated in the presence of CTABr had a lower rate of deactivation and that the samples that were treated with Tetramethylammonium hydroxide had a higher initial catalytic activity than the samples treated with Sodium Hydroxide. In the experiments of this work, There was no significant formation of mesopores in the mordenite zeolites, by alkaline treatments after desilicon synthesis.
publishDate 2021
dc.date.issued.fl_str_mv 2021-03-17
dc.date.accessioned.fl_str_mv 2023-04-04T12:38:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Almeida, Julio Cesar Gomes de. Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o. 2021. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6497
identifier_str_mv Almeida, Julio Cesar Gomes de. Estudo da forma??o de mesoporos em ze?litas mordenitas, por tratamentos p?s-s?ntese de dessilica??o. 2021. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2021.
url https://tede.ufrrj.br/jspui/handle/jspui/6497
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1) SZOSTAK, R. Molecular Sieves Principles of Synthesis and Identification. New York: 1989. 524. 2) ESCOBAR, M. F. A.; Batista, M. S; Urquieta-Gonz?lez, E. A.; Quim. Nova 2000, 23, 303; Dimitrova, R.; Gunduz, G.; Dimitrov, L.; Tsoncheva, T.; Yialmaz, S.; Urquieta-Gonzalez, E. A.; J. Mol. Catal. A: Chem. 2004, 214, 265; Grecco, S. T. F.; Gomes, L. P.; Reyes, P.; Oportus, M.; Rangel, M. C.; Stud. Surf. Sci. Catal. 2005, 158, 1937; Ramos, M. S.; Grecco, S. T.; Gomes, L. P.; Oliveira, A. C.; Reyes, P.; Oportus, M.; Rangel, M. C.; Stud. Surf. Sci. Catal. 2005, 156, 809; Pereira, A. L. C.; Gonz?lez- Carballo, J. M.; P?rez-Alonso, F. J.; Rojas, S.; Fierro, J. L. G.; Rangel, M. D. C.; Top. Catal. 2011, 54, 179; Fonseca, J. D. S. L.; J?nior, A. D. C. F.; Grau, J. M.; Rangel, M. D. C.; Appl. Catal. A 2010, 386, 201. 3) CORMA, A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev., v. 97, p. 2373?2419, 1997. 4) RABO, J.;?Zeolite Chemistry and Catalysis?, American Chemical Society ? Washigton Washington, DC, 1976, Cap. 2. 5) ERTL, G.; KN?ZINGER, H.; SCH?TH, F.; WEITKAMP, J. Handbook of heterogeneous catalysis. Wheinheim, Germany: v.1, 3865 p., 2008. 6) OGURA, M.; ZHANG, Y.; ELANGOVAN, S. P.; OKUBO, T. Formation of ZMM-n: The composite materials having both natures of zeolites and mesoporous silica materials. Microporous and Mesoporous Materials, v. 101, n. 1-2 SPEC. ISS., p. 224?230, 2007. 7) MAJANO G.; MINTOVA S.; OVSITSER O.; MIHAILOVA B.; BEIN T. Zeolite Beta Nanosized Assemblies. Microporous and Mesoporous Materials, v. 80, p. 227, 2005. 8) CORMA, A. et al. Adsorption and catalytic properties of MCM-22: The influence of zeolite structure. Zeolites 1996, 16, 7-14. 9) LANDAU, M. V. et al. Colloidal nanocrystals of zeolite _ stabilized in alumina matrix. Chem. Mater., v. 11, n. 8, p. 2030?2037, 1999. 10) YANG, H. et al. Synthesis of nanocrystal zeolite Y and its host effect. In: Zeolites and Mesoporous Materials at the Dawn of the 21st Century. [S.l.]: Elsevier Sci. Pub., 2001, (Studies in Surface Science and Catalysis, v. 135). p. 1?8. 11) TAO, Y. et al. Mesopore-modified zeolites: Preparation, characterization, and applications. Chem. Rev., v. 106, p. 896?910, 2006. 12) EGEBLAD, K.; CHRISTENSEN, C. H.; KUSTOVA, M.; CHRISTENSEN, C. H. Templating Mesoporous Zeolites. Chemistry Materials, v. 20, p. 946, 2008. 131 13) BRECK, D. W. Zeolite Molecular Sieves: Structure, Chemistry and Use. Malabar: Robert E. Krieger Publishing Company, 1984 14) KLEIN, C.; HURLBUT, C. S. Manual of Mineralogy. 21st Edition, New York: Jonh Wiley & Sons, INC., 1977. 15) P?REZ-PARIENTE, J. Qu?mica Estructural de Materiales Zeol?ticos, In: P?REZPARIENTE, J.; MART?NEZ, J. G. Materiales Zeol?ticos: S?ntesis, Propriedades y Aplicaciones. San Vicente: Universidad Alicante, 2002. Cap. 1. 16) IZA: http://www.iza-structure.org/databases. Acessado em 20/06/2013. 17) VIEIRA, L. H.; RODRIGUES, M. V.; MARTIN, L. Cristaliza??o Convencional de Ze?litas e Induzida por Sementes. Quim. Nova, v. 37, n. 9, p. 1515-1524, 2014. 18) BRAGA, A. A. C.; MORGON, N. H. Descri??es Estruturais Cristalinas de Ze?litos. Quim. Nova, v. 30, n. 1, p. 178-188, 2007. 19) MIGNONI, M. L. Ze?litas obtidas com l?quidos i?nicos como direcionadores de estrutura: s?ntese e reatividade. 2012. 147 (Doutorado). Instituto de Qu?mica, Universidade Federal do Rio Grande do Sul, Rio Grande do Sul. 20) MASCARENHAS, A. J. S.; OLIVEIRA;, E. C.; PASTORE., H. O. Peneiras Moleculares: Selecionado as Mol?culas por seu Tamanho. Qu?mica Nova, p. 25-34, 2001. 21) FLANIGEN, E. M. Zeolites and molecular sieves: an historical perspective. Studies in Surface Science and Catalysis, v.58. p.13-16, 1991. 22) FLANIGEN, E. M., 1980; In: REES, L. V.C. Proceedings of the fifth international conference on zeolites. London, p. 760-780, 1980. 23) WEITKAMP, J. Zeolites and Catalysis. Solid State Ionics, v. 131, p. 175, 2000. 24) BARRER, R. M. Synthesis of a Zeolitic Mineral with Chabazite-Like Sorptive Properties Journal of the Chemical Society, 1948, 127. 25) MILTON, R. M. Zeolite Synthesis, OCCELLI, M. L., ROBSON, H. E. (Eds.), ACS Symposium Series, American Chemical Society, v. 398, Washington, 1989. 26) SHERMAN, J. D.; Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3471. 27) BRAGA, A. A. C.; MORGON, N. H. Descri??es Estruturais Cristalinas de Ze?litos. Quim. Nova, v. 30, n. 1, p. 178-188, 2007. 28) DAVIS, M. E.; LOBO, R. F. Zeolite and Molecular Sieve Synthesis. Chemistry of Materials, v.4, n.4, p.156-768, 1992. 132 29) PAYRA, P.; DUTTA, P. K. Zeolites: A Primer, In: AUERBOCH, S. M.; CARRADO, K. A.; DUTTA, P. K. Handboook of Zeolites Science and Technology, New York: Marcel Dekker Inc, 2003. Cap. 1. 30) GUISNET, M.; RIBEIRO, F. R. Ze?litos: Um Nanomundo ao Servi?o da Cat?lise. Lisboa: Funda??o Calouste Gulbenkian, 2004. 31) AUERBACH, S.; CARRADO, K.; DUTTA, P. Handbook of Zeolite Science and Technology. New York: 2003. 32) LUZ, A. B. DA. Ze?litas: Propriedades e Usos Industriais. S?rie: Tecnologia Mineral, CETEM/MCT, Rio de Janeiro, v. 68, 36-37 p. 1995. 33) WRIGHT, P. A.; LOZINSKA, M. Structural Chemistry and Properties of Zeolites, In: MART?NEZ, C.; PEREZ-PARIENTE, J. Zeolites and Ordered Porous Solids: Fundamentals and Applications, Valencia: Universitat Polit?cnica de Val?ncia, 2011. Cap 1. 34) YANG, R. T. Adsorbents: Fundamentals and Applications. New Jersey: John Wiley & Sons, 2003. 35) AFONSO, J. C. et al. Reciclagem qu?mica de ze?litas comerciais desativadas. Qu?mica Nova, v. 27, p. 315-319, 2004. ISSN 0100-4042. Dispon?vel em: < http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100- 40422004000200024&nrm=iso >. 36) WEITKAMP, J.; PUPPE, L. Catalysis and Zeolites: Fundamentals and Applications. Journal of Materials Chemistry.1. ed. New York, 564 p., 1999. 37) KERR, G. Forty years of zeolite research, 4? Semin?rio Brasileiro de Cat?lise ? IBP, p.1-15, 1989. 38) MACEDO, J. L. Prepara??o e Caracteriza??o de Materiais com Base Zeol?tica para Aplica??o em Cat?lise. Tese (Doutorado) 119 f. Curso de Qu?mica, Instituto de Qu?mica, Universidade de Bras?lia, Bras?lia - DF, 2007. 39) LUNA, F. J.; SCHUCHARDT, U. Modifica??o de ze?litas para uso em cat?lise. Quimica Nova, v. 24, n. 6, p. 885?892, 2001. 40) SHINZATO, M. C. Remo??o de metais pesados em solu??o por ze?litas naturais: Revis?o cr?tica. Revista do Istituto Geol?gico, v. 27-28, n. 1/2, p. 65?78, 2007. 41) GRECCO, S. T. F.; RANGEL, M. C.; URQUIETA-GONZ?LEZ, E. A. Ze?litas Hierarquicamente Estruturadas. Quimica Nova, v. 36, p. 131, 2013 42) ROZANSKA, X.; VAN SANTEN, R. A. Reaction Mechanisms in Zeolite Catalysis. ChemInform, v. 35, n. 26, p. 49, 2004. 43) SMART, L. E.; MOORE, E. A. SOLID STATE CHEMISTRY: An Introduction. Chapman & Hall. 3. ed. London, 2005. 133 44) CIESLA, U.; SCH?TH, F. Ordered mesoporous materials. Microporous and Mesoporous Materials, v. 27, n. 2?3, p. 131-149, 2// 1999. ISSN 1387-1811. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S1387181198002492>. 45) CORMA, A. State of the Art Future Challenges of Zeolites as Catalysts. Journal of Catalysis, v. 216, p. 298, 2003. 46) SOUSA-AGUIAR, E. F.; CORREA, R. J. Principios de La Cat?lisis por Zeolitas, In: P?REZPARIENTE, J.; MART?NEZ, J. G. Materiales Zeol?ticos: S?ntesis, Propriedades y Aplicaciones. San Vicente: Universidad Alicante, 2002. Cap. 6. 47) MORENO, E. L.; RAJAGOPAL, K. Desafios da acidez na cat?lise em estado s?lido. Qu?mica Nova, v. 32, p. 538, 2009. 48) XU, B.; BORDIGA, S.; PRINS, R.; VAN BOKHOVEN, J. A. Effect of Framework Si/Al Ratio and Extra-Framework Aluminum on the Catalytic Activity of Y Zeolite. Applied Catalysis A: General, v. 333, p. 245, 2007. 49) NUR, H.; RAMLI, Z.; EFENDI, J.; RAHMAN, A. N. A.; CHANDREN, S.; YUAN, L. S. Synergistic role of Lewis and Br?nsted acidities in Friedel?Crafts alkylation of resorcinol over gallium-zeolite beta. Catalysis Communications, v. 12, 822, 2011. 50) MISTRY, S. R.; MAHERIA, K. C. Synthesis of diarylpyrimidinones (DAPMs) using large pore ze?litas. Journal of Molecular Catalysis A: Chemical, v. 355, p. 210, 2012. 51) AUGUSTINE, R. L.; Heterogeneous Catalysis for the Synthetic Chemist, Marcel Dekker, New Jersey, 1995. 52) CORMA, A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions, Chem. Rev., 95, n. 3, p. 559 - 614, 1995. 53) SCHERER, E. K. Transforma??o de cicloexano e metilcicloexano sobre as ze?litas HMCM-22 , HZSM-5 e HUSY ? Rendimento e seletividade a hidrocarbonetos leves. Disserta??o (Mestrado), 124 f. Departamento de Engenharia Qu?mica, Universidade Federal de S?o Carlos, S?o Carlos, 2009. 54) THOMAS, J.M. Solid acid catalysts. Scientific American, v. 226, p. 112-118, n. 4, 1992. 55) GUISNET, M.; MAGNOUX, P. Coking and deactivation of zeolites: influence of the pore structure. Applied Catalysis, v. 54, p. 1, 1989. 56) JEWUR, S. S. Qu?mica de ze?litas e cat?lise. Qu?mica Nova, v. 8, n. 2, p. 99?105, 1985. 57) VACLAVIK, F. D. Avalia??o E Otimiza??o Do Uso De Ze?litas No Tratamento Terci?rio. Disserta??o (Mestrado), 71 p. Instituto de Qu?mica, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2010. 58) DYER, A.; An Introduction to Zeolite Molecular Sieves, John Wiley & Sons ? University of Salford, Reino Unido, 1988. 134 59) OPREA, C.; POPESCU, V.; BIRGHILA, S. New Studies About The Modified Mordenites National Conference on Applied Physics, v. 53, p. 231?239, 2008. 60) International Zeolite Association (IZA). Disponivel em: <http://www.izastructure. org/databases/> acessado em 01 de outubro de 2015 as 19:00h. 61) BAERLOCHER, C.; McCUSKER, L. B.; OLSON, D. H. Atlas of zeolite framework types. 6. ed. Elsevier, Amsterdam, 2007. 62) MACEDO, J. L. Caracteriza??o da Acidez de Ze?litas por M?todos T?rmicos e Espectrosc?picos. Disserta??o (Mestrado) 90 f. Curso de Qu?mica, Instituto de Qu?mica, Universidade de Bras?lia, Bras?lia - DF, 2003. 63) SHIOKAWA, K.; ITO, M.; ITABASHI, K. Cristal structure of synthetic mordenites. Zeolites, v. 9, n. 3, p. 170-176, 1989. 64) LEI, G. D.; CARVILL, B. T.; SACHTLER, W. M. H. Single file diffusion in mordenite channels: neopentane conversion and H/D Exchange as catalytic probes. Appl. Catal. A, v. 142, p. 347-359, 1996. 65) Fonte: Dispon?vel em <https://www.maxwell.vrac.puc-rio.br/12172/12172_3.PDF> Acessado em 30 de janeiro de 2021. 66) SHINZATO, M. C. et al. Caracteriza??o tecnol?gica das ze?litas naturais associadas ?s rochas eruptivas da Forma??o Serra Geral, na regi?o de Piraju-Ourinhos (SP). Revista Brasileira de Geoci?ncias, p. 525-532, 2008. 67) NIWA, M.; KATADA, N.; OKUMURA, K. Characterization and Design of Zeolite Catalysts- Solid Acidity, Shape Selectivity and Loading Properties. 2010. ISBN 978-3- 642-12619-2. 68) LU, B.; OUMI, Y.; SANO, T. Convenient synthesis of large mordenite crystals. Journal of Crystal Growth, v. 291, n. 2, p. 521?526, 2006. 69) CHUMBHALE, V. R.; CHANDWADKAR, A. J.; RAO, B. S. Characterization of siliceous mordenite obtained by direct synthesis or by dealumination. Zeolites, v. 12, n. 1, p. 63?69, 1992. 70) BAJPAI, P. K. Synthesis of mordenite type zeolite. Zeolites, v. 6, n. 1, p. 2-8, 1986. ISSN 0144-2449. 71) ALY, H. M.; MOUSTAFA, M. E.; ABDELRAHMAN, E. A. Synthesis of Mordenite Zeolite in Absence of Organic Template. Advanced Powder Technology, v. 23, p. 757, 2012. 72) CEJKA, J. et al. Introduction to Zeolite Science and Practice. Amsterdan: Elsevier, 2007. 135 73) FERNANDES, A. A. S?ntese de ze?litas e wolastonita ? partir da cinza da casca do arroz. Tese (Doutorado), 108 f. Instituto de Pesquisas Energ?ticas e Nucleares, Universidade de S?o Paulo, S?o Paulo, 2006. 74) BEKKUM, H. V. et al. Introduction to Zeolite Science and Practice. . Amsterdan: Elsevier, 2001. 75) K?HL, G. Source materials for zeolite synthesis. In: ROBSON, H., Verified Synthesis of Zeolitic Material. 2. ed. Amsterdam: Elsevier, p. 19-20, 2001. 76) BRECK. D. W. Zeolite Molecular Sieve: Structure, Chemistry and Use. John Wiley & Sons, Nova Iorque, 771 p.,1974. 77) THOMPSON, R. W.; ROBSON, K. P. H. Nucleation, growth, and seeding in zeolite synthesis. Verifield Syntheses of Zeolitic Materials, Elsevier, p. 21-23, 2001. 78) FALAMAKI, et al. Zeolites 19, 2 p., 1987. In: FERNANDES, A. A. S?ntese de ze?litas e wolastonita ? partir da cinza da casca do arroz. Tese (Doutorado), 108 f. Instituto de Pesquisas Energ?ticas e Nucleares, Universidade de S?o Paulo, S?o Paulo, 2006. 79) LI, X.; PRINSA, R.; VAN BOKHOVEN, J. A. Synthesis and characterization of mesoporous mordenite. Journal of Catalysis, v. 262, p. 257, 2009. 80) SU, B.-L.; SANCHEZ, C.; YANG, X.-Y. Hierarchically Structured Porous Materials From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Wiley, 2011. 655. 81) THOMAS, A.; GOETTMANN, F.; ANTONIETTI, M. Hard Templates for Soft Materials: Creating Nanostructured Organic Materials?. Chemistry of Materials, v. 20, n. 3, p. 738-755, 2008/02/01 2008. ISSN 0897-4756. Dispon?vel em: <http://dx.doi.org/10.1021/cm702126j >. 82) ZHOU, J.; HUA, Z.; LIU, Z.; WU, W.; ZHU, Y., SHI, J. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. ACS Catalysis, v. 1, n. 4, p. 287?291, 2011. 83) PAL, N.; BHAUMIK, A. Soft templating strategies for the synthesis of mesoporous materials: Inorganic, organic?inorganic hybrid and purely organic solids. Advances in Colloid and Interface Science, v. 189?190, p. 21-41, 3// 2013. ISSN 0001-8686.Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0001868612001686>. 84) CH?VEZ, E. et al. Applications of thermo-reversible pluronic F-127 gels in pharmaceutical formulations. Journal of Pharmacy & Pharmaceutical Sciences, v. 9, n. 3, p. 339-358, 2006. 85) TADROS, T. F. Applied Surfatants Principles and Applications. Wiley, 2005. 136 86) BUENO, M. R. P. Materiais nanoestruturados sint?ticos tipo esmectitas: sua s?ntese, caracteriza??o e aplica??o em nanocomp?sitos de polietileno 2008. 187 (Mestrado). UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 87) MARTINEZ, G. J.; LI, K. Mesoporous Zeolites - Preparation, Characterization and Applications. 2015. 608. 88) SZOSTAK, R. Handbook of Molecular Sieves. Eds Van Nostrand Reinhold, New York, 557 p. 1992. 89) CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, v. 82, n. 1-2, p. 1?78, 2005. 90) YU, J. Synthesis of zeolites. In: EJKA, J.; VAN BEKKUM, H.; CORMA, A.; SCH?TH, F. Introduction to zeolite science and practice. Elsevier, 3th edition, vol. 168, p. 39-103, 2007. 91) CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chem. Rev., vol 103, p. 663-701. 2003. 92) VALD?S, M. G., P?REZ-CORDOVES, A. I., D?AZ-GARC?A, M. E. Zeolites and ze?lita-based materials in analytical chemistry. Trends in Analytical Chemistry, Amsterdam, v. 25 p. 24-30, 2006. 92) XU, R.; PANG, W.; YU, J.; HUO, Q.; CHEN, J. Chemistry of zeolites and related porous materials: synthesis and structure. Ed. John Wiley & Sons, 2007. 93) NISHI, K.; THOMPSON, R. W. Synthesis of classical zeolites. In: SCHUTH, F; SING, K. A; DUTTA, P. K. (eds). Handbook of porous solids. V. 2 Weinheim: Wiley-VCH, p. 736-814, 2002. 94) DONK, S. V. Adsorption, Diffusion and Reaction Studies of Hydrocarbons on Zeolite Catalysts. PdD Dissertation, Utrecht University, Netherlands, 2002. 95) CHRISTENSEN, C. H.; JOHANNSEN, K.; T?RNQVIST, E.; SCMIDT, I.; TOPS?E, H.; CHRISTENSEN, C. H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis today, v. 128, p. 117?122, 2007. 96) JACOBSEN, C. J. H.; MADSEN, C.; HOUZVICKA, J.; SCHMIDT, I.; CARLSSON, A. Mesoporous Zeolite Single Crystals. Journal of the American Chemical Society, v. 122, p. 7116, 2000. 97) OGURA, M. Towards realization of a micro- and mesoporous composite silicate catalyst. Catalysis Surveys from Asia, v. 12, n. 1, p. 16?27, 2008. 137 98) ZHU, H.; LIU, Z.; KONG, D.; WANG, Y.; YUAN, X.; XIE, Z. Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. Journal of Colloid and Interface Science, v. 331, n. 2, p. 432?438, 2009. 99) GROEN, J. C.; MOULIJIN, J. A.; RAM?REZ, J. P. Desilication: on the controlled generaton of mesoporosity in MFI zeolites. J. Mater. Chem., v. 16, p. 2121-2131, 2006. 100) ALVES, I. C.; NASCIMENTO, T. L. P. M.; VELOSO, C. O.; ZOTIN, F. M. Z.; HENRIQUES, C. A. Gera??o de mesoporos em ze?litas ZSM-5 e seus efeitos na convers?o do etanol em olefinas. Quimica Nova, v. 35, n. 8, p. 1554?1559, 2012. 101) GROEN, J. C. et al. Mesoporosity development in ZSM-5 Zeolite upon optimizad desilication conditions in Alkaline medium. Elsevier, p. 53?58, p. 13062?13065, July 2004 102) GROEN, J. C. et al. Alkaline-mediated mesoporous mordenite zeolites for acidcatalyzed conversions. J. Catal., v. 251, p. 21?27, 2007. 103) KIM, G.; AHN, W. Direct synthesis and characterization of high-sio2-content mordenites.Zeolites, v. 11, p. 745?750, 1991. 104) SILVESTRE-ALBERO, A. et al. Desilication of TS-1 zeolite for the oxidation of bulky molecules. CATALYSIS COMMUNICATIONS, 44, n. SI, p. 35?39, JAN 10 2014. ISSN 1566-7367. 105) SACHSE, A. et al. Development of intracrystalline mesoporosity in zeolites through surfactant-templating. Crystal Growth & Design, v. 17, n. 8, p. 4289?4305, 2017. Dispon?vel em: <https://doi.org/10.1021/acs.cgd.7b00619>. 106) PEREGO, G. Characterization of heterogeneous catalysts by X-ray diffraction techniques. Catalysis Today, v. 41, n. 1?3, p. 251-259, 5/28/ 1998. ISSN 0920-5861. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/S0920586198000546>. 107) CHORKENDORFF, I.; NIEMANTSVERDRIET, J. W. Concepts o Modern Catalysis and Kinetics. 1. Ed. WILEY-VCH, Weinheim, 452 p., 2003. 108) CALLISTER, W. D.; RETHWISCH, D. G. Fundamentals of Materials Science and Engineering An Integrated Approach. 3. JOHN WILEY & SONS, INC., 2008. 109) SKOOG, D. A; HOLLER, F. J.; NIEMAN, T. A. Pric?pios de An?lise Instrumental, 5? ed. Porto Alegre: Bookman, 2006, p. 252-274. 110) FERNANDES, L. D. Estudo sobre Catalisadores Bifuncionais na Rea??o de Hidroisomeriza??o de n-Alcanos e de Etilbenzeno. Tese (Doutorado) 193 f. COPPE/UFRJ, Universidade Federal do Rio de Janeiro, 1996. 111) TREACY, M. M. J.; HIGGINS, J. B., Collection of Simulated XRD Powder Patterns for Zeolites. Elsevier, 5th Revised Edition, 2007. 138 112) ITABASHI, Keiji; FUKUSHIMA, Toshihisa e IGAWA, Kazushige, Synthesis and characteristic properties of siliceous mordenite, Chemical Research Laboratory, Toyo Soda Manufacturing Co., Ltd. Shinnayo, Yamaguchi, Japan. 1984. 113) RAMOS, F. S. O.; MUNSIGNATTI, E. C. O.; PASTORE, H. O. 2D?3D Structures: The Hydrothermal Transformation of a Layered Sodium Silicate, Na-RUB-18, into Mordenite Zeolite. Microporous and Mesoporous Materials, v. 177, p. 143, 2013. 114) RAYALU, S. S.; UDHOJI, J. S.; MESHRAM, S. U.; NAIDU, R. R.; DEVOTTA, S. Estimation of crystallinity in flyash-based zeolite-A using XRD and IR spectroscopy. Current Science, v. 89, p. 2147, 2005. 115) TEIXEIRA, Alete Paix?o. Determina??o de elementos essenciais em arroz empregando espectrometria de fluoresc?ncia de raios X de energia dispersiva. Disserta??o de Mestrado ? UFBA ? Salvador, 2010. 116) JENKIS, R. X-ray fluorescence spectrometry. 2 ed. New York: Wiley Interscience, 1999 117) NAGATA, N. Uso de m?todos de calibra??o multivariada na an?lise de amostras de interesse industrial e esp?cies de import?ncia ambiental por fluoresc?ncia de raios-X. 2001. Tese (Doutorado em Qu?mica) ? Instituto de Qu?mica, Universidade Estadual de Campinas, Campinas, 2001. 118) SCHNEIDER, P.; HUDEC, P.; SOLCOVA, O. Pore-volume and surface area in microporous-mesoporous solids. Microporous and Mesoporous Materials, v. 115, n. 3, p. 491?496, 2008. 119) GROEN, J. C.; PEFFER, L. A. A.; P?REZ-RAM?REZ, J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, v. 60, n. 1-3, p. 1?17, 2003. 120) FOGLER, H. S. Elements of Chemical Reaction Engineering. 3. New Delhi: 2009. 967. 121) BURWELL, R. L. J. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure and Applied Chemistry, v. 46, n. 4, p. 577?638, 1975. 122) ARA?JO, N. F. DE. Estudo de vari?veis operacionais na s?ntese da peneira molecular mesoporosa Al-SBA-15. Disserta?ao (Metrado), 77 f.Instituto de Tenologia, Universidade Federal Rural do Rio de Janeiro, 2013. 123) CONDON, J. Surface Area and porosity Determinations by Physisorption, measurements and Theory. Journal of Chemical Information and Modeling. Elsevier. v. 53, n. 9, 297 p., 2013. 124) BRUNAUER, S.; Deming, L. S.; Deming, W. S.; Teller, E.; On the theory of the van der Waals adsorption gases. J. Am. Chem. Soc. v. 62, p. 1723-1732, 1940. 139 125) GREGG, S. J.; SING, K. S. W. Adsorption, Surface Area and Porosity, ed. 2. Academic Press, London, 1982. 126) GON?ALVES, M. L. S?lidos Micro-Mesoestruturados Tipo Ze?lita Zsm-5/Peneira Molecular Mcm-41 - S?ntese E Estudo De Propriedades. Disserta??o (Mestrado), 130 f. Centro de Ci?ncias Exatas e de Tecnologia, Universidade Federal de S?o Carlos, S?o Carlos, 2006. 127) PALIK, E. S. Specific surface ?rea measurements on ceramic powders. Powder technology, v. 18, n. 1., p. 45-48, 1977. 128) BARRET, E. P.; JOYNER, L. G.; HALENDA, P. P. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. Journal of the American Chemical Society, v. 73, p. 373, 1951. 129) HUDEC, P. et al. Determination of microporous structure of zeolites by t-plot method? State-of-the-art. Studies in Surface Science and Catalysis, v. 142, p. 1587?1594, 2002. 130) MINTOVA, S.; CEJKA,J. Chapter 9 ? Micro/mesoporous composites. In: JIR? CEJKA, et al. (Ed.). Studies in surface science and Catalysis: Elsevier, v. 168, p. 301-326, 2007. 131) LOK, B. M.; MARCUS, B. K.; ANGELL, C. L. Characterization of zeolite acidity. II. Measurement of zeolite acidity by ammonia temperature programmed desorption and FTi.r. spectroscopy techniques. Zeolites, v. 6, n. 3, p. 185-194, 5// 1986. ISSN 0144-2449. Dispon?vel em: <http://www.sciencedirect.com/science/article/pii/0144244986900461>. 132) L?NYI, F.; VALYON, J. On the interpretation of the NH3-TPD patterns of H-ZSM-5 and Hmordenite. Microporous and Mesoporous Materials, v. 47, 293, 2001. 133) TRIANTAFYLLIDIS, K. S. et al. Structural, compositional and acidic characteristics of nanosized amorphous or partially crystalline ZSM-5 zeolite-based materials. Microporous Mesoporous Mater., v. 75, p. 89?100, 2004. 134) CHEN, N. Y.; GARWOOD, W. E. Industrial applications of chape selective catalysis, Catal. Rev. ? Sci. Eng. v. 28, p. 185, 1986. 135) SILVA, J. B.; RODRIGUES, J. A. J.; NONO, M. D. C. D. A. Caracteriza??o de Materiais Catal?ticos. 2008. 71 (Doutorado). Engenharia e Tecnologia Espaciais/Ci?ncia e Tecnologia de Materiais e Sensores, S?o Jos? dos Campos-SP. 136) GON?ALVES, A. A. S. Craqueamento de Cicloexano sobre Ze?litas Acidas: Atividade, Seletividade e Influ?ncia da Presen?a de Mesoporosidade. Disserta??o (Mestrado). Centro de Ci?ncias Exatas e de Tecnologia, Universidade Federal de S?o Carlos, S?o Carlos, 2012. 137) Lopes, Glenda Cristina da Silva, Produ??o de mordenita mesoporosa por s?ntese direta usando diferentes direcionadores / Glenda Cristina da Silva Lopes. ? 2016 138) SCHNEIDER, P. Adsorption Isotherms of Microporous-Mesoporous Solids Revisited. Applied Catalysis A: General, v. 129, p. 157, 1995. 140 139) RAMOS, M. S.; GRECCO, S. T.; GOMES, L. P.; OLIVEIRA, A. C.; REYES, P.; OPORTUS, M.; RANGEL, M. C. Evaluation of MY Zeolites (M= Pt, Pd, Ni) in the Transalkylation of Trimethylbenzene with Benzene. Studies in Surface Science and Catalysis, v. 156, p. 809, 2005. 140) WANG, J.; HUANG, L.; CHEN, H.; LI, Q. Acid Function of Al MCM 41 Supported Platinum Catalysts in Hydrogenation of Benzene, Toluene O Xylene. Catalysis Letters, v. 55, p. 157, 1998.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Engenharia Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6497/4/2021+-+Julio+Cesar+Gomes+de+Almeida.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6497/3/2021+-+Julio+Cesar+Gomes+de+Almeida.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6497/2/2021+-+Julio+Cesar+Gomes+de+Almeida.pdf
http://localhost:8080/tede/bitstream/jspui/6497/1/license.txt
bitstream.checksum.fl_str_mv a156b812e2e807fd8b2d710f7f696a26
d9b5b984f818473f6b5563b354e76d97
a6bcabbf4edd155f0095f62c717591ac
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313569611350016