Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo

Detalhes bibliográficos
Autor(a) principal: Rodrigues, Janaina de Faria
Data de Publicação: 2010
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10192
Resumo: Utilizando-se a técnica de fotólise por pulso de laser, foram estudadas a fotorreatividade do estado triplete de derivados de tioxantona (9-H-tioxanton-9-ona). Os espectros de absorção T1–Tn para os derivados 2-benzilóxi, 2-metóxi, 2-propóxi e 2-metil (2BTX, 2MeOTX, 2PrOTX e 2MeTX), obtidos em diversos solventes, mostram que estes se comportam de forma selhante a tioxantona. O comprimento de onda máximo bem como o tempo de vida de seus transientes são dependentes da polaridade do meio. Observou-se o deslocamento hipsocrômico com a mudança de um solvente apolar para um solvente polar, tendo sido mais acentuado para os solventes polares hidroxilícos. Nos espectros de absorção T1–Tn em solventes doadores de hidrogênio foi possível observar a formação de uma banda entre região de 430-460nm que foi observada novamente nas reações com supressores de energia triplete doadores de hidrogênio, sendo esta banda atribuída ao radical cetila. As bandas formadas na região de 410 e 500nm são atribuídas ao radical fenoxila e indolila, respectivamente. Os altos valores para as constantes de velocidade de reação de supressão por transferência de hidrogênio com álcoois (~105 M-1s-1), hidrocarbonetos alílicos e fenóis (~109 M-1s-1) são atribuídos ao fato de que o estado excitado triplete de mais baixa energia apresentar uma mistura de estados excitado com predominância do caráter nπ*. A não dependência das kq para os fenóis de seus substituintes e os valores próximos das reações para trietilamina, DABCO e indol indicam que o mecanismo de reação passa por uma primeira etapa de transferência de elétrons seguida de uma rápida transferência de próton a partir da formação de um exciplexo. As constantes de velocaide de reação de supressão por transferência de energia com trans-estilbeno, 1-metil-naftaleno e 1,3-cicloexadieno são controladas por difusão para 2MeTX estando a energia triplete de T1 acima de 61 kcal.mol-1, como o observado para a TX; já para os demais substituintes houve uma diminuição da energia triplete ficando esta entre 53 kcal.mol-1 e 61 kcal.mol-1.
id UFRRJ-1_74dac41104b7832d742545ca901a845c
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10192
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Rodrigues, Janaina de FariaFerreira, José Carlos Nettohttp://lattes.cnpq.br/2496613154167269Silva, Francisco Assis daSchimtt, Carla C,Ferreira, Aurélio B.B.Silva, Rosaly Silveira daSobrinho, Dari CesarinGarden, Nancy C. D. L.052.959.097-27http://lattes.cnpq.br/59665524434889802023-12-21T18:58:55Z2023-12-21T18:58:55Z2010-06-15RODRIGUES, Janaina de Faria. Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo. 2010. 166 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.https://rima.ufrrj.br/jspui/handle/20.500.14407/10192Utilizando-se a técnica de fotólise por pulso de laser, foram estudadas a fotorreatividade do estado triplete de derivados de tioxantona (9-H-tioxanton-9-ona). Os espectros de absorção T1–Tn para os derivados 2-benzilóxi, 2-metóxi, 2-propóxi e 2-metil (2BTX, 2MeOTX, 2PrOTX e 2MeTX), obtidos em diversos solventes, mostram que estes se comportam de forma selhante a tioxantona. O comprimento de onda máximo bem como o tempo de vida de seus transientes são dependentes da polaridade do meio. Observou-se o deslocamento hipsocrômico com a mudança de um solvente apolar para um solvente polar, tendo sido mais acentuado para os solventes polares hidroxilícos. Nos espectros de absorção T1–Tn em solventes doadores de hidrogênio foi possível observar a formação de uma banda entre região de 430-460nm que foi observada novamente nas reações com supressores de energia triplete doadores de hidrogênio, sendo esta banda atribuída ao radical cetila. As bandas formadas na região de 410 e 500nm são atribuídas ao radical fenoxila e indolila, respectivamente. Os altos valores para as constantes de velocidade de reação de supressão por transferência de hidrogênio com álcoois (~105 M-1s-1), hidrocarbonetos alílicos e fenóis (~109 M-1s-1) são atribuídos ao fato de que o estado excitado triplete de mais baixa energia apresentar uma mistura de estados excitado com predominância do caráter nπ*. A não dependência das kq para os fenóis de seus substituintes e os valores próximos das reações para trietilamina, DABCO e indol indicam que o mecanismo de reação passa por uma primeira etapa de transferência de elétrons seguida de uma rápida transferência de próton a partir da formação de um exciplexo. As constantes de velocaide de reação de supressão por transferência de energia com trans-estilbeno, 1-metil-naftaleno e 1,3-cicloexadieno são controladas por difusão para 2MeTX estando a energia triplete de T1 acima de 61 kcal.mol-1, como o observado para a TX; já para os demais substituintes houve uma diminuição da energia triplete ficando esta entre 53 kcal.mol-1 e 61 kcal.mol-1.Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqBy laser flash photolysis, the photo-reactivity of the triplet excited state of thioxanthone derivatives (2BTX, 2MeOTX, 2PrOTX and 2MeTX) was studied. The maximum wavelength and triplet time life of theirs transients are solvent dependents, a blue-shift is observed with the change of no polar to polar middle and still more in hydroxyl solvent. The triplet spectrum with hydrogen-donor solvents shows a slower broad band between 430-460nm that again is observed with hydrogen-donor quenchers, this band is attributed to ketyl radical. The broad bands in 410 and 500nm are attributed to phenoxyl, indolyl radicals and ions radicals as intermediates, respectively. The higher values to hydrogen transference from alcohols (~105 M-1s-1) and allylic hydrocarbons and phenols (~109 M-1s-1) are attributed to the triplet excited state of lower energy have a mixture of excited states with predominant character of the excited state with nπ*. The no dependence to substituted-phenols on Kq and the approximated values between then and TEA, DABCO and indole (~109 M-1s-1) are indicating a mechanism by electron-transference followed a faster proton transference from an exciplex. The quenching rate contants by transfer of energy from trans-stilbene, 1-methylnaphthalene and 1,3-cyclohexadiene are controlled by diffusion for 2MeTX remaining triplet energy over 61 kcal.mol-1, as observed for TX. For the other substituents was a decrease in triplet energy is getting between 53 and 61 kcal.mol-1.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Ciências ExatasThioxanthonephotochemistrylaser pulse photolysistioxantonafotoquímicafotólise por pulso de laserQuímicaEstudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundoStudy of the effect of substituents In the photochemistry of thioxanthone by Laser pulse photolysis in nanosecondinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAbdel-wahab, A-M. A.; Gaber, A. E-A.; J. Photochem. Photobiol. A 1998, 114, 213. 2. Abdullah, K. A.; Kemp, T. J.; J. Chem. Soc. Perkin Trans. 1985, 2, 1279. 3. Allen, N. S.; Catalina, F.; Green, P. N.; Green, W.A.; Eur. Polym. J. 1986, 22, 347. 4. Allen, N. S.; Salleh, N. G.; Edge, M.; Shah, M.; Ley, C.; Morlet-Savary, F.; Fouassier, J. P.; Catalina, F.;Green, A.; Navaratnam, S.; Parsons, B. J.; Polymer 1999, 40, 4181. 5. Allen, N.; Edge, M.; Sethi, S.; Catalina, F.; Corrales, T.; Green, A.; J. Photochem. and Photobiol. A 2000, 137, 169. 6. Allonas, X.; Ley, C.; Bibaut, C.; Jacques, P.; Fouassier, J. P.; Chem. Phys. Lett. 2000, 322, 483. 7. Anderson, D. G.; Davidson, R. S.; Elvery, J. J.; Polymer 1996, 37, 2477 8. Anglioni, L.; Caretti, D.; Corelli, E.; Carlini, C.; J. Appl. Polym. Sci. 1995, 55, 1477. 9. Arsu, N.; Aydin, M.; Yagii, Y.; Jockusch, S.; Turro, N. J. Em Photochemistry and UV Curing: New trends, Fouassier, J. P., Research Signpost: India, 2006. 10. Azumi, T.; Chem. Phys. Lett. 1974, 25, 135. 11. Balta, D. K.; Arsu, N.; J. Photochem. Photobiol. A 2008, 200, 377. 12. Balta, D. K.; Cetiner, N.; Temel, G.; Turgut, Z.; Arsu, N.; J. Photochem. Photobiol. A 2008, 199, 316. 13. Baltrop, J. A.; Coyle, J. D.: Principles of Photochemistry, Wiley: New York, 1978. 14. Bertoti, A. R.; Netto-Ferreira, J. C.; Quim. Nova 2009, 32, 1934. 15. Bieri, O.; Wirz, J.; Hellrung, B.; Schutkowski, M.; Drewello, M.; Kiefhaber, T.; J. Natl. Acad. Sci. 1999, 96, 9597. 16. Bowen, E. J.; Sahu, J.; J. Chem. Soc. 1958, 3716. 17. Burget, D.; Jacques, P.; Chem. Phys. Lett. 1998, 291, 207. 18. Burget, D.; Mayer, T.; Mignani, G.; Fouassier, J. P; J. Photochem. Photobiol. A 1996, 97, 163. 19. Carlini, C.; Ciardelli, F.; Donati, D.; Gurzoni, F.; Polymer 1983, 24, 599. 20. Catalina, F.; Peinado, C.; Sastre, R.; Mateo, J.L.; Allen, N.S.; J. Photochem. Photobiol. A 1989, 47, 365. 106 21. Corbett, T. H.; Panchapor, C.; Polin, L.; Lowichik, N.; Pugh, S.; White, K.; Kushner, J.; Meyer, J.; Czarnecki, J.; Chinnukrok, S.; Edelstein, M.; LoRusso, P.; Heilbrun, L.; Horwitz, P.; Grieshaber, C.; Perni, R.; Wentland, M.; Coughlin, S.; Elenbass, S.; Philion, R.; Rake, J.; Investigational New Drugs 1999, 17, 17. 22. Corrales, T.; Catalina, F.; Allen, N.S.; Peinado, C.; J. Photochem. Photobiol. A 2005, 169, 95. 23. Corrales, T.; Catalina, F.; Peinado, C.; Allen, N. S.; J. Photochem. Photobiol. A 2003, 159, 103. 24. Cosa, G.; Llauger, L.; Scaiano, J. C.; Miranda, M. A.; Org. Letters 2002, 4, 3083. 25. Cosa, G.; Scaiano, J. C.; J. Photochem. Photobiol. 2004, 80, 159. 26. Cowan, D. O.; Drisko, R. L.: Elements of Organic Photochemistry, Plenum: New York, 1976. 27. Coxon, J. M.; Halton, B.: Organic Chemistry, 1st ed.; Cambrige University Press, 1974. 28. Da Silva, E. L.; Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Brasil, 2006. 29. Dalton, J. C.; Mongomery, F. C.; J. Am. Chem. Soc. 1974, 96, 6230. 30. Dalton, J. C.; Turro, N. J.; J. Am. Chem. Soc. 1971, 93, 3569. 31. Davidson, R.S. Em Technology and Applications of UV and EB Curing, SITA Technology Ltd.: London, 1999. 32. Davidson, R.S. Em Advances in Physical Chemistry, D. Bethel, V. Gold eds., Academic Press: London, 1983. 33. Dietliker, K.: Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, vol. 3, Technology Ltd./SITA: London, 1991. 34. Dos Santos, F. R.; Silva, M. T.; Netto-Ferreira, J. C.; Quim. Nova 2007, 30, 897. 35. Dossot, M.; Allonas, X.; Jacques, P.; Chem. Eur. J. 2005, 11, 1763. 36. Du, F.S.; Zhang, P.; Li, F.M.; J. Appl. Polym. Sci. 1994, 51, 2139. 37. El Sayed, M. A.; J. Phys. Chem. 1963, 38, 2834. 38. Encinas, M. V.; Rufs, A. M.; Corrales, T.; Catalina, F.; Peinado, C.; Schmith, K.; Neumann, M. G.; Allen, N. S.; Polymer 2002, 43, 3909. 39. Evans, C. H.; Prud’homme, N.; King, M.; Scaiano, J. C.; J. Photochem. Photobiol. A 1999, 121, 105. 107 40. Ferreira, G. C.; Schmitt, C. C.; Neumann, M. G.; J. Braz. Chem. Soc. 2006, 17, 905; 41. Formosinho, S. J.; Rev. Port. Quim. 1972, 14, 201. 42. Fouassier, J. P.; Jacques, P.; Lougnot, D. J.; Pilot, T. ; Polym. Photochem. 1984, 5, 57. 43. Fouassier, J.P.: Photoinitiation”, Photopolymerization and Photocuring, Hanser Verlag: Munich, 1995. 44. Gilbert, A.; Baggot, J.: Essentials of Molecular Photochemistry, Blackwell Scientific Publications: Londres, 1991. 45. Giovanelli, V. K. H.; Dehler, J.; Hohlneicher, G.; Ber. Bunsenges. Phys. Chem.I 1971, 75, 864. 46. Griller, D.; Howard, J. A.; Marriott, P. R.; Scaiano, J. C.; J. Am. Chem. Soc. 1981, 103, 619. 47. Herkstroeter, W. G.; Lamola, A. A.; Hammond, G. S.; J. Am. Chem. Soc. 1964, 86, 4537. 48. Jacques, P.; Burget, D.; Allonas, X.; Fouassier, J. P.; Chem. Phys. Lett. 1994, 227, 26. 49. Jiang, X.; Luo, J.; Yin, J.; Polymer 2009, 50, 37. 50. Jiang, X.; Wang, W.; Xu, H.; Yin, J.; Photochem. Photobiol. A. 2006, 181, 233. 51. Jockusch, S.; Timpe, H. J.; Schmabel, W.; Turro, N.J.; J. Phys. Chem. A 1997, 101, 440. 52. Kopecký, J.: Organic Photochemistry, VCH Publishers, 1992. 53. Kunze, A.; Müller, U.; Tittes, K.; Fouassier, J. P.; Morlet-Savary, F.; J. Photochem. Photobiol. A 1997, 110, 115. 54. Ledwith, A.; Bosley, J.A.; Purbrich, M.D.; J. Oil. Col. Chem. Assoc. 1978, 61, 95. 55. Ledwith, A.; Purbrich, M.D.; Polymer 1973, 14, 521. 56. Ley, C.; Morlet-Savary, F.; Jacques, P.; Fouassier, J. P.; Chem. Phys. 2000, 255, 335. 57. Lissi, E.A.; Encinas, M.V.: Photochemistry and Photophysics, vol. IV, Rabek J.F. eds. CRC Press Boca Raton: FL, 1991. 58. Lumb, M. C.: Luminescence Spectroscopy, Academic: New York, 1978. 59. Majjipapu, J. R. R.; Kurchan, A. N.; Kottani, R.; Gustafon, T. P.; Kutateladze, A. G.; J. Am. Chem. Soc. 2005, 125, 12458. 108 60. Mattay, J.; Angew. Chem. 19987, 99, 849. 61. Mattay, J.; J. Synt. Org. Chem. 1989, 4, 232. 62. McClelland, R. A.; Chan, C.; Cozens, F. L.; Modro, A.; Steenken, S.; Angew. Chem. Int. Ed. Engl. 1991, 30, 1337. 63. McCullough, J.; J. Chem. Rev. 1987, 87, 820. 64. Merkel, P.B.; Dinnocenzo, J.P.; J. Photochem. Photobiol. A 2008, 193, 110. 65. Mishra, M.K.; Yagci, Y. Em Handbook of RadicalVinyl Polymerization, Marcel Dekker Inc.: New York, 1998, cap. 7. 66. Morita, H.; Mori, S. J. Photochem. Photobiol. A 1991, 59, 29. 67. Morita, H.; Shimizu, J. J. Photopolym. Sci. Technol. 1989, 2, 193. 68. Morlet-Savary, F.; Ley, C.; Jacques, P.; Wieder, F.; Fouassier, J. P.; J. Photochem. Photobiol. A 1999, 126, 7. 69. Moss, R. A.; Turro, N. J. Em Laser Flash Photolysis Studies of Arylhalocarbenes, Platz, M. S., ed.; plenum Press: New York, 1990, pp 213. 70. Murov, S. L.; Carmichael, I.; Hug, G. L.: Handbook of Photochemistry, 2th ed.; Marcel Dekker Inc.: New York, 1993. 71. Netto-Ferreira, J. C.; Lhiaubet-Vallet, V.; Silva, A. R.; Silva, A. M.; Ferreira, A. B. B.; Miranda, A.; J. Braz. Chem. Soc.2010, 21, 2010. 72. Neumann, M. G.; Gehlen, M. H.; Encinas, M. V.; Allen, N. S.; Corrales, T.; Peinado, C.; Catalina, F.; J. Chem. Soc. Fraday Trans. 1997, 93, 1517. 73. Neumann, M. G.; Quina, F. H.; Quim. Nova 2002, 25, Supl.1, 34. 74. Nurmukhametov, R. N.; Plotnikov, V. G.; Shigorin, D. N. Russ. J. Phys. Chem. 1966, 40, 622. 75. Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J.; J. Phys. Chem. B 2001, 105, 2122. 76. Pappas, S.P.: UV Curing Science and Technology; Technology Marketing Corp., Norwalk: CA, 1978. 77. Platz, M. S.; Maloney, V. M. Em Laser Flash Photolysis Studies of Triplet Carbenes, Platz, M. S., ed.; Plenum Press: New York, 1990, pp 239. 78. Plotnikov, V. G.; Opt. Spekstrask. 1967, 22, 401. 79. Pouliquen, L.; Coqueret, X.; Morlet-Savary, F.; Fouassier, J.P.; Macromolecules 1995, 28, 8028. 80. Rabek, J. F.: Experimental Methods in Photochemistry and Photophysics, part 2, Wiley: New York, 1982. 109 81. Rehm, D.; Weller, A.; Isr. J. Chem. 1970, 8, 259. 82. Robert, L.; Polym. J. Sci. Part A: Polym. Chem 2002, 40, 1504. 83. Rodrigues, J. F.; da Silva, F. A.; Netto-Ferreira, J. C.; J. Braz. Chem. Soc. 2010, 21, 960. 84. Rodrigues, J. F.; Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Brsail, 2005. 85. Roffey, C. Em Photogeneration of Reactive Species for UV-Curing, Wiley: Sussex, UK, 1997. 86. Rohatgi-Murkherjee: Fundamentals of Photochemistry; Willey Eastern Limited, 1978. 87. Scaiano, J. C.: Nanosecond Laser Flash Photolysis: A tool for physical organic chemistry, University of Ottawa, 2002. 88. Scaiano, J. C.; Trans. R. Soc. Can. 1983, 21, 133. 89. Segurola, J.; Allen, N.; Edge, M.; Parrondo, A.; Roberts, I.; J. Photochem. Photobiol. A 1999, 122, 115. 90. Shah, M.; Allen, N. S.; Salleh, N. G.; Corrales, T.; Egde, M.; Catalina, F.; Bosch, P.; Green, A..; J. Photochem. Photobiol., A. 1997, 111, 229. 91. Sharghi, H.; Beni, A. R. S.; ARKIVOC 2007, xiii, 1. 92. Shukla, D.; Wan, P.; J. Photochem. Photobiol. A 1998, 113, 53. 93. Silva, M. T.; Netto-Ferreira, J. C.; J.Photochem. Photobiol. A 2004, 162, 225. 94. Silva, M.T.; Tese de Doutorado, Universidade Federal Rural do Rio de Janeiro, Brasil, 1999. 95. Silverstein, R. M., Bassler, C. G., Morril, I. C.: Identificação Espctrométrica de Compostos Orgânicos, 5ª ed., Editora Guanabara Koogan S. A., 1994. 96. Skoog, D. A.; West, D. M.; Holler, F. J.: Fundamentals of analytical Chemistry, 7th ed., Saunders College Publishing: New York, 1996. 97. Small, R. D., Jr.; Scaiano, J. C.; J. Am. Chem. Soc. 1978, 100, 296. 98. Solomons, T. W.: Química Orgânica, 6ª ed., LCT: RJ, 1996. 99. Stern, O.; Volmer, M.; Physik. Z. 1919, 20; 183. 100. Stevenson, J. P.; DeMaria, D.; Reilly, D.; Purvis, J. D.; Graham, M. A.; Lockwood, G.; Drozd, M.; O’Dwyer, P. J.; Cancer Chemother Pharmacol 1999, 44, 228. 101. Takaizumi, A. A. C.; Dos Santos, F. R.; Silva, M. T.; Netto-Ferreira, J. C.; Quim. Nova 2009, 32, 1799; 110 102. Temel, G.; Arsu, N.; J. Photochem. Photobiol. A: Chem. 2007, 191, 149. 103. Togashi, D. M.; Nicodem, D. E.; Spectrochimica Acta. Part A 2004, 60, 3205. 104. Turro, N. J.: Modern molecular Photochemistry; University Science Books: CA, 1991. 105. Turro, N. J.; Grätzel, M.; Braun, A. M.; Angew. Chem. Int. Ed. Engl. 1980, 19, 675. 106. Turro, N. J.; Tetrahedron 1987, 43, 1589. 107. Valdebenito, A.; Encinas, M. V.; J. Photochem. Photobiol. A 2008, 194, 206. 108. Valentine, D. Jr.; Hammond, G. S.; ibid. 1972, 94, 3449. 109. Weller, A. Z.; Phys. Chem. Neue Folge 1982, 133, 93. 110. Woo, S.; Kang, D.; Kim, J.; Lee, C.; Lee, E.; Jahng, Y.; kwon, Y.; Na, Y.; Bull. Korean chem. Soc. 2008, 29, 471. 111. Yamaji, M.; Aoyama, Y.; Furukawa, T.; Itoh, T.; Tobita, S.; Chem. Phys. Lett. 2006, 420, 187. 112. Yang, J.W.; Zeng, Z.H.; Chen, Y.L.; Polym. J. Sci. Part A: Polym. Chem. 1998, 36, 2563. 113. Yu, X.; Corten, C.; Görner, H.; Wolf, T.; Kuckling, D.; J. Photochem. Photobiol. A 2008, 198, 34. 114. http://old.iupac.org/goldbook/S06004.pdf emhttps://tede.ufrrj.br/retrieve/61175/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1975Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2017-08-18T16:17:20Z No. of bitstreams: 1 2010 - Janaina de Faria Rodrigues.pdf: 2153676 bytes, checksum: 8429cd74e923c45f3d05970bcdff87d2 (MD5)Made available in DSpace on 2017-08-18T16:17:20Z (GMT). No. of bitstreams: 1 2010 - Janaina de Faria Rodrigues.pdf: 2153676 bytes, checksum: 8429cd74e923c45f3d05970bcdff87d2 (MD5) Previous issue date: 2010-06-15info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2010 - Janaina de Faria Rodrigues.pdf.jpgGenerated Thumbnailimage/jpeg2104https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/1/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf.jpgc4715912a635b5fbde63d2a9b070733fMD51TEXT2010 - Janaina de Faria Rodrigues.pdf.txtExtracted Texttext/plain195080https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/2/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf.txt3b22417778886b11978da782c68344fcMD52ORIGINAL2010 - Janaina de Faria Rodrigues.pdfDocumento principalapplication/pdf2153676https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/3/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf8429cd74e923c45f3d05970bcdff87d2MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/101922023-12-21 15:58:55.856oai:rima.ufrrj.br:20.500.14407/10192Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:58:55Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
dc.title.alternative.eng.fl_str_mv Study of the effect of substituents In the photochemistry of thioxanthone by Laser pulse photolysis in nanosecond
title Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
spellingShingle Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
Rodrigues, Janaina de Faria
Thioxanthone
photochemistry
laser pulse photolysis
tioxantona
fotoquímica
fotólise por pulso de laser
Química
title_short Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
title_full Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
title_fullStr Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
title_full_unstemmed Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
title_sort Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo
author Rodrigues, Janaina de Faria
author_facet Rodrigues, Janaina de Faria
author_role author
dc.contributor.author.fl_str_mv Rodrigues, Janaina de Faria
dc.contributor.advisor1.fl_str_mv Ferreira, José Carlos Netto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/2496613154167269
dc.contributor.advisor-co1.fl_str_mv Silva, Francisco Assis da
dc.contributor.referee1.fl_str_mv Schimtt, Carla C,
dc.contributor.referee2.fl_str_mv Ferreira, Aurélio B.B.
dc.contributor.referee3.fl_str_mv Silva, Rosaly Silveira da
dc.contributor.referee4.fl_str_mv Sobrinho, Dari Cesarin
dc.contributor.referee5.fl_str_mv Garden, Nancy C. D. L.
dc.contributor.authorID.fl_str_mv 052.959.097-27
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5966552443488980
contributor_str_mv Ferreira, José Carlos Netto
Silva, Francisco Assis da
Schimtt, Carla C,
Ferreira, Aurélio B.B.
Silva, Rosaly Silveira da
Sobrinho, Dari Cesarin
Garden, Nancy C. D. L.
dc.subject.eng.fl_str_mv Thioxanthone
photochemistry
laser pulse photolysis
topic Thioxanthone
photochemistry
laser pulse photolysis
tioxantona
fotoquímica
fotólise por pulso de laser
Química
dc.subject.por.fl_str_mv tioxantona
fotoquímica
fotólise por pulso de laser
dc.subject.cnpq.fl_str_mv Química
description Utilizando-se a técnica de fotólise por pulso de laser, foram estudadas a fotorreatividade do estado triplete de derivados de tioxantona (9-H-tioxanton-9-ona). Os espectros de absorção T1–Tn para os derivados 2-benzilóxi, 2-metóxi, 2-propóxi e 2-metil (2BTX, 2MeOTX, 2PrOTX e 2MeTX), obtidos em diversos solventes, mostram que estes se comportam de forma selhante a tioxantona. O comprimento de onda máximo bem como o tempo de vida de seus transientes são dependentes da polaridade do meio. Observou-se o deslocamento hipsocrômico com a mudança de um solvente apolar para um solvente polar, tendo sido mais acentuado para os solventes polares hidroxilícos. Nos espectros de absorção T1–Tn em solventes doadores de hidrogênio foi possível observar a formação de uma banda entre região de 430-460nm que foi observada novamente nas reações com supressores de energia triplete doadores de hidrogênio, sendo esta banda atribuída ao radical cetila. As bandas formadas na região de 410 e 500nm são atribuídas ao radical fenoxila e indolila, respectivamente. Os altos valores para as constantes de velocidade de reação de supressão por transferência de hidrogênio com álcoois (~105 M-1s-1), hidrocarbonetos alílicos e fenóis (~109 M-1s-1) são atribuídos ao fato de que o estado excitado triplete de mais baixa energia apresentar uma mistura de estados excitado com predominância do caráter nπ*. A não dependência das kq para os fenóis de seus substituintes e os valores próximos das reações para trietilamina, DABCO e indol indicam que o mecanismo de reação passa por uma primeira etapa de transferência de elétrons seguida de uma rápida transferência de próton a partir da formação de um exciplexo. As constantes de velocaide de reação de supressão por transferência de energia com trans-estilbeno, 1-metil-naftaleno e 1,3-cicloexadieno são controladas por difusão para 2MeTX estando a energia triplete de T1 acima de 61 kcal.mol-1, como o observado para a TX; já para os demais substituintes houve uma diminuição da energia triplete ficando esta entre 53 kcal.mol-1 e 61 kcal.mol-1.
publishDate 2010
dc.date.issued.fl_str_mv 2010-06-15
dc.date.accessioned.fl_str_mv 2023-12-21T18:58:55Z
dc.date.available.fl_str_mv 2023-12-21T18:58:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Janaina de Faria. Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo. 2010. 166 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10192
identifier_str_mv RODRIGUES, Janaina de Faria. Estudo do efeito de substituintes na fotoquímica de tioxantona por fotólise por pulso de laser em nanossegundo. 2010. 166 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2010.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10192
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv Abdel-wahab, A-M. A.; Gaber, A. E-A.; J. Photochem. Photobiol. A 1998, 114, 213. 2. Abdullah, K. A.; Kemp, T. J.; J. Chem. Soc. Perkin Trans. 1985, 2, 1279. 3. Allen, N. S.; Catalina, F.; Green, P. N.; Green, W.A.; Eur. Polym. J. 1986, 22, 347. 4. Allen, N. S.; Salleh, N. G.; Edge, M.; Shah, M.; Ley, C.; Morlet-Savary, F.; Fouassier, J. P.; Catalina, F.;Green, A.; Navaratnam, S.; Parsons, B. J.; Polymer 1999, 40, 4181. 5. Allen, N.; Edge, M.; Sethi, S.; Catalina, F.; Corrales, T.; Green, A.; J. Photochem. and Photobiol. A 2000, 137, 169. 6. Allonas, X.; Ley, C.; Bibaut, C.; Jacques, P.; Fouassier, J. P.; Chem. Phys. Lett. 2000, 322, 483. 7. Anderson, D. G.; Davidson, R. S.; Elvery, J. J.; Polymer 1996, 37, 2477 8. Anglioni, L.; Caretti, D.; Corelli, E.; Carlini, C.; J. Appl. Polym. Sci. 1995, 55, 1477. 9. Arsu, N.; Aydin, M.; Yagii, Y.; Jockusch, S.; Turro, N. J. Em Photochemistry and UV Curing: New trends, Fouassier, J. P., Research Signpost: India, 2006. 10. Azumi, T.; Chem. Phys. Lett. 1974, 25, 135. 11. Balta, D. K.; Arsu, N.; J. Photochem. Photobiol. A 2008, 200, 377. 12. Balta, D. K.; Cetiner, N.; Temel, G.; Turgut, Z.; Arsu, N.; J. Photochem. Photobiol. A 2008, 199, 316. 13. Baltrop, J. A.; Coyle, J. D.: Principles of Photochemistry, Wiley: New York, 1978. 14. Bertoti, A. R.; Netto-Ferreira, J. C.; Quim. Nova 2009, 32, 1934. 15. Bieri, O.; Wirz, J.; Hellrung, B.; Schutkowski, M.; Drewello, M.; Kiefhaber, T.; J. Natl. Acad. Sci. 1999, 96, 9597. 16. Bowen, E. J.; Sahu, J.; J. Chem. Soc. 1958, 3716. 17. Burget, D.; Jacques, P.; Chem. Phys. Lett. 1998, 291, 207. 18. Burget, D.; Mayer, T.; Mignani, G.; Fouassier, J. P; J. Photochem. Photobiol. A 1996, 97, 163. 19. Carlini, C.; Ciardelli, F.; Donati, D.; Gurzoni, F.; Polymer 1983, 24, 599. 20. Catalina, F.; Peinado, C.; Sastre, R.; Mateo, J.L.; Allen, N.S.; J. Photochem. Photobiol. A 1989, 47, 365. 106 21. Corbett, T. H.; Panchapor, C.; Polin, L.; Lowichik, N.; Pugh, S.; White, K.; Kushner, J.; Meyer, J.; Czarnecki, J.; Chinnukrok, S.; Edelstein, M.; LoRusso, P.; Heilbrun, L.; Horwitz, P.; Grieshaber, C.; Perni, R.; Wentland, M.; Coughlin, S.; Elenbass, S.; Philion, R.; Rake, J.; Investigational New Drugs 1999, 17, 17. 22. Corrales, T.; Catalina, F.; Allen, N.S.; Peinado, C.; J. Photochem. Photobiol. A 2005, 169, 95. 23. Corrales, T.; Catalina, F.; Peinado, C.; Allen, N. S.; J. Photochem. Photobiol. A 2003, 159, 103. 24. Cosa, G.; Llauger, L.; Scaiano, J. C.; Miranda, M. A.; Org. Letters 2002, 4, 3083. 25. Cosa, G.; Scaiano, J. C.; J. Photochem. Photobiol. 2004, 80, 159. 26. Cowan, D. O.; Drisko, R. L.: Elements of Organic Photochemistry, Plenum: New York, 1976. 27. Coxon, J. M.; Halton, B.: Organic Chemistry, 1st ed.; Cambrige University Press, 1974. 28. Da Silva, E. L.; Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Brasil, 2006. 29. Dalton, J. C.; Mongomery, F. C.; J. Am. Chem. Soc. 1974, 96, 6230. 30. Dalton, J. C.; Turro, N. J.; J. Am. Chem. Soc. 1971, 93, 3569. 31. Davidson, R.S. Em Technology and Applications of UV and EB Curing, SITA Technology Ltd.: London, 1999. 32. Davidson, R.S. Em Advances in Physical Chemistry, D. Bethel, V. Gold eds., Academic Press: London, 1983. 33. Dietliker, K.: Chemistry & Technology of UV & EB Formulation for Coatings, Inks & Paints, vol. 3, Technology Ltd./SITA: London, 1991. 34. Dos Santos, F. R.; Silva, M. T.; Netto-Ferreira, J. C.; Quim. Nova 2007, 30, 897. 35. Dossot, M.; Allonas, X.; Jacques, P.; Chem. Eur. J. 2005, 11, 1763. 36. Du, F.S.; Zhang, P.; Li, F.M.; J. Appl. Polym. Sci. 1994, 51, 2139. 37. El Sayed, M. A.; J. Phys. Chem. 1963, 38, 2834. 38. Encinas, M. V.; Rufs, A. M.; Corrales, T.; Catalina, F.; Peinado, C.; Schmith, K.; Neumann, M. G.; Allen, N. S.; Polymer 2002, 43, 3909. 39. Evans, C. H.; Prud’homme, N.; King, M.; Scaiano, J. C.; J. Photochem. Photobiol. A 1999, 121, 105. 107 40. Ferreira, G. C.; Schmitt, C. C.; Neumann, M. G.; J. Braz. Chem. Soc. 2006, 17, 905; 41. Formosinho, S. J.; Rev. Port. Quim. 1972, 14, 201. 42. Fouassier, J. P.; Jacques, P.; Lougnot, D. J.; Pilot, T. ; Polym. Photochem. 1984, 5, 57. 43. Fouassier, J.P.: Photoinitiation”, Photopolymerization and Photocuring, Hanser Verlag: Munich, 1995. 44. Gilbert, A.; Baggot, J.: Essentials of Molecular Photochemistry, Blackwell Scientific Publications: Londres, 1991. 45. Giovanelli, V. K. H.; Dehler, J.; Hohlneicher, G.; Ber. Bunsenges. Phys. Chem.I 1971, 75, 864. 46. Griller, D.; Howard, J. A.; Marriott, P. R.; Scaiano, J. C.; J. Am. Chem. Soc. 1981, 103, 619. 47. Herkstroeter, W. G.; Lamola, A. A.; Hammond, G. S.; J. Am. Chem. Soc. 1964, 86, 4537. 48. Jacques, P.; Burget, D.; Allonas, X.; Fouassier, J. P.; Chem. Phys. Lett. 1994, 227, 26. 49. Jiang, X.; Luo, J.; Yin, J.; Polymer 2009, 50, 37. 50. Jiang, X.; Wang, W.; Xu, H.; Yin, J.; Photochem. Photobiol. A. 2006, 181, 233. 51. Jockusch, S.; Timpe, H. J.; Schmabel, W.; Turro, N.J.; J. Phys. Chem. A 1997, 101, 440. 52. Kopecký, J.: Organic Photochemistry, VCH Publishers, 1992. 53. Kunze, A.; Müller, U.; Tittes, K.; Fouassier, J. P.; Morlet-Savary, F.; J. Photochem. Photobiol. A 1997, 110, 115. 54. Ledwith, A.; Bosley, J.A.; Purbrich, M.D.; J. Oil. Col. Chem. Assoc. 1978, 61, 95. 55. Ledwith, A.; Purbrich, M.D.; Polymer 1973, 14, 521. 56. Ley, C.; Morlet-Savary, F.; Jacques, P.; Fouassier, J. P.; Chem. Phys. 2000, 255, 335. 57. Lissi, E.A.; Encinas, M.V.: Photochemistry and Photophysics, vol. IV, Rabek J.F. eds. CRC Press Boca Raton: FL, 1991. 58. Lumb, M. C.: Luminescence Spectroscopy, Academic: New York, 1978. 59. Majjipapu, J. R. R.; Kurchan, A. N.; Kottani, R.; Gustafon, T. P.; Kutateladze, A. G.; J. Am. Chem. Soc. 2005, 125, 12458. 108 60. Mattay, J.; Angew. Chem. 19987, 99, 849. 61. Mattay, J.; J. Synt. Org. Chem. 1989, 4, 232. 62. McClelland, R. A.; Chan, C.; Cozens, F. L.; Modro, A.; Steenken, S.; Angew. Chem. Int. Ed. Engl. 1991, 30, 1337. 63. McCullough, J.; J. Chem. Rev. 1987, 87, 820. 64. Merkel, P.B.; Dinnocenzo, J.P.; J. Photochem. Photobiol. A 2008, 193, 110. 65. Mishra, M.K.; Yagci, Y. Em Handbook of RadicalVinyl Polymerization, Marcel Dekker Inc.: New York, 1998, cap. 7. 66. Morita, H.; Mori, S. J. Photochem. Photobiol. A 1991, 59, 29. 67. Morita, H.; Shimizu, J. J. Photopolym. Sci. Technol. 1989, 2, 193. 68. Morlet-Savary, F.; Ley, C.; Jacques, P.; Wieder, F.; Fouassier, J. P.; J. Photochem. Photobiol. A 1999, 126, 7. 69. Moss, R. A.; Turro, N. J. Em Laser Flash Photolysis Studies of Arylhalocarbenes, Platz, M. S., ed.; plenum Press: New York, 1990, pp 213. 70. Murov, S. L.; Carmichael, I.; Hug, G. L.: Handbook of Photochemistry, 2th ed.; Marcel Dekker Inc.: New York, 1993. 71. Netto-Ferreira, J. C.; Lhiaubet-Vallet, V.; Silva, A. R.; Silva, A. M.; Ferreira, A. B. B.; Miranda, A.; J. Braz. Chem. Soc.2010, 21, 2010. 72. Neumann, M. G.; Gehlen, M. H.; Encinas, M. V.; Allen, N. S.; Corrales, T.; Peinado, C.; Catalina, F.; J. Chem. Soc. Fraday Trans. 1997, 93, 1517. 73. Neumann, M. G.; Quina, F. H.; Quim. Nova 2002, 25, Supl.1, 34. 74. Nurmukhametov, R. N.; Plotnikov, V. G.; Shigorin, D. N. Russ. J. Phys. Chem. 1966, 40, 622. 75. Okano, L. T.; Barros, T. C.; Chou, D. T. H.; Bennet, A. J.; J. Phys. Chem. B 2001, 105, 2122. 76. Pappas, S.P.: UV Curing Science and Technology; Technology Marketing Corp., Norwalk: CA, 1978. 77. Platz, M. S.; Maloney, V. M. Em Laser Flash Photolysis Studies of Triplet Carbenes, Platz, M. S., ed.; Plenum Press: New York, 1990, pp 239. 78. Plotnikov, V. G.; Opt. Spekstrask. 1967, 22, 401. 79. Pouliquen, L.; Coqueret, X.; Morlet-Savary, F.; Fouassier, J.P.; Macromolecules 1995, 28, 8028. 80. Rabek, J. F.: Experimental Methods in Photochemistry and Photophysics, part 2, Wiley: New York, 1982. 109 81. Rehm, D.; Weller, A.; Isr. J. Chem. 1970, 8, 259. 82. Robert, L.; Polym. J. Sci. Part A: Polym. Chem 2002, 40, 1504. 83. Rodrigues, J. F.; da Silva, F. A.; Netto-Ferreira, J. C.; J. Braz. Chem. Soc. 2010, 21, 960. 84. Rodrigues, J. F.; Dissertação de Mestrado, Universidade Federal Rural do Rio de Janeiro, Brsail, 2005. 85. Roffey, C. Em Photogeneration of Reactive Species for UV-Curing, Wiley: Sussex, UK, 1997. 86. Rohatgi-Murkherjee: Fundamentals of Photochemistry; Willey Eastern Limited, 1978. 87. Scaiano, J. C.: Nanosecond Laser Flash Photolysis: A tool for physical organic chemistry, University of Ottawa, 2002. 88. Scaiano, J. C.; Trans. R. Soc. Can. 1983, 21, 133. 89. Segurola, J.; Allen, N.; Edge, M.; Parrondo, A.; Roberts, I.; J. Photochem. Photobiol. A 1999, 122, 115. 90. Shah, M.; Allen, N. S.; Salleh, N. G.; Corrales, T.; Egde, M.; Catalina, F.; Bosch, P.; Green, A..; J. Photochem. Photobiol., A. 1997, 111, 229. 91. Sharghi, H.; Beni, A. R. S.; ARKIVOC 2007, xiii, 1. 92. Shukla, D.; Wan, P.; J. Photochem. Photobiol. A 1998, 113, 53. 93. Silva, M. T.; Netto-Ferreira, J. C.; J.Photochem. Photobiol. A 2004, 162, 225. 94. Silva, M.T.; Tese de Doutorado, Universidade Federal Rural do Rio de Janeiro, Brasil, 1999. 95. Silverstein, R. M., Bassler, C. G., Morril, I. C.: Identificação Espctrométrica de Compostos Orgânicos, 5ª ed., Editora Guanabara Koogan S. A., 1994. 96. Skoog, D. A.; West, D. M.; Holler, F. J.: Fundamentals of analytical Chemistry, 7th ed., Saunders College Publishing: New York, 1996. 97. Small, R. D., Jr.; Scaiano, J. C.; J. Am. Chem. Soc. 1978, 100, 296. 98. Solomons, T. W.: Química Orgânica, 6ª ed., LCT: RJ, 1996. 99. Stern, O.; Volmer, M.; Physik. Z. 1919, 20; 183. 100. Stevenson, J. P.; DeMaria, D.; Reilly, D.; Purvis, J. D.; Graham, M. A.; Lockwood, G.; Drozd, M.; O’Dwyer, P. J.; Cancer Chemother Pharmacol 1999, 44, 228. 101. Takaizumi, A. A. C.; Dos Santos, F. R.; Silva, M. T.; Netto-Ferreira, J. C.; Quim. Nova 2009, 32, 1799; 110 102. Temel, G.; Arsu, N.; J. Photochem. Photobiol. A: Chem. 2007, 191, 149. 103. Togashi, D. M.; Nicodem, D. E.; Spectrochimica Acta. Part A 2004, 60, 3205. 104. Turro, N. J.: Modern molecular Photochemistry; University Science Books: CA, 1991. 105. Turro, N. J.; Grätzel, M.; Braun, A. M.; Angew. Chem. Int. Ed. Engl. 1980, 19, 675. 106. Turro, N. J.; Tetrahedron 1987, 43, 1589. 107. Valdebenito, A.; Encinas, M. V.; J. Photochem. Photobiol. A 2008, 194, 206. 108. Valentine, D. Jr.; Hammond, G. S.; ibid. 1972, 94, 3449. 109. Weller, A. Z.; Phys. Chem. Neue Folge 1982, 133, 93. 110. Woo, S.; Kang, D.; Kim, J.; Lee, C.; Lee, E.; Jahng, Y.; kwon, Y.; Na, Y.; Bull. Korean chem. Soc. 2008, 29, 471. 111. Yamaji, M.; Aoyama, Y.; Furukawa, T.; Itoh, T.; Tobita, S.; Chem. Phys. Lett. 2006, 420, 187. 112. Yang, J.W.; Zeng, Z.H.; Chen, Y.L.; Polym. J. Sci. Part A: Polym. Chem. 1998, 36, 2563. 113. Yu, X.; Corten, C.; Görner, H.; Wolf, T.; Kuckling, D.; J. Photochem. Photobiol. A 2008, 198, 34. 114. http://old.iupac.org/goldbook/S06004.pdf em
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/1/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/2/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/3/2010%20-%20Janaina%20de%20Faria%20Rodrigues.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10192/4/license.txt
bitstream.checksum.fl_str_mv c4715912a635b5fbde63d2a9b070733f
3b22417778886b11978da782c68344fc
8429cd74e923c45f3d05970bcdff87d2
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108155232780288