Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos

Detalhes bibliográficos
Autor(a) principal: Franzan, Bruna Caroline
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9242
Resumo: A microbiota intestinal tem importância fundamental na nutrição e na saúde dos equinos e é influenciada por diversos fatores. Esse trabalho teve como objetivo avaliar uma dieta completa extrusada (CED) na alimentação de equinos e os fatores dietéticos que influenciam o microbioma fecal. Os equinos alimentados com a CED tiveram menor consumo de água e fibra, maior consumo de matéria seca (MS), extrato etéreo e energia bruta, menor produção e pH fecal. A digestibilidade da MS, matéria orgânica, extrato etéreo, proteína bruta e energia bruta foram superiores na CED. O tempo médio de retenção da digesta (TMR) da CED foi menor quando comparado a dieta de feno de Coastcross (CHD) quando estimado pelo marcador LIPE®. A abundância relativa do filo Actinobacteria foi maior após 28 dias de consumo de CHD comparado a 7 dias de consumo. A adaptação gradual de equinos ao consumo de CED afetou os filos Verrucomicrobia, Synergistetes, Tenericutes e Lentisphaerae. A inclusão de 30% de CED na dieta afeta a abundância de grupos bacterianos relacionados a atividade fermentativa, entretanto, a diversidade de espécies bacterianas das fezes foi mantida até o momento de consumo de 60% CED e 40% de CHD. A troca abrupta do CHD para CED resultou em redução do pH fecal 96 horas após a troca e redução da diversidade de espécies bacterianas 24 horas após a troca. Além disso, afetou os filos Bacteroidetes, Firmicutes, Verrucomicrobia, Proteobacteria, Elusimicrobia e Actinobacteria. A troca abrupta da CED para CHD resultou em redução do pH fecal em 24 horas após a troca e aumento da diversidade de espécies bacterianas 96 horas após a troca. Além disso, afetou os filos Synergistetes e Lentisphaerae. Por fim, ambas as trocas de dietas resultaram no aumento da abundância relativa de OTUs classificadas como Bacteroidetes e Treponema 24 horas após a troca. A suplementação com prebiótico inulina (PRE), probiótico Saccharomyces cerevisiae (PRO) e simbiótico inulina + Saccharomyces cerevisiae (SIM) não influenciou os índices de diversidade bacteriana observadas nas fezes de potros no período de desmame. A suplementação com PRE aumentou a classe Bacilli nas fezes dos potros lactentes em comparação ao grupo controle. O pH fecal dos potros suplementados com PRE foi superior ao grupo controle. A suplementação com PRO e SIM aumentou as classes Erysipelotrichia e Saccharimonadia, respectivamente, após três dias de consumo, entretanto, o efeito não foi prolongado. Além disso, houve diferença dos microbiomas fecais entre os sexos dos potros. Portanto, conclui-se que a CED pode ser usada na alimentação de equinos, desde que seja feito adaptação gradual. A composição da dieta e a suplementação com aditivos afetam o microbioma fecal de equinos e sua resposta a mudanças dietéticas.
id UFRRJ-1_7202333de99656d5d177e4625d3dacdc
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9242
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Franzan, Bruna CarolineSilva, Vinicius Pimentel297.639.108-46Almeida, Fernando Queiroz deSilva, Vinicius PimentelManso Filho, CordeiroCosta, Márcio CarvalhoCoelho, Irene da SilvaAlmeida, Maria Izabel Vieira de106.175.936-98https://orcid.org/0000-0002-3290-6304http://lattes.cnpq.br/80125047394406382023-12-21T18:36:49Z2023-12-21T18:36:49Z2021-02-26FRANZAN, Bruna Caroline. Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos. 2021. 130 f. Tese (Doutorado em Ciência Animal) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/9242A microbiota intestinal tem importância fundamental na nutrição e na saúde dos equinos e é influenciada por diversos fatores. Esse trabalho teve como objetivo avaliar uma dieta completa extrusada (CED) na alimentação de equinos e os fatores dietéticos que influenciam o microbioma fecal. Os equinos alimentados com a CED tiveram menor consumo de água e fibra, maior consumo de matéria seca (MS), extrato etéreo e energia bruta, menor produção e pH fecal. A digestibilidade da MS, matéria orgânica, extrato etéreo, proteína bruta e energia bruta foram superiores na CED. O tempo médio de retenção da digesta (TMR) da CED foi menor quando comparado a dieta de feno de Coastcross (CHD) quando estimado pelo marcador LIPE®. A abundância relativa do filo Actinobacteria foi maior após 28 dias de consumo de CHD comparado a 7 dias de consumo. A adaptação gradual de equinos ao consumo de CED afetou os filos Verrucomicrobia, Synergistetes, Tenericutes e Lentisphaerae. A inclusão de 30% de CED na dieta afeta a abundância de grupos bacterianos relacionados a atividade fermentativa, entretanto, a diversidade de espécies bacterianas das fezes foi mantida até o momento de consumo de 60% CED e 40% de CHD. A troca abrupta do CHD para CED resultou em redução do pH fecal 96 horas após a troca e redução da diversidade de espécies bacterianas 24 horas após a troca. Além disso, afetou os filos Bacteroidetes, Firmicutes, Verrucomicrobia, Proteobacteria, Elusimicrobia e Actinobacteria. A troca abrupta da CED para CHD resultou em redução do pH fecal em 24 horas após a troca e aumento da diversidade de espécies bacterianas 96 horas após a troca. Além disso, afetou os filos Synergistetes e Lentisphaerae. Por fim, ambas as trocas de dietas resultaram no aumento da abundância relativa de OTUs classificadas como Bacteroidetes e Treponema 24 horas após a troca. A suplementação com prebiótico inulina (PRE), probiótico Saccharomyces cerevisiae (PRO) e simbiótico inulina + Saccharomyces cerevisiae (SIM) não influenciou os índices de diversidade bacteriana observadas nas fezes de potros no período de desmame. A suplementação com PRE aumentou a classe Bacilli nas fezes dos potros lactentes em comparação ao grupo controle. O pH fecal dos potros suplementados com PRE foi superior ao grupo controle. A suplementação com PRO e SIM aumentou as classes Erysipelotrichia e Saccharimonadia, respectivamente, após três dias de consumo, entretanto, o efeito não foi prolongado. Além disso, houve diferença dos microbiomas fecais entre os sexos dos potros. Portanto, conclui-se que a CED pode ser usada na alimentação de equinos, desde que seja feito adaptação gradual. A composição da dieta e a suplementação com aditivos afetam o microbioma fecal de equinos e sua resposta a mudanças dietéticas.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe intestinal microbiota plays important role in horse’s nutrition and health. This work aimed to evaluate a complete extruded diet (CED) to fed horses and the dietary factors that influence the faecal microbiome. Horses fed a CED had lower water and fiber intakes, higher dry matter (DM), ether extract and gross energy intakes, and lower production and fecal pH. The DM, organic matter, ether extract, crude protein and crude energy digestibility were superior in the CED. The CED mean retention time (MRT) was shorter compared to the Coastcross hay diet (CHD), when obtained by LIPE® marker. CHD intake for 21 days increased the abundance of Actinobacteria. The gradual adaptation of horses to the CED intake affected the phylum Verrucomicrobia, Synergistetes, Tenericutes and Lentisphaerae. The inclusion of 30% CED in the diet affects the abundance of bacterial groups in the fermentative activity, however, the diversity of bacterial species in the feces was maintained until the moment of 60% CED and 40% CHD intakes. The abrupt diet change from CHD to CED resulted in a reduction in faecal pH 96 hours after change and a bacterial diversity reduction 24 hours after chance. In addition, it affected the phyla Bacteroidetes, Firmicutes, Verrucomicrobia, Proteobacteria, Elusimicrobia and Actinobacteria. The abrupt change from CED to CHD resulted in a reduction in fecal pH 24 hours after the change and a bacterial species diversity increases of 96 hours after change. In addition, it affected the phyla Synergistetes and Lentisphaerae. Finally, both diet changes resulted in an increase in the abundance of OTUs classified as Bacteroidetes and Treponema 24 hours after change. Supplementation with prebiotic inulin (PRE), probiotic Saccharomyces cerevisiae (PRO) and symbiotic inulin + S. cerevisiae (SIM) did not influence the bacterial diversity species observed in the feces of foals during weaning. The supplementation with PRE increased the Bacilli class in the feces of suckling foals. The fecal pH of foals supplemented with PRE was higher than the control group. PRO and SIM supplementation increased the classes Erysipelotrichia and Saccharimonadia, respectively, after three days, however, the effect was not prolonged. In addition, there was a difference in fecal microbiomes between the sexes of foals. Therefore, it is concluded that CED can be used to feed horses, as long as a gradual adaptation is made. The composition of the diet and additives supplementation affect the fecal microbiome of horses and their response to dietary changes.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência AnimalUFRRJBrasilInstituto de Zootecniadieta completafermentaçãofibramicrobiotasimbióticocomplete dietfermentationfibermicrobiotasimbioticZootecniaDietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinosDiets, prebiotic and probiotic in the intestinal microbiome of equinesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAL JASSIM, R. A. M.; ANDREWS, F. M. The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. Veterinary Clinics: Equine Practice, v. 25, n. 2, p. 199-215, 2009. AL JASSIM, R. A.; SCOTT, P. T.; TREBBIN, A. L.; TROTT, D.; POLLITT, C. C. The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract. FEMS Microbiology Letters, v. 248, n. 1, p. 75-81, 2005. ALEXANDER, F.; DAVIES, M. E.; MUIR, A. R. Bacteriophage-like particles in the large intestine of the horse. Research in veterinary science, v. 11, p. 592-593, 1970. ALMEIDA, M. L. M.; FERINGER JÚNIOR, W. H.; CARVALHO, J. R. G.; RODRIGUES, I. M.; JORDÃO, L. R.; FONSECA, M. G.; REZENDE, A. S. C.; QUEIROZ NETO, A.; WEESE, J. S.; COSTA, M. C. LEMOS, E. G. M.; FERRAZ, G. C. Intense exercise and aerobic conditioning associated with chromium or L-carnitine supplementation modified the fecal microbiota of fillies. PloS one, v. 11, n. 12, p. e0167108, 2016. ANDREW, J. E.; KLINE, K. H.; SMITH, J. L. Effects of feed form on growth and blood glucose in weanling horses. Journal of Equine Veterinary Science, v. 26, n. 8, p. 349-355, 2006. ANTWIS, R. E.; LEA, J. M.; UNWIN, B.; SHULTZ, S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome, v. 6, n. 1, p. 1-11, 2018. ARGO, C. McG.; COX, J. E.; LOCKYER, C.; FULLER, Z. Adaptive changes in the appetite, growth and feeding behaviour of pony mares offered ad libitum access to a complete diet in either a pelleted or chaff-based form. Animal Science, v. 74, n. 3, p. 517-528, 2002. BARUC, C. J. The characterization and nitrogen metabolism of equine cecal bacteria. 1983. Tese de Doutorado. University of Kentucky. BATISTA, A. C.; VASCONCELOS, C. T.; FISCHMAN, O.; SILVA, J. O. Flora micótica intestinal de equinos e asininos, no Recife. Boletim do Instituto de Micologia da Universidade de Recife, v. 326, p. 1-16, 1961. BERG, E. L.; FU, C. J.; PORTER, J. H.; KERLEY, M. S. Fructooligosaccharide supplementation in the yearling horse: effects on fecal pH, microbial content, and volatile fatty acid concentrations. Journal of animal science, v. 83, n. 7, p. 1549-1553, 2005. BIDDLE, A. S.; BLACK, S. J.; BLANCHARD, J. L. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PloS one, v. 8, n. 10, p. e77599, 2013. BLACKMORE, T. M.; DUGDALE, A.; ARGO, C. M.; CURTIS, G.; PINLOCHE, E.; HARRIS, P. A., WORGAN, H. J.; GIRDWOOD, S. E.; DOUGAL, K.; NEWBOLD, C. J.; MCEWAN, N. R. Strong stability and host specific bacterial community in faeces of ponies. PLoS One, v. 8, n. 9, p. e75079, 2013. BONHOMME, A. Attachment of horse cecal bacteria to forage cell walls. The Japanese Journal of Veterinary Science, v. 48, n. 2, p. 313-322, 1986. BORDIN, A. I.; SUCHODOLSKI, JAN S.; MARKEL, MELISSA E.; WEAVER, KAYTEE B.; STEINER, J. M.; DOWD, S. E.; PILLAI, S.; COHEN, N. D. Effects of administration of live or inactivated virulent Rhodococccus equi and age on the fecal microbiome of neonatal foals. PloS one, v. 8, n. 6, p. e66640, 2013. CANN, A. J.; FANDRICH, S. E.; HEAPHY, S. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus genes, v. 30, n. 2, p. 151-156, 2005. COSTA, M. C., STÄMPFLI, H. R., ARROYO, L. G., ALLEN-VERCOE, E., GOMES, R. G., & WEESE, J. S. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC veterinary research, v. 11, n. 1, p. 19, 2015b. COSTA, M. C.; ARROYO, L. G.; ALLEN-VERCOE, E.; STÄMPFLI, H. R.; KIM, P. T.; STURGEON, A.; WEESE, J. S. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PloS one, v. 7, n. 7, p. e41484, 2012. COSTA, M. C.; SILVA, G.; RAMOS, R. V.; STAEMPFLI, H. R.; ARROYO, L. G.; KIM, P.; WEESE, J. S. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. The Veterinary Journal, v. 205, n. 1, p. 74-80, 2015a. COSTA, M. C.; STÄMPFLI, H. R.; ALLEN‐VERCOE, E.; WEESE, J. S. Development of the faecal microbiota in foals. Equine veterinary journal, v. 48, n. 6, p. 681-688, 2016. COSTA, M. C.; WEESE, J. S. The equine intestinal microbiome. Animal Health Research Reviews, v. 13, n. 1, p. 121-128, 2012. COSTA, M. C.; WEESE, J. S. Understanding the Intestinal Microbiome in Health and Disease. The Veterinary clinics of North America. Equine practice, 2018. COVERDALE, J. A. HORSE SPECIES SYMPOSIUM: Can the microbiome of the horse be altered to improve digestion?. Journal of animal science, v. 94, n. 6, p. 2275-2281, 2016. CURTIS, L.; BURFORD, J. H.; ENGLAND, G. C.; FREEMAN, S. L. Risk factors for acute abdominal pain (colic) in the adult horse: A scoping review of risk factors, and a systematic review of the effect of management-related changes. PloS one, v. 14, n. 7, p. e0219307, 2019. DALY, K.; PROUDMAN, C. J.; DUNCAN, S. H.; FLINT, H. J.; DYER, J.; SHIRAZI-BEECHEY, S. P. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease. British Journal of Nutrition, v. 107, n. 7, p. 989-995, 2012. DALY, K.; SHIRAZI-BEECHEY, S. P. Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora. FEMS Microbiology ecology, v. 44, n. 2, p. 243-252, 2003. DALY, K.; STEWART, C. S.; FLINT, H. J.; SHIRAZI-BEECHEY, S. P. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS microbiology ecology, v. 38, n. 2-3, p. 141-151, 2001. DE FOMBELLE, A.; JULLIAND, V.; DROGOUL, C.; JACOTOT, E. Feeding and microbial disorders in horses: 1-Effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. Journal of Equine Veterinary Science, v. 21, n. 9, p. 439-445, 2001. DE FOMBELLE, A.; VARLOUD, M.; GOACHET, A. G.; JACOTOT, E.; PHILIPPEAU, C.; DROGOUL, C.; JULLIAND, V. Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets. Animal Science, v. 77, n. 2, p. 293-304, 2003. DOUGAL, K., DE LA FUENTE, G., HARRIS, P. A., GIRDWOOD, S. E., PINLOCHE, E., GEOR, R. J.; NIELSEN, B. D.; SCHOTT II, H. C.; ELZINGA, S.; NEWBOLD, C. J. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PloS one, v. 9, n. 2, p. e87424, 2014. DOUGAL, K.; DE LA FUENTE, G.; HARRIS, P. A.; GIRDWOOD, S. E.; PINLOCHE, E.; NEWBOLD, C. J. Identification of a core bacterial community within the large intestine of the horse. PloS one, v. 8, n. 10, p. e77660, 2013. DOUGAL, K.; HARRIS, P. A.; EDWARDS, A.; PACHEBAT, J. A.; BLACKMORE, T. M.; WORGAN, H. J.; NEWBOLD, C. J. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS microbiology ecology, v. 82, n. 3, p. 642-652, 2012. DOUGAL, K.; HARRIS, P. A.; GIRDWOOD, S. E.; CREEVEY, C. J.; CURTIS, G. C.; BARFOOT, C. F.; ARGO, C. M.; NEWBOLD, C. J. Changes in the Total Fecal Bacterial Population in Individual Horses Maintained on a Restricted Diet Over 6 Weeks. Frontiers in microbiology, v. 8, p. 1502, 2017. EARING, J. E.; DURIG, A. C.; GELLIN, G. L.; LAWRENCE, L. M.; FLYTHE, M. D. Bacterial colonization of the equine gut; comparison of mare and foal pairs by PCR-DGGE. Advances in Microbiology, v. 2, n. 02, p. 79, 2012. EARLE, I. P. Compression of complete diets for horses. Journal of animal science, v. 9, n. 3, p. 255-260, 1950. EDWARDS, J. E.; SHETTY, S. A.; VAN DEN BERG, P.; BURDEN, F.; VAN DOORN, D. A.; PELLIKAAN, W. F.; DIJKSTRA, J.; SMIDT, H. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub) species. Animal Microbiome, v. 2, n. 1, p. 1-16, 2020. ELIA, J. B.; ERB, H. N.; HOUPT, K. A. Motivation for hay: effects of a pelleted diet on behavior and physiology of horses. Physiology & behavior, v. 101, n. 5, p. 623-627, 2010. ELZINGA, S. E.; WEESE, J. S.; ADAMS, A. A. Comparison of the fecal microbiota in horses with equine metabolic syndrome and metabolically normal controls fed a similar all-forage diet. Journal of Equine Veterinary Science, v. 44, p. 9-16, 2016. ENDO, A.; FUTAGAWA-ENDO, Y.; DICKS, L. M. T. Lactobacillus and Bifidobacterium diversity in horse feces, revealed by PCR-DGGE. Current microbiology, v. 59, n. 6, p. 651-655, 2009. ENDO, A.; OKADA, S.; MORITA, H. Molecular profiling of Lactobacillus, Streptococcus, and Bifidobacterium species in feces of active racehorses. The Journal of general and applied microbiology, v. 53, n. 3, p. 191-200, 2007. ENDO, A.; ROOS, S.; SATOH, E.; MORITA, H.; OKADA, S. Lactobacillus equigenerosi sp. nov., a coccoid species isolated from faeces of thoroughbred racehorses. International journal of systematic and evolutionary microbiology, v. 58, n. 4, p. 914-918, 2008. ERBER, Regina et al. Behavioral and physiological responses of young horses to different weaning protocols: a pilot study. Stress, v. 15, n. 2, p. 184-194, 2012. FAO/WHO. Working group for drafting guidelines for the evaluation of probiotics in food. 2002. Available at: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf. Acessado em 5 de Dezembro de 2020. FAUBLADIER, C.; JULLIAND, V.; BEUNEICHE, L.; PHILIPPEAU, C. Comparative fibre-degrading capacity in foals at immediate and late post-weaning periods. animal, v. 11, n. 9, p. 1497-1504, 2017. FAUBLADIER, C.; JULLIAND, V.; DANEL, J.; PHILIPPEAU, C. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products. British Journal of Nutrition, v. 110, n. 6, p. 1040-1052, 2013. FAUBLADIER, C.; SADET-BOURGETEAU, S.; PHILIPPEAU, C.; JACOTOT, E.; JULLIAND, V. Molecular monitoring of the bacterial community structure in foal feces pre-and post-weaning. Anaerobe, v. 25, p. 61-66, 2014. FERNANDES, K. A.; KITTELMANN, S.; ROGERS, C. W.; GEE, E. K.; BOLWELL, C. F.; BERMINGHAM, E. N.; THOMAS, D. G. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PloS one, v. 9, n. 11, p. e112846, 2014. FLIEGEROVA, K.; MURA, E.; MRÁZEK, J.; MONIELLO, G. A comparison of microbial profiles of different regions of the equine hindgut. Livestock Science, v. 190, p. 16-19, 2016. FLINT, H. J.; BAYER, E. A. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Annals of the New York Academy of Sciences, v. 1125, n. 1, p. 280-288, 2008. FOOKS, L. J.; GIBSON, G. R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology, v. 39, n. 1, p. 67-75, 2002. GAILLARD‐MARTINIE, B.; BRETON, A.; DUSSER, M.; JULLIAND, V. Piromyces citronii sp. nov., a strictly anaerobic fungus from the equine caecum: a morphological, metabolic, and ultrastructural study. FEMS microbiology letters, v. 130, n. 2-3, p. 321-326, 1995. GARBER, A., HASTIE, P., MCGUINNESS, D., MALARANGE, P., & MURRAY, J. A. Abrupt dietary changes between grass and hay alter faecal microbiota of ponies. PlosOne, v. 15, n. 8, p. E0237869, 2020. GARNER, H. E.; MOORE, J. N.; JOHNSON, J. H.; CLARK, L.; AMEND, J. F.; TRITSCHLER, L. G.; SALEM, C. A. Changes in the caecal flora associated with the onset of laminitis. Equine Veterinary Journal, v. 10, n. 4, p. 249-252, 1978. GEYER, H.; DREPPER, K. Mikrobielle Einwirkungen auf die Verdauung beim Pferd. Biologie und Biochemie der Verdauung. BLV Verlagsgesellschaft, München, Germany, 1973. GIBSON, G. R.; PROBERT, H. M.; VAN LOO, J.; RASTALL, R. A.; ROBERFROID, M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition research reviews, v. 17, n. 2, p. 259-275, 2004. GOACHET, A. G.; VARLOUD, M.; PHILIPPEAU, C.; JULLIAND, V. Long‐term effects of endurance training on total tract apparent digestibility, total mean retention time and faecal microbial ecosystem in competing Arabian horses. Equine Veterinary Journal, v. 42, p. 387-392, 2010. GOLOMIDOVA, A.; KULIKOV, E.; ISAEVA, A.; MANYKIN, A.; LETAROV, A. The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Applied and environmental Microbiology, v. 73, n. 19, p. 5975-5981, 2007. GOODSON, J.; TYZNIK, W. J.; CLINE, J. H.; DEHORITY, B. A. Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony. Applied and Environmental Microbiology, v. 54, n. 8, p. 1946-1950, 1988. GRIMM, P.; DE BARROS, J. P. P.; JULLIAND, V. Impact of diet on bacterial lipopolysaccharides in equine feces and blood. Livestock Science, v. 215, p. 2-6, 2018. GRIMM, P.; JULLIAND, V.; PHILIPPEAU, C.; SADET-BOURGETEAU, S. Effect of yeast supplementation on hindgut microbiota and digestibility of horses subjected to an abrupt change of hays. Livestock Science, v. 186, p. 34-40, 2016. GRØNVOLD, A. M. R.; L‘ABÉE-LUND, T. M.; STRAND, E.; SØRUM, H.; YANNARELL, A. C.; MACKIE, R. I. Fecal microbiota of horses in the clinical setting: potential effects of penicillin and general anesthesia. Veterinary microbiology, v. 145, n. 3-4, p. 366-372, 2010. HAENLEIN, G. F. W.; HOLDREN, R. D.; YOON, Y. M. Comparative response of horses and sheep to different physical forms of alfalfa hay. Journal of Animal Science, v. 25, n. 3, p. 740-743, 1966. HANSEN, N. C. K.; AVERSHINA, E.; MYDLAND, L. T.; NÆSSET, J. A.; AUSTBØ, D.; MOEN, B.; MAGE, I.; RUDI, K. High nutrient availability reduces the diversity and stability of the equine caecal microbiota. Microbial ecology in health and disease, v. 26, n. 1, p. 27216, 2015. HARHANGI, H. R.; FREELOVE, A. C.; UBHAYASEKERA, W.; VAN DINTHER, M., STEENBAKKERS, P. J.; AKHMANOVA, A.; VAN DER DRIFT, C.; JETTEN, M. S.; MOWBRAY, S. L.; GILBERT, H. J. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, v. 1628, n. 1, p. 30-39, 2003. HARLOW, B. E.; KAGAN, I. A.; LAWRENCE, L. M.; FLYTHE, M. D. Effects of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis. Journal of Equine Veterinary Science, v. 48, p. 113-120. e1, 2017b. HARLOW, B. E.; LAWRENCE, L. M.; FLYTHE, M. D. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: Responses to antibiotic challenge. Veterinary microbiology, v. 166, n. 1-2, p. 225-232, 2013. HARLOW, B. E.; LAWRENCE, L. M.; HARRIS, P. A.; AIKEN, G. E.; FLYTHE, M. D. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo. PloS one, v. 12, n. 3, p. e0174059, 2017a. HARLOW, B. E.; LAWRENCE, L. M.; HAYES, S. H.; CRUM, A.; FLYTHE, M. D. Effect of dietary starch source and concentration on equine fecal microbiota. PloS one, v. 11, n. 4, p. e0154037, 2016. HASTIE, P. M.; MITCHELL, K.; MURRAY, J.A. M. D. Semi-quantitative analysis of Ruminococcus flavefaciens, Fibrobacter succinogenes and Streptococcus bovis in the equine large intestine using real-time polymerase chain reaction. British Journal of Nutrition, v. 100, n. 3, p. 561-568, 2008. HAYES, S.; WERNER, H.; LAWRENCE, L. In vitro assessment of fiber digestion capacity in foals. Proceedings of the 18th Equine Nutrition and Physiology Sympsosium, East Lansing, MI, USA, p. 273-274, 2003. HINTZ, H. F.; LOY, R. G. Effects of pelleting on the nutritive value of horse rations. Journal of Animal Science, v. 25, n. 4, p. 1059-1062, 1966. HYSLOP, J. J. Voluntary feed intake, apparent digestibility an nutritive values in ponies given ad libitum access to complete pelleted diets containing different levels of unmolassed sugar beet pulp. British Society of Animal Science (BSAS Ed.), p. 32, 2002. JANSEN, W. L.; CONE, J. W.; GEELEN, S. N. J.; VAN OLDRUITENBORGH-OOSTERBAAN, M. S.; VAN GELDER, A. H.; ELFERINK, S. O.; BEYNEN, A. C. High fat intake by ponies reduces both apparent digestibility of dietary cellulose and cellulose fermentation by faeces and isolated caecal and colonic contents. Animal feed science and technology, v. 133, n. 3-4, p. 298-308, 2007. JENKINS, T. C.; PALMQUIST, D. L. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science, v. 67, n. 5, p. 978-986, 1984. JOHN, J.; ROEDIGER, K.; SCHROEDL, W.; ALDAHER, N.; VERVUERT, I. Development of intestinal microflora and occurrence of diarrhoea in sucking foals: effects of Bacillus cereus var. toyoi supplementation. BMC veterinary research, v. 11, n. 1, p. 34, 2015. JOUANY, J. P.; MEDINA, B.; BERTIN, G.; JULLIAND, V. Effect of live yeast culture supplementation on hindgut microbial communities and their polysaccharidase and glycoside hydrolase activities in horses fed a high-fiber or high-starch diet. Journal of animal science, v. 87, n. 9, p. 2844-2852, 2009. JULLIAND, V.; DE FOMBELLE, A.; DROGOUL, C.; JACOTOT, E. Feeding and microbial disorders in horses: Part 3—Effects of three hay: grain ratios on microbial profile and activities. Journal of Equine Veterinary Science, v. 21, n. 11, p. 543-546, 2001. JULLIAND, V.; DE VAUX, A.; MILLET, L.; FONTY, G. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Applied and environmental microbiology, v. 65, n. 8, p. 3738-3741, 1999. JULLIAND, V.; DEVAUX, A.; VILLARO, L.; RICHARD, Y. Preliminary studies on the bacterial flora of faeces taken from foals, from birth to twelve weeks. Effect of the oral administration of a commercial colostrum replacer. Pferdeheilkunde, v. 12, n. 3, p. 209-212, 1996. JULLIAND, V.; GOACHET, A. G. Fecal microflora as a marker of cecal or colonic microflora in horses. In: Proceedings of the19th Equine Science Symposium. p. 140-1. 2005. JULLIAND, V.; GRIMM, P. HORSE SPECIES SYMPOSIUM: The microbiome of the horse hindgut: History and current knowledge. Journal of animal science, v. 94, n. 6, p. 2262-2274, 2016. JULLIAND, V.; GRIMM, P. The impact of diet on the hindgut microbiome. Journal of equine veterinary science, v. 52, p. 23-28, 2017. JULLIAND, V.; RIONDET, C.; DE VAUX, A.; ALCARAZ, G.; FONTY, G. Comparison of metabolic activities between Piromyces citronii, an equine fungal species, and Piromyces communis, a ruminal species. Animal feed science and technology, v. 70, n. 1-2, p. 161-168, 1998. KABE, A. M. G.; DE SOUZA, A. D.; SOUSA, R. L. M.; BUENO, I. C. S.; MOTA, T. P.; CRANDELL, K.; INGRID VERVUERT, I.; CORREA, G. F.; BRANDI, R. A. Soybean hulls in equine feed concentrates: Apparent nutrient digestibility, physicochemical and microbial characteristics of equine feces. Journal of Equine Veterinary Science, v. 36, p. 77-82, 2016. KERN, D. L.; SLYTER, L. L.; LEFFEL, E. C.; WEAVER, J. M.; OLTJEN, R. R. Ponies vs. Steers: Microbial and Chemical Characteristics of Intestinal Ingesta 1. Journal of Animal Science, v. 38, n. 3, p. 559-564, 1974. KERN, D. L.; SLYTER, L. L.; WEAVER, J. M.; LEFFEL, E. C.; SAMUELSONS, G. Pony cecum vs. steer rumen: the effect of oats and hay on the microbial ecosystem. Journal of Animal Science, v. 37, n. 2, p. 463-469, 1973. KOLLARCZIK, B.; ENDERS, C.; FRIEDRICH, M.; GEDEK, B. Auswirkungen der Rationszusammensetzung auf das Keimspektrum im Jejunum von Pferden. In: Europäische Konferenz über die Ernährung des pferdes. Physiologie und Pathologie des Verdauungskanals–Konsequenzen für die Ernährung, Hannover, Germany. 1992. KULIKOV, E. E.; ISAEVA, A. S.; ROTKINA, A. S.; MANYKIN, A. A.; LETAROV, A. V. Diversity and dynamics of bacteriophages in horse feces. Microbiology, v. 76, n. 2, p. 236-242, 2007. LWIN, K.-O.; MATSUI, H. Comparative analysis of the methanogen diversity in horse and pony by using mcrA gene and archaeal 16S rRNA gene clone libraries. Archaea, v. 2014, 2014. MACH, N.; FOURY, A.; KITTELMANN, S.; REIGNER, F.; MOROLDO, M.; BALLESTER, M.; ESQUERRÉ, D.; RIVIÈRE, J.; SALLÉ, G.; GÉRARD, P.; MOISAN, M.; LANSADE, L. The effects of weaning methods on gut microbiota composition and horse physiology. Frontiers in physiology, v. 8, p. 535, 2017. MACKIE, R. I.; WILKINS, C. A. Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Applied and environmental microbiology, v. 54, n. 9, p. 2155-2160, 1988. MACZULAK, A. E.; DAWSON, K. A.; BAKER, J. P. Nitrogen utilization in bacterial isolates from the equine cecum. Applied and environmental microbiology, v. 50, n. 6, p. 1439-1443, 1985. MAPA - Ministério da Agricultura Pecuária e Abastecimento. Revisão do Estudo do Complexo do Agronegócio do Cavalo. 2016. Disponível: https://www.gov.br/agricultura/pt-br/assuntos/camaras-setoriais-tematicas/documentos/ camaras-setoriais/equideocultura/anos-anteriores/revisao-do-estudo-do-complexo-do-agronegocio-do-cavalo/view MARCHESI, J. R.; RAVEL, J. The vocabulary of microbiome research: a proposal. Microbiome. v3, p.31, 2015. MEDINA, B.; GIRARD, I. D.; JACOTOT, E.; JULLIAND, V. Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. Journal of Animal Science, v. 80, n. 10, p. 2600-2609, 2002. METCALF, J. L.; SONG, S. J.; MORTON, J. T.; WEISS, S.; SEGUIN-ORLANDO, A.; JOLY, F.; FEH, C.; TABERLET, P.; COISSAC, E.; AMIR, A.; WILLERSLEV, E.; KNIGHT, R.; MCKENZIE, V. ORLANDO, L. Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific reports, v. 7, n. 1, p. 1-9, 2017. MILINOVICH, G. J., TROTT, D. J., BURRELL, P. C., VAN EPS, A. W., THOEFNER, M. B., BLACKALL, L. L.; AL JASSIM, R. A. M.; MORTON, J. M.; POLLITT, C. C. Changes in equine hindgut bacterial populations during oligofructose‐induced laminitis. Environmental microbiology, v. 8, n. 5, p. 885-898, 2006. MILINOVICH, G. J.; BURRELL, P. C.; POLLITT, C. C.; BOUVET, A.; TROTT, D. J. Streptococcus henryi sp. nov. and Streptococcus caballi sp. nov., isolated from the hindgut of horses with oligofructose-induced laminitis. International journal of systematic and evolutionary microbiology, v. 58, n. 1, p. 262-266, 2008. MILINOVICH, G. J.; TROTT, D. J.; BURRELL, P. C.; CROSER, E. L.; AL JASSIM, R. A.; MORTON, J. M.; POLLITT, C. C. Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis. Environmental microbiology, v. 9, n. 8, p. 2090-2100, 2007. MIRAGLIA, N.; BERGERO, D.; POLIDORI, M.; PEIRETTI, P. G.; LADETTO, G. The effects of a new fibre-rich concentrate on the digestibility of horse rations. Livestock Science, v. 100, n. 1, p. 10-13, 2006. MOORE, B. E.; DEHORITY, B. A. Effects of diet and hindgut defaunation on diet digestibility and microbial concentrations in the cecum and colon of the horse. Journal of Animal Science, v. 71, n. 12, p. 3350-3358, 1993. MOREAU, M. M., EADES, S. C., REINEMEYER, C. R., FUGARO, M. N., & ONISHI, J. C. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse. Veterinary microbiology, v. 168, n. 2-4, p. 436-441, 2014. MORITA, H.; SHIRATORI, C.; MURAKAMI, M.; TAKAMI, H.; KATO, Y.; ENDO, A.; NAKAJIMA, F.; TAKAGI, M.; AKITA, H.; OKADA, S.; MASAOKA, T. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. International journal of systematic and evolutionary microbiology, v. 57, n. 12, p. 2836-2839, 2007. MOROTOMI, M., YUKI, N., KADO, Y., KUSHIRO, A., SHIMAZAKI, T., WATANABE, K., & YUYAMA, T. Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. International journal of systematic and evolutionary microbiology, v. 52, n. 1, p. 211-214, 2002. MORRISON, P. K.; NEWBOLD, C. J.; JONES, E. WORGAN, H. J.; GROVE-WHITE, D. H.; DUGDALE, A. H.; BARFOOT, C. HARRIS, P. A.; ARGO, C. MCG. Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet. PloS one, v. 15, n. 5, p. e0232689, 2020. MORRISON, P. K.; NEWBOLD, C. J.; JONES, E.; WORGAN, H. J.; GROVE-WHITE, D. H.; DUGDALE, A. H.; BARFOOT, C.; HARRIS, P. A.; ARGO, C. MCG. The equine gastrointestinal microbiome: impacts of age and obesity. Frontiers in microbiology, v. 9, p. 3017, 2018. MORVAN, B.; RIEU-LESME, F.; FONTY, G.; GOUET, P. In vitro interactions between Rumen H2-Producing Cellulolytic Microorganisms and H2-Utilizing Acetogenic and Sulfate-Reducing Bacteria. Anaerobe, v. 2, n. 3, p. 175-180, 1996. MUHONEN, S.; CONNYSSON, M.; LINDBERG, J. E.; JULLIAND, V.; BERTILSSON, J.; JANSSON, A. Effects of crude protein intake from grass silage-only diets on the equine colon ecosystem after an abrupt feed change. Journal of animal science, v. 86, n. 12, p. 3465-3472, 2008. MUHONEN, S.; JULLIAND, V.; LINDBERG, J. E.; BERTILSSON, J.; JANSSON, A. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay 1. Journal of animal science, v. 87, n. 7, p. 2291-2298, 2009. NADEAU, J. A.; ANDREWS, F. M.; MATHEW, A. G.; ARGENZIO, R. A.; BLACKFORD, J. T., SOHTELL, M.; SAXTON, A. M. Evaluation of diet as a cause of gastric ulcers in horses. American journal of veterinary research, v. 61, n. 7, p. 784-790, 2000. NAGATA, Y. Development of complete pelletized rations for racing horses at different stages of growth. Experimental Reports of Equine Health Laboratory, v. 1970, n. 7, p. 33-42, 1970a. NAGATA, Y.; MURAKAMI, M.; SAKURAI, N. Effect of Complete Pelletized Rations on the Growth of Race Horses. Experimental Reports of Equine Health Laboratory, v. 1970, n. 7, p. 43-57, 1970. NATIONAL RESEARCH COUNCIL - Nutrient Requirements of Horses. Washington: National Academy Press, 2007, 6Ed, 341p. O'DONNELL, M. M., HARRIS, H. M. B., JEFFERY, I. B., CLAESSON, M. J., YOUNGE, B., O'TOOLE, P. W., & ROSS, R. P. The core faecal bacterial microbiome of Irish T horoughbred racehorses. Letters in applied microbiology, v. 57, n. 6, p. 492-501, 2013. ORPIN, C. G. Isolation of cellulolytic phycomycete fungi from the caecum of the horse. Microbiology, v. 123, n. 2, p. 287-296, 1981. OTT, E. A.; KIVIPELTO, J.; MCQUAGGE, J. Feeding of complete, extruded feed to mares. Journal of Equine Veterinary Science, v. 19, n. 7, p. 459-462, 1999. PARKINS, J. J.; SNOW, D. H.; ADAMS, S. The apparent digestibility of ‘complete diet’cubes given to thoroughbred horses and the use of chromic oxide as an inert faecal marker. British Veterinary Journal, v. 138, n. 4, p. 350-355, 1982. PELLEGRINI, L.; MILIANI, A.; BERGERO, D. Frutto-oligosaccaridi sulla microfora intestinale del cavallo sportivo: nota pratica. Rivista Di Zootecnia E Veterinaria, v. 27, n. 2, p. 49-51, 1999. PHILIPPEAU, C.; SADET-BOURGETEAU, S.; VARLOUD, M.; JULLIAND, V. Impact of barley form on equine total tract fibre digestibility and colonic microbiota. animal, v. 9, n. 12, p. 1943-1948, 2015. PROUDMAN, C. J.; HUNTER, J. O.; DARBY, A. C.; ESCALONA, E. E.; BATTY, C.; TURNER, C. Characterisation of the faecal metabolome and microbiome of Thoroughbred racehorses. Equine veterinary journal, v. 47, n. 5, p. 580-586, 2015. RALSTON, S. L. Controls of feeding in horses. Journal of animal science, v. 59, n. 5, p. 1354-1361, 1984. RALSTON, S. L.; VAN DEN BROEK, G.; BAILE, C. A. Feed intake patterns and associated blood glucose, free fatty acid and insulin changes in ponies. Journal of animal science, v. 49, n. 3, p. 838-845, 1979. RALSTON, Sarah L. Clinical nutrition of adult horses. Veterinary Clinics of North America: Equine Practice, v. 6, n. 2, p. 339-354, 1990. RESPONDEK, F.; GOACHET, A. G.; JULLIAND, V. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet. Journal of animal science, v. 86, n. 2, p. 316-323, 2008. RIOND, J.-L.; LEONI, S.; WANNER, M. Etude comparative de trois modes de rationnement pour les chevaux du train de l'armee suisse Untersuchungen dreier Futterungsmethoden bei den Pferden des Trains der Schweizer Armee. Schweizer Archiv Fur Tierheilkunde, v. 142, n. 10, p. 570-580, 2000. SADET-BOURGETEAU, S.; JULLIAND, V. La diversité de l’écosystème microbien du tractus digestif équin. INRA Prod. Anim, v. 25, n. 5, p. 407-418, 2012. SADET-BOURGETEAU, S.; JULLIAND, V.; ELLIS, A. D.; LONGLAND, A. C.; COENEN, M.; MIRAGLIA, N. Equine microbial gastro-intestinal health. The Impact of Nutrition on the Health and Welfare of Horses, EAAP Publications, v. 128, p. 161-82, 2010. SADET-BOURGETEAU, S.; PHILIPPEAU, C.; DEQUIEDT, S.; JULLIAND, V. Comparison of the bacterial community structure within the equine hindgut and faeces using Automated Ribosomal Intergenic Spacer Analysis (ARISA). animal, v. 8, n. 12, p. 1928-1934, 2014. SALEM, S. E.; MADDOX, T. W.; BERG, A.; ANTCZAK, P.; KETLEY, J. M.; WILLIAMS, N. J.; ARCHER, D. C. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Scientific reports, v. 8, n. 1, p. 8510, 2018. SANTOS, A. S.; RODRIGUES, M. A. M.; BESSA, R. J. B.; FERREIRA, L. M.; MARTIN-ROSSET, W. Understanding the equine cecum-colon ecosystem: current knowledge and future perspectives. Animal, v. 5, n. 1, p. 48-56, 2011. SCHOSTER, A. Probiotic use in equine gastrointestinal disease. Veterinary Clinics: Equine Practice, v. 34, n. 1, p. 13-24, 2018. SCHOSTER, A.; WEESE, J. S.; GUARDABASSI, L. Probiotic use in horses–what is the evidence for their clinical efficacy?. Journal of veterinary internal medicine, v. 28, n. 6, p. 1640-1652, 2014. SHARE, E. R.; BARNHART, K.; REDDISH, J. M.; COLE, K. 67 Influence of maternal dietary yeast supplementation on the diversity of hindgut microbial populations of Quarter Horse mares and their offspring. Journal of Equine Veterinary Science, v. 5, n. 35, p. 412, 2015. SHEPHERD, M. L.; SWECKER JR, W. S.; JENSEN, R. V.; PONDER, M. A. Characterization of the fecal bacteria communities of forage-fed horses by pyrosequencing of 16S rRNA V4 gene amplicons. FEMS microbiology letters, v. 326, n. 1, p. 62-68, 2012. SMYTH, G. B.; YOUNG, DIANE W.; HAMMOND, LINDA S. Effects of diet and feeding on postprandial serum gastrin and insulin concentrations in adult horses. Equine veterinary journal, v. 21, n. S7, p. 56-59, 1989. STEELMAN, S. M.; CHOWDHARY, B. P.; DOWD, S., SUCHODOLSKI, J.; JANEČKA, J. E. Pyrosequencing of 16S rRNA genes in fecal samples reveals high diversity of hindgut microflora in horses and potential links to chronic laminitis. BMC veterinary research, v. 8, n. 1, p. 231, 2012. STRASINGER, L. A.; FOWLER, A. L.; HAYES, S.; GELLIN, G. L.; FLYTHE, M. D.; LAWRENCE, L. M. The relationship of coprophagy to fecal microbial species richness in neonatal foals. Journal of Equine Veterinary Science, v. 33, n. 5, p. 345, 2013. TANABE, S.; SUZUKI, T.; WASANO, Y.; NAKAJIMA, F.; KAWASAKI, H.; TSUDA, T.; MAGAMINE, N.; TSURUMACHI, T.; SUGAYA, K.; AKITA, H.; TAKAGI, M.; TAKAGI, K.; INOUE, Y.; ASAI, Y.; MORITA, H . Anti-inflammatory and Intestinal Barrier–protective Activities of Commensal Lactobacilli and Bifidobacteria in Thoroughbreds: Role of Probiotics in Diarrhea Prevention in Neonatal Thoroughbreds. Journal of equine science, v. 25, n. 2, p. 37-43, 2014. URBANIAK, C.; ANGELINI, M.; GLOOR, G. B.; REID, G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome, v. 4, n. 1, p. 1, 2016. VAN WEYENBERG, S.; SALES, J.; JANSSENS, G. P. J. Passage rate of digesta through the equine gastrointestinal tract: A review. Livestock science, v. 99, n. 1, p. 3-12, 2006. VARLOUD, M.; DE FOMBELLE, A.; GOACHET, A. G.; DROGOUL, C.; JULLIAND, V. Partial and total apparent digestibility of dietary carbohydrates in horses as affected by the diet. Animal Science, v. 79, n. 1, p. 61-72, 2004. VARLOUD, M.; ROUSSEL, A.; BOISOT, P.; JULLIAND, V. A technique for the collection and the study of biochemical and microbial characteristics of postprandial gastric contents from conscious horses. Animal feed science and technology, v. 133, n. 3-4, p. 259-274, 2007. VENABLE, E. B., FENTON, K. A., BRANER, V. M., REDDINGTON, C. E., HALPIN, M. J., HEITZ, S. A., FRANCIS, J. M.; GULSON, N. A.; GOYER, C. L.; BLAND, S. D.; CROSS, T. W. L.; HOLSCHER, H. D.; SWANSON, K. S. Effects of feeding management on the equine cecal microbiota. Journal of Equine Veterinary Science, v. 49, p. 113-121, 2017. WARAN, N. K.; CLARKE, N.; FARNWORTH, M.. The effects of weaning on the domestic horse (Equus caballus). Applied Animal Behaviour Science, v. 110, n. 1-2, p. 42-57, 2008. WEESE, J. S., HOLCOMBE, S. J., EMBERTSON, R. M., KURTZ, K. A., ROESSNER, H. A., JALALI, M., & WISMER, S. E. Changes in the faecal microbiota of mares precede the development of post partum colic. Equine veterinary journal, v. 47, n. 6, p. 641-649, 2015. WEESE, J. S., HOLCOMBE, S. J., EMBERTSON, R. M., KURTZ, K. A., ROESSNER, H. A., JALALI, M., & WISMER, S. E. Changes in the faecal microbiota of mares precede the development of post partum colic. Equine veterinary journal, v. 47, n. 6, p. 641-649, 2015. WEESE, J. S.; ROUSSEAU, J. Evaluation of Lactobacillus pentosus WE7 for prevention of diarrhea in neonatal foals. Journal of the American Veterinary Medical Association, v. 226, n. 12, p. 2031-2034, 2005. WILLING, B.; VÖRÖS, A.; ROOS, S.; JONES, C.; JANSSON, A.; LINDBERG, J. E. Changes in faecal bacteria associated with concentrate and forage‐only diets fed to horses in training. Equine veterinary journal, v. 41, n. 9, p. 908-914, 2009. WOLTER, R.; NOUWAKPO, F.; DURIX, A. Étude comparative de la digestion d'un aliment complet chez le poney et le lapin. Reproduction Nutrition Développement, v. 20, n. 5B, p. 1723-1730, 1980. YUKI, N.; SHIMAZAKI, T.; KUSHIRO, A.; WATANABE, K.; UCHIDA, K.; YUYAMA, T.; MOROTOMI, M. Colonization of the stratified squamous epithelium of the nonsecreting area of horse stomach by lactobacilli. Applied and environmental microbiology, v. 66, n. 11, p. 5030-5034, 2000.https://tede.ufrrj.br/retrieve/70233/2021%20-%20Bruna%20Caroline%20Franzan.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5866Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-11T19:29:04Z No. of bitstreams: 1 2021 - Bruna Caroline Franzan.pdf: 2257244 bytes, checksum: a920ba2a07dfea355da74b7f4721b495 (MD5)Made available in DSpace on 2022-08-11T19:29:04Z (GMT). No. of bitstreams: 1 2021 - Bruna Caroline Franzan.pdf: 2257244 bytes, checksum: a920ba2a07dfea355da74b7f4721b495 (MD5) Previous issue date: 2021-02-26info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Bruna Caroline Franzan.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/1/2021%20-%20Bruna%20Caroline%20Franzan.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Bruna Caroline Franzan.pdf.txtExtracted Texttext/plain407316https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/2/2021%20-%20Bruna%20Caroline%20Franzan.pdf.txtb2cdca804a991b85feee1c4b3120022cMD52ORIGINAL2021 - Bruna Caroline Franzan.pdfapplication/pdf2257244https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/3/2021%20-%20Bruna%20Caroline%20Franzan.pdfa920ba2a07dfea355da74b7f4721b495MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/92422023-12-21 15:36:49.8oai:rima.ufrrj.br:20.500.14407/9242Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:36:49Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
dc.title.alternative.eng.fl_str_mv Diets, prebiotic and probiotic in the intestinal microbiome of equines
title Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
spellingShingle Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
Franzan, Bruna Caroline
dieta completa
fermentação
fibra
microbiota
simbiótico
complete diet
fermentation
fiber
microbiota
simbiotic
Zootecnia
title_short Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
title_full Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
title_fullStr Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
title_full_unstemmed Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
title_sort Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos
author Franzan, Bruna Caroline
author_facet Franzan, Bruna Caroline
author_role author
dc.contributor.author.fl_str_mv Franzan, Bruna Caroline
dc.contributor.advisor1.fl_str_mv Silva, Vinicius Pimentel
dc.contributor.advisor1ID.fl_str_mv 297.639.108-46
dc.contributor.advisor-co1.fl_str_mv Almeida, Fernando Queiroz de
dc.contributor.referee1.fl_str_mv Silva, Vinicius Pimentel
dc.contributor.referee2.fl_str_mv Manso Filho, Cordeiro
dc.contributor.referee3.fl_str_mv Costa, Márcio Carvalho
dc.contributor.referee4.fl_str_mv Coelho, Irene da Silva
dc.contributor.referee5.fl_str_mv Almeida, Maria Izabel Vieira de
dc.contributor.authorID.fl_str_mv 106.175.936-98
https://orcid.org/0000-0002-3290-6304
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8012504739440638
contributor_str_mv Silva, Vinicius Pimentel
Almeida, Fernando Queiroz de
Silva, Vinicius Pimentel
Manso Filho, Cordeiro
Costa, Márcio Carvalho
Coelho, Irene da Silva
Almeida, Maria Izabel Vieira de
dc.subject.por.fl_str_mv dieta completa
fermentação
fibra
microbiota
simbiótico
topic dieta completa
fermentação
fibra
microbiota
simbiótico
complete diet
fermentation
fiber
microbiota
simbiotic
Zootecnia
dc.subject.eng.fl_str_mv complete diet
fermentation
fiber
microbiota
simbiotic
dc.subject.cnpq.fl_str_mv Zootecnia
description A microbiota intestinal tem importância fundamental na nutrição e na saúde dos equinos e é influenciada por diversos fatores. Esse trabalho teve como objetivo avaliar uma dieta completa extrusada (CED) na alimentação de equinos e os fatores dietéticos que influenciam o microbioma fecal. Os equinos alimentados com a CED tiveram menor consumo de água e fibra, maior consumo de matéria seca (MS), extrato etéreo e energia bruta, menor produção e pH fecal. A digestibilidade da MS, matéria orgânica, extrato etéreo, proteína bruta e energia bruta foram superiores na CED. O tempo médio de retenção da digesta (TMR) da CED foi menor quando comparado a dieta de feno de Coastcross (CHD) quando estimado pelo marcador LIPE®. A abundância relativa do filo Actinobacteria foi maior após 28 dias de consumo de CHD comparado a 7 dias de consumo. A adaptação gradual de equinos ao consumo de CED afetou os filos Verrucomicrobia, Synergistetes, Tenericutes e Lentisphaerae. A inclusão de 30% de CED na dieta afeta a abundância de grupos bacterianos relacionados a atividade fermentativa, entretanto, a diversidade de espécies bacterianas das fezes foi mantida até o momento de consumo de 60% CED e 40% de CHD. A troca abrupta do CHD para CED resultou em redução do pH fecal 96 horas após a troca e redução da diversidade de espécies bacterianas 24 horas após a troca. Além disso, afetou os filos Bacteroidetes, Firmicutes, Verrucomicrobia, Proteobacteria, Elusimicrobia e Actinobacteria. A troca abrupta da CED para CHD resultou em redução do pH fecal em 24 horas após a troca e aumento da diversidade de espécies bacterianas 96 horas após a troca. Além disso, afetou os filos Synergistetes e Lentisphaerae. Por fim, ambas as trocas de dietas resultaram no aumento da abundância relativa de OTUs classificadas como Bacteroidetes e Treponema 24 horas após a troca. A suplementação com prebiótico inulina (PRE), probiótico Saccharomyces cerevisiae (PRO) e simbiótico inulina + Saccharomyces cerevisiae (SIM) não influenciou os índices de diversidade bacteriana observadas nas fezes de potros no período de desmame. A suplementação com PRE aumentou a classe Bacilli nas fezes dos potros lactentes em comparação ao grupo controle. O pH fecal dos potros suplementados com PRE foi superior ao grupo controle. A suplementação com PRO e SIM aumentou as classes Erysipelotrichia e Saccharimonadia, respectivamente, após três dias de consumo, entretanto, o efeito não foi prolongado. Além disso, houve diferença dos microbiomas fecais entre os sexos dos potros. Portanto, conclui-se que a CED pode ser usada na alimentação de equinos, desde que seja feito adaptação gradual. A composição da dieta e a suplementação com aditivos afetam o microbioma fecal de equinos e sua resposta a mudanças dietéticas.
publishDate 2021
dc.date.issued.fl_str_mv 2021-02-26
dc.date.accessioned.fl_str_mv 2023-12-21T18:36:49Z
dc.date.available.fl_str_mv 2023-12-21T18:36:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FRANZAN, Bruna Caroline. Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos. 2021. 130 f. Tese (Doutorado em Ciência Animal) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9242
identifier_str_mv FRANZAN, Bruna Caroline. Dietas, prebiótico e probiótico e seus efeitos sobre o microbioma intestinal de equinos. 2021. 130 f. Tese (Doutorado em Ciência Animal) - Instituto de Zootecnia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9242
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AL JASSIM, R. A. M.; ANDREWS, F. M. The bacterial community of the horse gastrointestinal tract and its relation to fermentative acidosis, laminitis, colic, and stomach ulcers. Veterinary Clinics: Equine Practice, v. 25, n. 2, p. 199-215, 2009. AL JASSIM, R. A.; SCOTT, P. T.; TREBBIN, A. L.; TROTT, D.; POLLITT, C. C. The genetic diversity of lactic acid producing bacteria in the equine gastrointestinal tract. FEMS Microbiology Letters, v. 248, n. 1, p. 75-81, 2005. ALEXANDER, F.; DAVIES, M. E.; MUIR, A. R. Bacteriophage-like particles in the large intestine of the horse. Research in veterinary science, v. 11, p. 592-593, 1970. ALMEIDA, M. L. M.; FERINGER JÚNIOR, W. H.; CARVALHO, J. R. G.; RODRIGUES, I. M.; JORDÃO, L. R.; FONSECA, M. G.; REZENDE, A. S. C.; QUEIROZ NETO, A.; WEESE, J. S.; COSTA, M. C. LEMOS, E. G. M.; FERRAZ, G. C. Intense exercise and aerobic conditioning associated with chromium or L-carnitine supplementation modified the fecal microbiota of fillies. PloS one, v. 11, n. 12, p. e0167108, 2016. ANDREW, J. E.; KLINE, K. H.; SMITH, J. L. Effects of feed form on growth and blood glucose in weanling horses. Journal of Equine Veterinary Science, v. 26, n. 8, p. 349-355, 2006. ANTWIS, R. E.; LEA, J. M.; UNWIN, B.; SHULTZ, S. Gut microbiome composition is associated with spatial structuring and social interactions in semi-feral Welsh Mountain ponies. Microbiome, v. 6, n. 1, p. 1-11, 2018. ARGO, C. McG.; COX, J. E.; LOCKYER, C.; FULLER, Z. Adaptive changes in the appetite, growth and feeding behaviour of pony mares offered ad libitum access to a complete diet in either a pelleted or chaff-based form. Animal Science, v. 74, n. 3, p. 517-528, 2002. BARUC, C. J. The characterization and nitrogen metabolism of equine cecal bacteria. 1983. Tese de Doutorado. University of Kentucky. BATISTA, A. C.; VASCONCELOS, C. T.; FISCHMAN, O.; SILVA, J. O. Flora micótica intestinal de equinos e asininos, no Recife. Boletim do Instituto de Micologia da Universidade de Recife, v. 326, p. 1-16, 1961. BERG, E. L.; FU, C. J.; PORTER, J. H.; KERLEY, M. S. Fructooligosaccharide supplementation in the yearling horse: effects on fecal pH, microbial content, and volatile fatty acid concentrations. Journal of animal science, v. 83, n. 7, p. 1549-1553, 2005. BIDDLE, A. S.; BLACK, S. J.; BLANCHARD, J. L. An in vitro model of the horse gut microbiome enables identification of lactate-utilizing bacteria that differentially respond to starch induction. PloS one, v. 8, n. 10, p. e77599, 2013. BLACKMORE, T. M.; DUGDALE, A.; ARGO, C. M.; CURTIS, G.; PINLOCHE, E.; HARRIS, P. A., WORGAN, H. J.; GIRDWOOD, S. E.; DOUGAL, K.; NEWBOLD, C. J.; MCEWAN, N. R. Strong stability and host specific bacterial community in faeces of ponies. PLoS One, v. 8, n. 9, p. e75079, 2013. BONHOMME, A. Attachment of horse cecal bacteria to forage cell walls. The Japanese Journal of Veterinary Science, v. 48, n. 2, p. 313-322, 1986. BORDIN, A. I.; SUCHODOLSKI, JAN S.; MARKEL, MELISSA E.; WEAVER, KAYTEE B.; STEINER, J. M.; DOWD, S. E.; PILLAI, S.; COHEN, N. D. Effects of administration of live or inactivated virulent Rhodococccus equi and age on the fecal microbiome of neonatal foals. PloS one, v. 8, n. 6, p. e66640, 2013. CANN, A. J.; FANDRICH, S. E.; HEAPHY, S. Analysis of the virus population present in equine faeces indicates the presence of hundreds of uncharacterized virus genomes. Virus genes, v. 30, n. 2, p. 151-156, 2005. COSTA, M. C., STÄMPFLI, H. R., ARROYO, L. G., ALLEN-VERCOE, E., GOMES, R. G., & WEESE, J. S. Changes in the equine fecal microbiota associated with the use of systemic antimicrobial drugs. BMC veterinary research, v. 11, n. 1, p. 19, 2015b. COSTA, M. C.; ARROYO, L. G.; ALLEN-VERCOE, E.; STÄMPFLI, H. R.; KIM, P. T.; STURGEON, A.; WEESE, J. S. Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. PloS one, v. 7, n. 7, p. e41484, 2012. COSTA, M. C.; SILVA, G.; RAMOS, R. V.; STAEMPFLI, H. R.; ARROYO, L. G.; KIM, P.; WEESE, J. S. Characterization and comparison of the bacterial microbiota in different gastrointestinal tract compartments in horses. The Veterinary Journal, v. 205, n. 1, p. 74-80, 2015a. COSTA, M. C.; STÄMPFLI, H. R.; ALLEN‐VERCOE, E.; WEESE, J. S. Development of the faecal microbiota in foals. Equine veterinary journal, v. 48, n. 6, p. 681-688, 2016. COSTA, M. C.; WEESE, J. S. The equine intestinal microbiome. Animal Health Research Reviews, v. 13, n. 1, p. 121-128, 2012. COSTA, M. C.; WEESE, J. S. Understanding the Intestinal Microbiome in Health and Disease. The Veterinary clinics of North America. Equine practice, 2018. COVERDALE, J. A. HORSE SPECIES SYMPOSIUM: Can the microbiome of the horse be altered to improve digestion?. Journal of animal science, v. 94, n. 6, p. 2275-2281, 2016. CURTIS, L.; BURFORD, J. H.; ENGLAND, G. C.; FREEMAN, S. L. Risk factors for acute abdominal pain (colic) in the adult horse: A scoping review of risk factors, and a systematic review of the effect of management-related changes. PloS one, v. 14, n. 7, p. e0219307, 2019. DALY, K.; PROUDMAN, C. J.; DUNCAN, S. H.; FLINT, H. J.; DYER, J.; SHIRAZI-BEECHEY, S. P. Alterations in microbiota and fermentation products in equine large intestine in response to dietary variation and intestinal disease. British Journal of Nutrition, v. 107, n. 7, p. 989-995, 2012. DALY, K.; SHIRAZI-BEECHEY, S. P. Design and evaluation of group-specific oligonucleotide probes for quantitative analysis of intestinal ecosystems: their application to assessment of equine colonic microflora. FEMS Microbiology ecology, v. 44, n. 2, p. 243-252, 2003. DALY, K.; STEWART, C. S.; FLINT, H. J.; SHIRAZI-BEECHEY, S. P. Bacterial diversity within the equine large intestine as revealed by molecular analysis of cloned 16S rRNA genes. FEMS microbiology ecology, v. 38, n. 2-3, p. 141-151, 2001. DE FOMBELLE, A.; JULLIAND, V.; DROGOUL, C.; JACOTOT, E. Feeding and microbial disorders in horses: 1-Effects of an abrupt incorporation of two levels of barley in a hay diet on microbial profile and activities. Journal of Equine Veterinary Science, v. 21, n. 9, p. 439-445, 2001. DE FOMBELLE, A.; VARLOUD, M.; GOACHET, A. G.; JACOTOT, E.; PHILIPPEAU, C.; DROGOUL, C.; JULLIAND, V. Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets. Animal Science, v. 77, n. 2, p. 293-304, 2003. DOUGAL, K., DE LA FUENTE, G., HARRIS, P. A., GIRDWOOD, S. E., PINLOCHE, E., GEOR, R. J.; NIELSEN, B. D.; SCHOTT II, H. C.; ELZINGA, S.; NEWBOLD, C. J. Characterisation of the faecal bacterial community in adult and elderly horses fed a high fibre, high oil or high starch diet using 454 pyrosequencing. PloS one, v. 9, n. 2, p. e87424, 2014. DOUGAL, K.; DE LA FUENTE, G.; HARRIS, P. A.; GIRDWOOD, S. E.; PINLOCHE, E.; NEWBOLD, C. J. Identification of a core bacterial community within the large intestine of the horse. PloS one, v. 8, n. 10, p. e77660, 2013. DOUGAL, K.; HARRIS, P. A.; EDWARDS, A.; PACHEBAT, J. A.; BLACKMORE, T. M.; WORGAN, H. J.; NEWBOLD, C. J. A comparison of the microbiome and the metabolome of different regions of the equine hindgut. FEMS microbiology ecology, v. 82, n. 3, p. 642-652, 2012. DOUGAL, K.; HARRIS, P. A.; GIRDWOOD, S. E.; CREEVEY, C. J.; CURTIS, G. C.; BARFOOT, C. F.; ARGO, C. M.; NEWBOLD, C. J. Changes in the Total Fecal Bacterial Population in Individual Horses Maintained on a Restricted Diet Over 6 Weeks. Frontiers in microbiology, v. 8, p. 1502, 2017. EARING, J. E.; DURIG, A. C.; GELLIN, G. L.; LAWRENCE, L. M.; FLYTHE, M. D. Bacterial colonization of the equine gut; comparison of mare and foal pairs by PCR-DGGE. Advances in Microbiology, v. 2, n. 02, p. 79, 2012. EARLE, I. P. Compression of complete diets for horses. Journal of animal science, v. 9, n. 3, p. 255-260, 1950. EDWARDS, J. E.; SHETTY, S. A.; VAN DEN BERG, P.; BURDEN, F.; VAN DOORN, D. A.; PELLIKAAN, W. F.; DIJKSTRA, J.; SMIDT, H. Multi-kingdom characterization of the core equine fecal microbiota based on multiple equine (sub) species. Animal Microbiome, v. 2, n. 1, p. 1-16, 2020. ELIA, J. B.; ERB, H. N.; HOUPT, K. A. Motivation for hay: effects of a pelleted diet on behavior and physiology of horses. Physiology & behavior, v. 101, n. 5, p. 623-627, 2010. ELZINGA, S. E.; WEESE, J. S.; ADAMS, A. A. Comparison of the fecal microbiota in horses with equine metabolic syndrome and metabolically normal controls fed a similar all-forage diet. Journal of Equine Veterinary Science, v. 44, p. 9-16, 2016. ENDO, A.; FUTAGAWA-ENDO, Y.; DICKS, L. M. T. Lactobacillus and Bifidobacterium diversity in horse feces, revealed by PCR-DGGE. Current microbiology, v. 59, n. 6, p. 651-655, 2009. ENDO, A.; OKADA, S.; MORITA, H. Molecular profiling of Lactobacillus, Streptococcus, and Bifidobacterium species in feces of active racehorses. The Journal of general and applied microbiology, v. 53, n. 3, p. 191-200, 2007. ENDO, A.; ROOS, S.; SATOH, E.; MORITA, H.; OKADA, S. Lactobacillus equigenerosi sp. nov., a coccoid species isolated from faeces of thoroughbred racehorses. International journal of systematic and evolutionary microbiology, v. 58, n. 4, p. 914-918, 2008. ERBER, Regina et al. Behavioral and physiological responses of young horses to different weaning protocols: a pilot study. Stress, v. 15, n. 2, p. 184-194, 2012. FAO/WHO. Working group for drafting guidelines for the evaluation of probiotics in food. 2002. Available at: ftp://ftp.fao.org/es/esn/food/wgreport2.pdf. Acessado em 5 de Dezembro de 2020. FAUBLADIER, C.; JULLIAND, V.; BEUNEICHE, L.; PHILIPPEAU, C. Comparative fibre-degrading capacity in foals at immediate and late post-weaning periods. animal, v. 11, n. 9, p. 1497-1504, 2017. FAUBLADIER, C.; JULLIAND, V.; DANEL, J.; PHILIPPEAU, C. Bacterial carbohydrate-degrading capacity in foal faeces: changes from birth to pre-weaning and the impact of maternal supplementation with fermented feed products. British Journal of Nutrition, v. 110, n. 6, p. 1040-1052, 2013. FAUBLADIER, C.; SADET-BOURGETEAU, S.; PHILIPPEAU, C.; JACOTOT, E.; JULLIAND, V. Molecular monitoring of the bacterial community structure in foal feces pre-and post-weaning. Anaerobe, v. 25, p. 61-66, 2014. FERNANDES, K. A.; KITTELMANN, S.; ROGERS, C. W.; GEE, E. K.; BOLWELL, C. F.; BERMINGHAM, E. N.; THOMAS, D. G. Faecal microbiota of forage-fed horses in New Zealand and the population dynamics of microbial communities following dietary change. PloS one, v. 9, n. 11, p. e112846, 2014. FLIEGEROVA, K.; MURA, E.; MRÁZEK, J.; MONIELLO, G. A comparison of microbial profiles of different regions of the equine hindgut. Livestock Science, v. 190, p. 16-19, 2016. FLINT, H. J.; BAYER, E. A. Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Annals of the New York Academy of Sciences, v. 1125, n. 1, p. 280-288, 2008. FOOKS, L. J.; GIBSON, G. R. In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS Microbiology Ecology, v. 39, n. 1, p. 67-75, 2002. GAILLARD‐MARTINIE, B.; BRETON, A.; DUSSER, M.; JULLIAND, V. Piromyces citronii sp. nov., a strictly anaerobic fungus from the equine caecum: a morphological, metabolic, and ultrastructural study. FEMS microbiology letters, v. 130, n. 2-3, p. 321-326, 1995. GARBER, A., HASTIE, P., MCGUINNESS, D., MALARANGE, P., & MURRAY, J. A. Abrupt dietary changes between grass and hay alter faecal microbiota of ponies. PlosOne, v. 15, n. 8, p. E0237869, 2020. GARNER, H. E.; MOORE, J. N.; JOHNSON, J. H.; CLARK, L.; AMEND, J. F.; TRITSCHLER, L. G.; SALEM, C. A. Changes in the caecal flora associated with the onset of laminitis. Equine Veterinary Journal, v. 10, n. 4, p. 249-252, 1978. GEYER, H.; DREPPER, K. Mikrobielle Einwirkungen auf die Verdauung beim Pferd. Biologie und Biochemie der Verdauung. BLV Verlagsgesellschaft, München, Germany, 1973. GIBSON, G. R.; PROBERT, H. M.; VAN LOO, J.; RASTALL, R. A.; ROBERFROID, M. B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutrition research reviews, v. 17, n. 2, p. 259-275, 2004. GOACHET, A. G.; VARLOUD, M.; PHILIPPEAU, C.; JULLIAND, V. Long‐term effects of endurance training on total tract apparent digestibility, total mean retention time and faecal microbial ecosystem in competing Arabian horses. Equine Veterinary Journal, v. 42, p. 387-392, 2010. GOLOMIDOVA, A.; KULIKOV, E.; ISAEVA, A.; MANYKIN, A.; LETAROV, A. The diversity of coliphages and coliforms in horse feces reveals a complex pattern of ecological interactions. Applied and environmental Microbiology, v. 73, n. 19, p. 5975-5981, 2007. GOODSON, J.; TYZNIK, W. J.; CLINE, J. H.; DEHORITY, B. A. Effects of an abrupt diet change from hay to concentrate on microbial numbers and physical environment in the cecum of the pony. Applied and Environmental Microbiology, v. 54, n. 8, p. 1946-1950, 1988. GRIMM, P.; DE BARROS, J. P. P.; JULLIAND, V. Impact of diet on bacterial lipopolysaccharides in equine feces and blood. Livestock Science, v. 215, p. 2-6, 2018. GRIMM, P.; JULLIAND, V.; PHILIPPEAU, C.; SADET-BOURGETEAU, S. Effect of yeast supplementation on hindgut microbiota and digestibility of horses subjected to an abrupt change of hays. Livestock Science, v. 186, p. 34-40, 2016. GRØNVOLD, A. M. R.; L‘ABÉE-LUND, T. M.; STRAND, E.; SØRUM, H.; YANNARELL, A. C.; MACKIE, R. I. Fecal microbiota of horses in the clinical setting: potential effects of penicillin and general anesthesia. Veterinary microbiology, v. 145, n. 3-4, p. 366-372, 2010. HAENLEIN, G. F. W.; HOLDREN, R. D.; YOON, Y. M. Comparative response of horses and sheep to different physical forms of alfalfa hay. Journal of Animal Science, v. 25, n. 3, p. 740-743, 1966. HANSEN, N. C. K.; AVERSHINA, E.; MYDLAND, L. T.; NÆSSET, J. A.; AUSTBØ, D.; MOEN, B.; MAGE, I.; RUDI, K. High nutrient availability reduces the diversity and stability of the equine caecal microbiota. Microbial ecology in health and disease, v. 26, n. 1, p. 27216, 2015. HARHANGI, H. R.; FREELOVE, A. C.; UBHAYASEKERA, W.; VAN DINTHER, M., STEENBAKKERS, P. J.; AKHMANOVA, A.; VAN DER DRIFT, C.; JETTEN, M. S.; MOWBRAY, S. L.; GILBERT, H. J. Cel6A, a major exoglucanase from the cellulosome of the anaerobic fungi Piromyces sp. E2 and Piromyces equi. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, v. 1628, n. 1, p. 30-39, 2003. HARLOW, B. E.; KAGAN, I. A.; LAWRENCE, L. M.; FLYTHE, M. D. Effects of inulin chain length on fermentation by equine fecal bacteria and Streptococcus bovis. Journal of Equine Veterinary Science, v. 48, p. 113-120. e1, 2017b. HARLOW, B. E.; LAWRENCE, L. M.; FLYTHE, M. D. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: Responses to antibiotic challenge. Veterinary microbiology, v. 166, n. 1-2, p. 225-232, 2013. HARLOW, B. E.; LAWRENCE, L. M.; HARRIS, P. A.; AIKEN, G. E.; FLYTHE, M. D. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo. PloS one, v. 12, n. 3, p. e0174059, 2017a. HARLOW, B. E.; LAWRENCE, L. M.; HAYES, S. H.; CRUM, A.; FLYTHE, M. D. Effect of dietary starch source and concentration on equine fecal microbiota. PloS one, v. 11, n. 4, p. e0154037, 2016. HASTIE, P. M.; MITCHELL, K.; MURRAY, J.A. M. D. Semi-quantitative analysis of Ruminococcus flavefaciens, Fibrobacter succinogenes and Streptococcus bovis in the equine large intestine using real-time polymerase chain reaction. British Journal of Nutrition, v. 100, n. 3, p. 561-568, 2008. HAYES, S.; WERNER, H.; LAWRENCE, L. In vitro assessment of fiber digestion capacity in foals. Proceedings of the 18th Equine Nutrition and Physiology Sympsosium, East Lansing, MI, USA, p. 273-274, 2003. HINTZ, H. F.; LOY, R. G. Effects of pelleting on the nutritive value of horse rations. Journal of Animal Science, v. 25, n. 4, p. 1059-1062, 1966. HYSLOP, J. J. Voluntary feed intake, apparent digestibility an nutritive values in ponies given ad libitum access to complete pelleted diets containing different levels of unmolassed sugar beet pulp. British Society of Animal Science (BSAS Ed.), p. 32, 2002. JANSEN, W. L.; CONE, J. W.; GEELEN, S. N. J.; VAN OLDRUITENBORGH-OOSTERBAAN, M. S.; VAN GELDER, A. H.; ELFERINK, S. O.; BEYNEN, A. C. High fat intake by ponies reduces both apparent digestibility of dietary cellulose and cellulose fermentation by faeces and isolated caecal and colonic contents. Animal feed science and technology, v. 133, n. 3-4, p. 298-308, 2007. JENKINS, T. C.; PALMQUIST, D. L. Effect of fatty acids or calcium soaps on rumen and total nutrient digestibility of dairy rations. Journal of Dairy Science, v. 67, n. 5, p. 978-986, 1984. JOHN, J.; ROEDIGER, K.; SCHROEDL, W.; ALDAHER, N.; VERVUERT, I. Development of intestinal microflora and occurrence of diarrhoea in sucking foals: effects of Bacillus cereus var. toyoi supplementation. BMC veterinary research, v. 11, n. 1, p. 34, 2015. JOUANY, J. P.; MEDINA, B.; BERTIN, G.; JULLIAND, V. Effect of live yeast culture supplementation on hindgut microbial communities and their polysaccharidase and glycoside hydrolase activities in horses fed a high-fiber or high-starch diet. Journal of animal science, v. 87, n. 9, p. 2844-2852, 2009. JULLIAND, V.; DE FOMBELLE, A.; DROGOUL, C.; JACOTOT, E. Feeding and microbial disorders in horses: Part 3—Effects of three hay: grain ratios on microbial profile and activities. Journal of Equine Veterinary Science, v. 21, n. 11, p. 543-546, 2001. JULLIAND, V.; DE VAUX, A.; MILLET, L.; FONTY, G. Identification of Ruminococcus flavefaciens as the predominant cellulolytic bacterial species of the equine cecum. Applied and environmental microbiology, v. 65, n. 8, p. 3738-3741, 1999. JULLIAND, V.; DEVAUX, A.; VILLARO, L.; RICHARD, Y. Preliminary studies on the bacterial flora of faeces taken from foals, from birth to twelve weeks. Effect of the oral administration of a commercial colostrum replacer. Pferdeheilkunde, v. 12, n. 3, p. 209-212, 1996. JULLIAND, V.; GOACHET, A. G. Fecal microflora as a marker of cecal or colonic microflora in horses. In: Proceedings of the19th Equine Science Symposium. p. 140-1. 2005. JULLIAND, V.; GRIMM, P. HORSE SPECIES SYMPOSIUM: The microbiome of the horse hindgut: History and current knowledge. Journal of animal science, v. 94, n. 6, p. 2262-2274, 2016. JULLIAND, V.; GRIMM, P. The impact of diet on the hindgut microbiome. Journal of equine veterinary science, v. 52, p. 23-28, 2017. JULLIAND, V.; RIONDET, C.; DE VAUX, A.; ALCARAZ, G.; FONTY, G. Comparison of metabolic activities between Piromyces citronii, an equine fungal species, and Piromyces communis, a ruminal species. Animal feed science and technology, v. 70, n. 1-2, p. 161-168, 1998. KABE, A. M. G.; DE SOUZA, A. D.; SOUSA, R. L. M.; BUENO, I. C. S.; MOTA, T. P.; CRANDELL, K.; INGRID VERVUERT, I.; CORREA, G. F.; BRANDI, R. A. Soybean hulls in equine feed concentrates: Apparent nutrient digestibility, physicochemical and microbial characteristics of equine feces. Journal of Equine Veterinary Science, v. 36, p. 77-82, 2016. KERN, D. L.; SLYTER, L. L.; LEFFEL, E. C.; WEAVER, J. M.; OLTJEN, R. R. Ponies vs. Steers: Microbial and Chemical Characteristics of Intestinal Ingesta 1. Journal of Animal Science, v. 38, n. 3, p. 559-564, 1974. KERN, D. L.; SLYTER, L. L.; WEAVER, J. M.; LEFFEL, E. C.; SAMUELSONS, G. Pony cecum vs. steer rumen: the effect of oats and hay on the microbial ecosystem. Journal of Animal Science, v. 37, n. 2, p. 463-469, 1973. KOLLARCZIK, B.; ENDERS, C.; FRIEDRICH, M.; GEDEK, B. Auswirkungen der Rationszusammensetzung auf das Keimspektrum im Jejunum von Pferden. In: Europäische Konferenz über die Ernährung des pferdes. Physiologie und Pathologie des Verdauungskanals–Konsequenzen für die Ernährung, Hannover, Germany. 1992. KULIKOV, E. E.; ISAEVA, A. S.; ROTKINA, A. S.; MANYKIN, A. A.; LETAROV, A. V. Diversity and dynamics of bacteriophages in horse feces. Microbiology, v. 76, n. 2, p. 236-242, 2007. LWIN, K.-O.; MATSUI, H. Comparative analysis of the methanogen diversity in horse and pony by using mcrA gene and archaeal 16S rRNA gene clone libraries. Archaea, v. 2014, 2014. MACH, N.; FOURY, A.; KITTELMANN, S.; REIGNER, F.; MOROLDO, M.; BALLESTER, M.; ESQUERRÉ, D.; RIVIÈRE, J.; SALLÉ, G.; GÉRARD, P.; MOISAN, M.; LANSADE, L. The effects of weaning methods on gut microbiota composition and horse physiology. Frontiers in physiology, v. 8, p. 535, 2017. MACKIE, R. I.; WILKINS, C. A. Enumeration of anaerobic bacterial microflora of the equine gastrointestinal tract. Applied and environmental microbiology, v. 54, n. 9, p. 2155-2160, 1988. MACZULAK, A. E.; DAWSON, K. A.; BAKER, J. P. Nitrogen utilization in bacterial isolates from the equine cecum. Applied and environmental microbiology, v. 50, n. 6, p. 1439-1443, 1985. MAPA - Ministério da Agricultura Pecuária e Abastecimento. Revisão do Estudo do Complexo do Agronegócio do Cavalo. 2016. Disponível: https://www.gov.br/agricultura/pt-br/assuntos/camaras-setoriais-tematicas/documentos/ camaras-setoriais/equideocultura/anos-anteriores/revisao-do-estudo-do-complexo-do-agronegocio-do-cavalo/view MARCHESI, J. R.; RAVEL, J. The vocabulary of microbiome research: a proposal. Microbiome. v3, p.31, 2015. MEDINA, B.; GIRARD, I. D.; JACOTOT, E.; JULLIAND, V. Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. Journal of Animal Science, v. 80, n. 10, p. 2600-2609, 2002. METCALF, J. L.; SONG, S. J.; MORTON, J. T.; WEISS, S.; SEGUIN-ORLANDO, A.; JOLY, F.; FEH, C.; TABERLET, P.; COISSAC, E.; AMIR, A.; WILLERSLEV, E.; KNIGHT, R.; MCKENZIE, V. ORLANDO, L. Evaluating the impact of domestication and captivity on the horse gut microbiome. Scientific reports, v. 7, n. 1, p. 1-9, 2017. MILINOVICH, G. J., TROTT, D. J., BURRELL, P. C., VAN EPS, A. W., THOEFNER, M. B., BLACKALL, L. L.; AL JASSIM, R. A. M.; MORTON, J. M.; POLLITT, C. C. Changes in equine hindgut bacterial populations during oligofructose‐induced laminitis. Environmental microbiology, v. 8, n. 5, p. 885-898, 2006. MILINOVICH, G. J.; BURRELL, P. C.; POLLITT, C. C.; BOUVET, A.; TROTT, D. J. Streptococcus henryi sp. nov. and Streptococcus caballi sp. nov., isolated from the hindgut of horses with oligofructose-induced laminitis. International journal of systematic and evolutionary microbiology, v. 58, n. 1, p. 262-266, 2008. MILINOVICH, G. J.; TROTT, D. J.; BURRELL, P. C.; CROSER, E. L.; AL JASSIM, R. A.; MORTON, J. M.; POLLITT, C. C. Fluorescence in situ hybridization analysis of hindgut bacteria associated with the development of equine laminitis. Environmental microbiology, v. 9, n. 8, p. 2090-2100, 2007. MIRAGLIA, N.; BERGERO, D.; POLIDORI, M.; PEIRETTI, P. G.; LADETTO, G. The effects of a new fibre-rich concentrate on the digestibility of horse rations. Livestock Science, v. 100, n. 1, p. 10-13, 2006. MOORE, B. E.; DEHORITY, B. A. Effects of diet and hindgut defaunation on diet digestibility and microbial concentrations in the cecum and colon of the horse. Journal of Animal Science, v. 71, n. 12, p. 3350-3358, 1993. MOREAU, M. M., EADES, S. C., REINEMEYER, C. R., FUGARO, M. N., & ONISHI, J. C. Illumina sequencing of the V4 hypervariable region 16S rRNA gene reveals extensive changes in bacterial communities in the cecum following carbohydrate oral infusion and development of early-stage acute laminitis in the horse. Veterinary microbiology, v. 168, n. 2-4, p. 436-441, 2014. MORITA, H.; SHIRATORI, C.; MURAKAMI, M.; TAKAMI, H.; KATO, Y.; ENDO, A.; NAKAJIMA, F.; TAKAGI, M.; AKITA, H.; OKADA, S.; MASAOKA, T. Lactobacillus hayakitensis sp. nov., isolated from intestines of healthy thoroughbreds. International journal of systematic and evolutionary microbiology, v. 57, n. 12, p. 2836-2839, 2007. MOROTOMI, M., YUKI, N., KADO, Y., KUSHIRO, A., SHIMAZAKI, T., WATANABE, K., & YUYAMA, T. Lactobacillus equi sp. nov., a predominant intestinal Lactobacillus species of the horse isolated from faeces of healthy horses. International journal of systematic and evolutionary microbiology, v. 52, n. 1, p. 211-214, 2002. MORRISON, P. K.; NEWBOLD, C. J.; JONES, E. WORGAN, H. J.; GROVE-WHITE, D. H.; DUGDALE, A. H.; BARFOOT, C. HARRIS, P. A.; ARGO, C. MCG. Effect of age and the individual on the gastrointestinal bacteriome of ponies fed a high-starch diet. PloS one, v. 15, n. 5, p. e0232689, 2020. MORRISON, P. K.; NEWBOLD, C. J.; JONES, E.; WORGAN, H. J.; GROVE-WHITE, D. H.; DUGDALE, A. H.; BARFOOT, C.; HARRIS, P. A.; ARGO, C. MCG. The equine gastrointestinal microbiome: impacts of age and obesity. Frontiers in microbiology, v. 9, p. 3017, 2018. MORVAN, B.; RIEU-LESME, F.; FONTY, G.; GOUET, P. In vitro interactions between Rumen H2-Producing Cellulolytic Microorganisms and H2-Utilizing Acetogenic and Sulfate-Reducing Bacteria. Anaerobe, v. 2, n. 3, p. 175-180, 1996. MUHONEN, S.; CONNYSSON, M.; LINDBERG, J. E.; JULLIAND, V.; BERTILSSON, J.; JANSSON, A. Effects of crude protein intake from grass silage-only diets on the equine colon ecosystem after an abrupt feed change. Journal of animal science, v. 86, n. 12, p. 3465-3472, 2008. MUHONEN, S.; JULLIAND, V.; LINDBERG, J. E.; BERTILSSON, J.; JANSSON, A. Effects on the equine colon ecosystem of grass silage and haylage diets after an abrupt change from hay 1. Journal of animal science, v. 87, n. 7, p. 2291-2298, 2009. NADEAU, J. A.; ANDREWS, F. M.; MATHEW, A. G.; ARGENZIO, R. A.; BLACKFORD, J. T., SOHTELL, M.; SAXTON, A. M. Evaluation of diet as a cause of gastric ulcers in horses. American journal of veterinary research, v. 61, n. 7, p. 784-790, 2000. NAGATA, Y. Development of complete pelletized rations for racing horses at different stages of growth. Experimental Reports of Equine Health Laboratory, v. 1970, n. 7, p. 33-42, 1970a. NAGATA, Y.; MURAKAMI, M.; SAKURAI, N. Effect of Complete Pelletized Rations on the Growth of Race Horses. Experimental Reports of Equine Health Laboratory, v. 1970, n. 7, p. 43-57, 1970. NATIONAL RESEARCH COUNCIL - Nutrient Requirements of Horses. Washington: National Academy Press, 2007, 6Ed, 341p. O'DONNELL, M. M., HARRIS, H. M. B., JEFFERY, I. B., CLAESSON, M. J., YOUNGE, B., O'TOOLE, P. W., & ROSS, R. P. The core faecal bacterial microbiome of Irish T horoughbred racehorses. Letters in applied microbiology, v. 57, n. 6, p. 492-501, 2013. ORPIN, C. G. Isolation of cellulolytic phycomycete fungi from the caecum of the horse. Microbiology, v. 123, n. 2, p. 287-296, 1981. OTT, E. A.; KIVIPELTO, J.; MCQUAGGE, J. Feeding of complete, extruded feed to mares. Journal of Equine Veterinary Science, v. 19, n. 7, p. 459-462, 1999. PARKINS, J. J.; SNOW, D. H.; ADAMS, S. The apparent digestibility of ‘complete diet’cubes given to thoroughbred horses and the use of chromic oxide as an inert faecal marker. British Veterinary Journal, v. 138, n. 4, p. 350-355, 1982. PELLEGRINI, L.; MILIANI, A.; BERGERO, D. Frutto-oligosaccaridi sulla microfora intestinale del cavallo sportivo: nota pratica. Rivista Di Zootecnia E Veterinaria, v. 27, n. 2, p. 49-51, 1999. PHILIPPEAU, C.; SADET-BOURGETEAU, S.; VARLOUD, M.; JULLIAND, V. Impact of barley form on equine total tract fibre digestibility and colonic microbiota. animal, v. 9, n. 12, p. 1943-1948, 2015. PROUDMAN, C. J.; HUNTER, J. O.; DARBY, A. C.; ESCALONA, E. E.; BATTY, C.; TURNER, C. Characterisation of the faecal metabolome and microbiome of Thoroughbred racehorses. Equine veterinary journal, v. 47, n. 5, p. 580-586, 2015. RALSTON, S. L. Controls of feeding in horses. Journal of animal science, v. 59, n. 5, p. 1354-1361, 1984. RALSTON, S. L.; VAN DEN BROEK, G.; BAILE, C. A. Feed intake patterns and associated blood glucose, free fatty acid and insulin changes in ponies. Journal of animal science, v. 49, n. 3, p. 838-845, 1979. RALSTON, Sarah L. Clinical nutrition of adult horses. Veterinary Clinics of North America: Equine Practice, v. 6, n. 2, p. 339-354, 1990. RESPONDEK, F.; GOACHET, A. G.; JULLIAND, V. Effects of dietary short-chain fructooligosaccharides on the intestinal microflora of horses subjected to a sudden change in diet. Journal of animal science, v. 86, n. 2, p. 316-323, 2008. RIOND, J.-L.; LEONI, S.; WANNER, M. Etude comparative de trois modes de rationnement pour les chevaux du train de l'armee suisse Untersuchungen dreier Futterungsmethoden bei den Pferden des Trains der Schweizer Armee. Schweizer Archiv Fur Tierheilkunde, v. 142, n. 10, p. 570-580, 2000. SADET-BOURGETEAU, S.; JULLIAND, V. La diversité de l’écosystème microbien du tractus digestif équin. INRA Prod. Anim, v. 25, n. 5, p. 407-418, 2012. SADET-BOURGETEAU, S.; JULLIAND, V.; ELLIS, A. D.; LONGLAND, A. C.; COENEN, M.; MIRAGLIA, N. Equine microbial gastro-intestinal health. The Impact of Nutrition on the Health and Welfare of Horses, EAAP Publications, v. 128, p. 161-82, 2010. SADET-BOURGETEAU, S.; PHILIPPEAU, C.; DEQUIEDT, S.; JULLIAND, V. Comparison of the bacterial community structure within the equine hindgut and faeces using Automated Ribosomal Intergenic Spacer Analysis (ARISA). animal, v. 8, n. 12, p. 1928-1934, 2014. SALEM, S. E.; MADDOX, T. W.; BERG, A.; ANTCZAK, P.; KETLEY, J. M.; WILLIAMS, N. J.; ARCHER, D. C. Variation in faecal microbiota in a group of horses managed at pasture over a 12-month period. Scientific reports, v. 8, n. 1, p. 8510, 2018. SANTOS, A. S.; RODRIGUES, M. A. M.; BESSA, R. J. B.; FERREIRA, L. M.; MARTIN-ROSSET, W. Understanding the equine cecum-colon ecosystem: current knowledge and future perspectives. Animal, v. 5, n. 1, p. 48-56, 2011. SCHOSTER, A. Probiotic use in equine gastrointestinal disease. Veterinary Clinics: Equine Practice, v. 34, n. 1, p. 13-24, 2018. SCHOSTER, A.; WEESE, J. S.; GUARDABASSI, L. Probiotic use in horses–what is the evidence for their clinical effic
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência Animal
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Zootecnia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/1/2021%20-%20Bruna%20Caroline%20Franzan.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/2/2021%20-%20Bruna%20Caroline%20Franzan.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/3/2021%20-%20Bruna%20Caroline%20Franzan.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9242/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
b2cdca804a991b85feee1c4b3120022c
a920ba2a07dfea355da74b7f4721b495
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108006094864384