Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae

Detalhes bibliográficos
Autor(a) principal: Prudêncio, Edlene Ribeiro
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/14648
Resumo: O mel e a própolis são produzidos por abelhas, a partir da coleta de néctar e seiva das plantas. No processo, os compostos fenólicos oriundos do metabolismo secundário dos vegetais são incorporados aos produtos mencionados. Amostras de mel e própolis de diferentes regiões foram caracterizadas e o conteúdo de compostos fenólicos pode ser dividido em: derivados do ácido hidroxibenzoico, derivados do ácido hidroxicinâmico, flavonoides e flavonoides glicosilados. Na literatura, valores de atividade antioxidante in vitro descritos divergem consideravelmente entre os autores. Além disso, os métodos in vitro (DPPH, ABTS, FRAPP, dentre outros) não representam condições fisiológicas como concentração de substratos e interação de metabólitos. A levedura Saccharomyces cerevisie é uma ferramenta para ensaio biológico, uma vez que apresenta elevada semelhança com células de mamíferos superiores no sistema de defesa antioxidante. O objetivo deste trabalho foi comparar o potencial antioxidante de diferentes classes de compostos fenólicos, utilizando os representantes morina, rutina, ácido siríngico e clorogênico em cepas controle (BY4741) e mutantes (sod1 e gsh1) de S. cerevisiae. Foram avaliados toxidez dose-dependente, tolerância ao estresse e peroxidação lipídica. Todos os compostos fenólicos testados foram efetivos em reduzir danos oxidativos intracelulares, com destaque para o ácido clorogênico na cepa controle. Quando comparado às células estressadas, este promoveu aumentos de 75% de sobrevivência, contra 57% em média dos demais tratamentos; e diminuição de 60% em níveis de peroxidação lipídica, contra redução próxima a 47% dos demais tratamentos. Nas cepas mutantes, todas as substâncias tiveram resultados semelhantes entre si. Desta forma, outros dois componentes da classe do ácido hidroxicinâmico, ácido cafeico e éster fenetílico do ácido cafeico (CAPE), foram testados comparativamente. Ambos atuaram como antioxidante em S. cerevisiae, entretanto CAPE foi a substância mais tóxica e também a que promoveu aumento mais significativo de glutationa reduzida dentre os derivados hidroxicinâmicos. Esse resultado corrobora com dados de estudos que apontam que a atividade protetora dos compostos fenólicos está relacionada a ativação do sistema antioxidante por ação xenobiótica dessas substâncias
id UFRRJ-1_8537c045f3a5559239ec29a43caddf16
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/14648
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Prudêncio, Edlene RibeiroRiger, Cristiano Jorge3009627700http://lattes.cnpq.br/8756160468801705Salles, Cristiane Martins Cardoso de3539928790http://lattes.cnpq.br/3610279707231709Barbosa, Maria Ivone Martins JacinthoPereira, Marcos Dias133.663.677-76http://lattes.cnpq.br/40730013458840452023-12-22T03:03:58Z2023-12-22T03:03:58Z2016-08-04PRUDÊNCIO, Edlene Ribeiro. Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae. 2016. 74 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016.https://rima.ufrrj.br/jspui/handle/20.500.14407/14648O mel e a própolis são produzidos por abelhas, a partir da coleta de néctar e seiva das plantas. No processo, os compostos fenólicos oriundos do metabolismo secundário dos vegetais são incorporados aos produtos mencionados. Amostras de mel e própolis de diferentes regiões foram caracterizadas e o conteúdo de compostos fenólicos pode ser dividido em: derivados do ácido hidroxibenzoico, derivados do ácido hidroxicinâmico, flavonoides e flavonoides glicosilados. Na literatura, valores de atividade antioxidante in vitro descritos divergem consideravelmente entre os autores. Além disso, os métodos in vitro (DPPH, ABTS, FRAPP, dentre outros) não representam condições fisiológicas como concentração de substratos e interação de metabólitos. A levedura Saccharomyces cerevisie é uma ferramenta para ensaio biológico, uma vez que apresenta elevada semelhança com células de mamíferos superiores no sistema de defesa antioxidante. O objetivo deste trabalho foi comparar o potencial antioxidante de diferentes classes de compostos fenólicos, utilizando os representantes morina, rutina, ácido siríngico e clorogênico em cepas controle (BY4741) e mutantes (sod1 e gsh1) de S. cerevisiae. Foram avaliados toxidez dose-dependente, tolerância ao estresse e peroxidação lipídica. Todos os compostos fenólicos testados foram efetivos em reduzir danos oxidativos intracelulares, com destaque para o ácido clorogênico na cepa controle. Quando comparado às células estressadas, este promoveu aumentos de 75% de sobrevivência, contra 57% em média dos demais tratamentos; e diminuição de 60% em níveis de peroxidação lipídica, contra redução próxima a 47% dos demais tratamentos. Nas cepas mutantes, todas as substâncias tiveram resultados semelhantes entre si. Desta forma, outros dois componentes da classe do ácido hidroxicinâmico, ácido cafeico e éster fenetílico do ácido cafeico (CAPE), foram testados comparativamente. Ambos atuaram como antioxidante em S. cerevisiae, entretanto CAPE foi a substância mais tóxica e também a que promoveu aumento mais significativo de glutationa reduzida dentre os derivados hidroxicinâmicos. Esse resultado corrobora com dados de estudos que apontam que a atividade protetora dos compostos fenólicos está relacionada a ativação do sistema antioxidante por ação xenobiótica dessas substânciasHoney and propolis are produced by bees from the nectar and sap collected from plants. In the process, the phenolic compounds derived from secondary metabolism of plants are incorporated into the products mentioned. Honey and propolis samples from multiple regions have been characterized and phenolic compounds can be divided into: hydroxybenzoic acid derivatives, hydroxycinnamic acid derivatives, flavonoids and glycosylated flavonoids. In the literature, there is no consensus among the authors about the values for in vitro antioxidant activity. Moreover, these methods do not represent physiological conditions such as concentration of substrates and metabolites interaction. The yeast Saccharomyces cerevisiae is an alternative tool for a biological assays, since it is similar to mammalian cells. The main goal of this study is to compare the antioxidant potential of different phenolic compounds classes using representatives morin, rutin, chlorogenic acid and syringic acid in control strains (BY4741) and mutant (sod1 and gsh1) of S. cerevisiae. They were evaluated in dose-dependent toxicity, stress tolerance, and lipid peroxidation. All tested phenolic compounds were effective in reducing intracellular oxidative damage, especially the chlorogenic acid in the control strain. When compared to stressed cells, it promoted 75% increase on cell survival rates, compared with 57% on average for the other treatments; and 60% decrease in levels of lipid peroxidation, compared to reductions close to 47% with other treatments. In mutant strains, all compounds presented similar results. Thus, two components of the class hydroxycinnamic acid, caffeic acid and caffeic acid phenethyl ester (CAPE) were tested comparatively. Both acted as an antioxidant in S. cerevisiae, however CAPE was the most toxic substance promoting the most significant increase on reduced glutathione levels among hydroxycinnamic derivatives. This result supports some related research that claims phenolic compounds protectection is related to activation of the antioxidant system as xenobiotic action of these substancesapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Ciências ExatasSaccharomyces cerevisiaephenolic compoundsoxidative stressSaccharomyces cerevisiaecompostos fenólicosestresse oxidativoQuímicaEstudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiaeStudy of different molecules classes isolated from honey and propolis antioxidant activity in Saccharomyces cerevisiae cellsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAMARI, F. et al. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. Journal of Agricultural and Food Chemistry, v. 56, n. 24, p. 11740–11751, 2008. AYALA, A. et al. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, v. 2014, p. 1–31, 2014. AZUMA, K. et al. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. Journal of agricultural and food chemistry, v. 48, n. 11, p. 5496–5500, 2000. BALTRUSAITYTE, V.; VENSKUTONIS, P. R.; CEKSTERYTE, V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry, v. 101, n. 2, p. 502–514, 2007. BARBOSA, K. B. F. et al. Estresse oxidativo: Conceito, implicações e fatores modulatórios. Revista de Nutricao, v. 23, n. 4, p. 629–643, 2010. BELINHA, I. et al. Quercetin Increases Oxidative Stress Resistance and Longevity in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 55, p. 2446–2451, 2007. BERNT, E.; BERGMEYER, H. U. Methods of Enzymatic Analysis, Glutathione. 4. ed. Londres: Chemie Weinheim, Academic Press, 1974. BIENERT, G. P.; SCHJOERRING, J. K.; JAHN, T. P. Membrane transport of hydrogen peroxide. Biochimica et biophysica acta, v. 1758, n. 8, p. 994–1003, ago. 2006. BRASIL. Instrução Normativa 11 de 20 de outubro de 2000. Regulamento Técnico de Identidade e Qualidade do Mel. Disponível em: <http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do?operacao=visualizar&id=7797>. BRAUER, M. J. et al. Homeostatic Adjustment and Metabolic Remodeling in Glucose-limited Yeast Cultures. Molecular Biology of the Cell, v. 16, n. 8, p. 2503–2517, 2005. BREGER, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens, v. 3, n. 2, p. 0168–0178, 2007. 65 BRIGELIUS-FLOHÉ, R.; MAIORINO, M. Glutathione peroxidases. Biochimica et Biophysica Acta - General Subjects, v. 1830, n. 5, p. 3289–3303, 2013. BÚFALO, M. C.; SFORCIN, J. M. The modulatory effects of caffeic acid on human monocytes and its involvement in propolis action. Journal of Pharmacy and Pharmacology, v. 67, n. 5, p. 740–745, 2015. CAI, Y. et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life sciences, v. 78, n. 25, p. 2872–2888, 2006. CALLEMIEN, D.; COLLIN, S. Structure, Organoleptic Properties, Quantification Methods, and Stability of Phenolic Compounds in Beer—A Review. Food Reviews International, v. 26, n. June 2014, p. 1–84, 2009. CAN, Z. et al. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, v. 180, p. 133–141, 2015. CARILLON, J. et al. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action. Pharmaceutical Research, v. 30, n. 11, p. 2718–2728, 2013. CARLOS, J. et al. Antimicrobial activity , phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, v. 50, p. 1790–1795, 2012. CELIK, S.; ERDOGAN, S. Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Molecular and Cellular Biochemistry, v. 312, n. 1-2, p. 39–46, 2008. CELLI, N. et al. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. Journal of Agricultural and Food Chemistry, v. 55, n. 9, p. 3398–3407, 2007. CHEN, F.; GONG, P. Caffeic acid phenethyl ester protect mice hepatic damage against Cadmium exposure. Procedia Environmental Sciences, v. 8, p. 633–636, 2011. CIGUT, T. et al. Antioxidative activity of propolis extract in yeast cells. Journal of Agricultural and Food Chemistry, v. 59, n. 21, p. 11449–11455, 2011. COELHO, V. R. et al. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sciences, v. 122, p. 65–71, 2015. COSTA, V.; MORADAS-FERREIRA, P. Oxidative stress and signal transduction in 66 Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, v. 22, n. 4-5, p. 217–246, 2001. CRUZ, M. A. O. Evaluation and characterization of antioxidant and antigenotoxic properties of Portuguese propolis. [s.l: s.n.]. DA SILVA, C. G. et al. Protective effects of flavonoids and extract from Vellozia kolbekii Alves against oxidative stress induced by hydrogen peroxide in yeast. Journal of Natural Medicines, v. 66, n. 2, p. 367–372, 2012. DA SILVA, I. A. A. et al. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food chemistry, v. 141, n. 4, p. 3552–8, 15 dez. 2013. DA SILVA, P. M. et al. Honey: Chemical composition, stability and authenticity. Food Chemistry, v. 196, p. 309–323, 2016. DANI, C. et al. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 56, n. 11, p. 4268–4272, 2008. DEMIDCHIK, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, v. 109, p. 212–228, jul. 2014. EL-SEEDI, H. R. et al. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. Journal of Agricultural and Food Chemistry, v. 60, n. 44, p. 10877–10895, 2012. ETERAF-OSKOUEI, T.; NAJAFI, M. Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences, v. 16, n. 6, p. 731–742, 2013. FARAH, A.; DUARTE, G. Bioavailability and Metabolism of Chlorogenic Acids from Coffee. [s.l.] Elsevier Inc., 2015. FENG, R. et al. Inhibition of activator protein-1, NF-??B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry, v. 280, n. 30, p. 27888–27895, 2005. FERNANDES, P. N. et al. Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox report : communications in free radical research, v. 12, 67 n. 5, p. 236–244, 2007. FROZZA, C. O. DA S. et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology, v. 52, p. 137–142, 2013. GAŠIĆ, U. et al. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chemistry, v. 145, p. 599–607, 2014. GIACOMETTI MUHVI, D., PAVLETI, A., DUDARI, L., J. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. Journal of Functional Foods, v. 23, p. 177–187, 2016. GÖÇER, H.; GÜLÇIN, I. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. International journal of food sciences and nutrition, v. 62, n. 8, p. 821–5, 2011. GONTHIER, M. P. et al. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomedicine and Pharmacotherapy, v. 60, n. 9, p. 536–540, 2006. GOSTIMSKAYA, I.; GRANT, C. M. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radical Biology and Medicine, v. 94, p. 55–65, 2016. GRANT, C. M.; MACIVER, F. H.; DAWES, I. W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Letters, v. 410, n. 2-3, p. 219–222, 1997. GREGORIS, E.; STEVANATO, R. Correlations between polyphenolic composition and antioxidant activity of Venetian propolis. Food and Chemical Toxicology, v. 48, n. 1, p. 76–82, 2010. HABIB, H. M. et al. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food chemistry, v. 153, p. 28–34, 15 jun. 2014. HERMAN, P. K. Stationary phase in yeast. Current Opinion in Microbiology, v. 5, n. 6, p. 602–607, 2002. IMLAY, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature reviews. Microbiology, v. 11, n. 7, p. 443–54, 2013. ITOH, A. et al. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl 4 - 68 Induced Liver Injury. Biological & pharmaceutical bulletin, v. 33, n. 6, p. 983–987, 2010. JENSEN, S. J. K. Oxidative stress and free radicals. Journal of Molecular Structure: THEOCHEM, v. 666-667, p. 387–392, 2003. KECKEŠ, S. et al. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chemistry, v. 138, n. 1, p. 32–40, 2013. KIM, J.; LEE, K. W. Coffee and its Active Compounds are Neuroprotective. Coffee in Health and Disease Prevention, p. 423–427, 2015. KONISHI, Y.; KOBAYASHI, S. Transepithelial Transport of Cholorogenic Acid, Caffeic Acid, and Their Colonic Metabolites in Intestinal Caco-2 Cell Monolayers. J. Agric. Food Chem, v. 52, p. 2518–2526, 2004. KRISHNAIAH, D.; SARBATLY, R.; NITHYANANDAM, R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, v. 89, n. 3, p. 217–233, 2011. LAMBERT, J. D.; ELIAS, R. J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Archives of Biochemistry and Biophysics, v. 501, n. 1, p. 65–72, 2010. LAVOVÁ, B. et al. Diauxic growth of Saccharomyces cerevisiae. Journal of Microbiology,Biotechnology and Food Sciences, n. 2002, p. 122–123, 2014. LEÓN-GONZÁLEZ, A. J.; AUGER, C.; SCHINI-KERTH, V. B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochemical Pharmacology, v. 98, n. 3, p. 371–380, 2015. LI, S. et al. Research progress of natural antioxidants in foods for the treatment of diseases. Food Science and Human Wellness, dez. 2014. LIMA, É. S.; SAES, D.; ABDALLA, P. Peroxidação lipídica : mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, v. 37, n. 3, p. 293–303, 2001. LOUREIRO, A. P. M.; DI, P.; MEDEIROS, M. H. G. Formação de adutos exocíclicoscom bases de DNA:Implicações em mutagenese e carcinogênese. Química Nova, v. 25, n. 5, p. 777–793, 2002. 69 LOZANO, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, v. 380, n. 9859, p. 2095–2128, 2012. LUSHCHAK, V. I. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotesActa Biochimica Polonica, 2006. LUSHCHAK, V. I. Oxidative stress in yeast. Biochemistry. Biokhimiia, v. 75, n. 3, p. 281–296, 2010. LUSHCHAK, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, v. 224, p. 164–175, 2014. MAETA, K. et al. Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Applied and Environmental Microbiology, v. 73, n. 2, p. 572–580, 2007. MANDALARI, G. et al. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, v. 103, n. 6, p. 2056–2064, 2007. MANFREDINI, V. et al. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1Δ sod2Δ double mutants against oxidative damage. Brazilian Journal of Medical and Biological Research, v. 37, n. 2, p. 159–165, 2004. MARÇO, P. H.; POPPI, R. J.; SCARMINIO, I. S. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quimica Nova, v. 31, n. 5, p. 1218–1223, 2008. MARCUCCI, M. C. Biological and therapeutic properties of chemical propolis constituents. Quimica Nova, v. 19, n. 5, p. 529–536, 1996. MARIANI, D. et al. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Report, v. 13, n. 6, p. 246–254, 2008. MASUOKA, N.; MATSUDA, M.; KUBO, I. Characterisation of the antioxidant activity of flavonoids. Food Chemistry, v. 131, n. 2, p. 541–545, 2012. MAURYA, D. K.; DEVASAGAYAM, T. P. A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food and Chemical Toxicology, 70 v. 48, n. 12, p. 3369–3373, 2010. MENDOZA-WILSON, A. M.; SANTACRUZ-ORTEGA, H.; BALANDRÁN-QUINTANA, R. R. Relationship between structure, properties, and the radical scavenging activity of morin. Journal of Molecular Structure, v. 995, n. 1-3, p. 134–141, 2011. MORGAN, B. et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol, v. 9, n. 2, p. 119–125, 2013. MURTAZA, G.; KARIM, S.; AKRAM, M. Caffeic Acid Phenethyl Ester and Therapeutic Potentials. BioMed Research International, v. 2014, p. 1–9, 2014. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger. 6a. ed. [s.l.] Artmed, 2014. v. 2 NELSON, S. K. et al. The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radical Biology and Medicine, v. 40, n. 2, p. 341–347, 2006. ORINO, K. et al. Ferritin and the response to oxidative stress. The Biochemical journal, v. 357, n. Pt 1, p. 241–247, 2001. OSAWA, C. C.; DE FELÍCIO, P. E.; GONÇALVES, L. A. G. Teste de TBA aplicado a carnes e derivados: Métodos tradicionais, modificados e alternativos. Quimica Nova, v. 28, n. 4, p. 655–663, 2005. PEREIRA, M. D. et al. Targets of oxidative stress in yeast sod mutants. Biochimica et Biophysica Acta, v. 1620, n. 1-3, p. 245–251, 2003. PEREIRA, M. D.; ELEUTHERIO, E. C.; PANEK, A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC microbiology, v. 1, p. 11, 2001. PROCHÁZKOVÁ, D.; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513–523, 2011. RAO, P. V. et al. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia, p. 1–8, 2016. REGINATO, F. F. Z.; DA SILVA, A. R. H.; BAUERMANN, L. D. F. Avaliação do uso de flavonoides no tratamento da inflamação. Revista Cubana de Farmacia, v. 49, n. 3, p. 569–582, 2015. ROLEIRA, F. M. F. et al. Plant derived and dietary phenolic antioxidants: Anticancer 71 properties. Food Chemistry, v. 183, p. 235–258, 2015. SÁ, R. A. DE et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Brazilian journal of microbiology, v. 44, n. 3, p. 993–1000, 2013. SADOWSKA-BARTOSZ, I. et al. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS yeast research, v. 13, n. 8, p. 820–30, 2013. SALGUEIRO, F. B. et al. Phenolic Composition and antioxidant proprieties of brasilian honeys. Química Nova, v. 37, n. 5, p. 821–826, 2014. SATO, Y. et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 2011. SETHIYA, N. K.; TRIVEDI, A.; MISHRA, S. The total antioxidant content and radical scavenging investigation on 17 phytochemical from dietary plant sources used globally as functional food. Biomedicine & Preventive Nutrition, v. 4, n. 3, p. 439–444, jul. 2014. SHAHIDI, F.; AMBIGAIPALAN, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, v. 18, p. 820–897, 2015. SILVA, J. A. et al. Aplicação da metodologia de planejamento fatorial e análise de superfícies de resposta para otimização da fermentação alcoólica. Quimica Nova, v. 31, n. 5, p. 1073–1077, 2008. SILVA, R. et al. Flavonóides: constituição química, ações medicinais e potencial tóxico. Acta toxicológica argentina, v. 23, p. 36–43, 2015. SOARES, D. G.; ANDREAZZA, A. C.; SALVADOR, M. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 1, p. 95–100, 2005. SOARES, S. E. Ácidos fenólicos como antioxidantes Phenolic acids as antioxidants. Revista de Nutrição, v. 15, n. 1, p. 71–81, 2002. SOUSA, C. M. D. M. et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quimica Nova, v. 30, n. 2, p. 351–355, 2007. SOUSA, J. M. et al. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International, v. 84, p. 61–68, 2016. 72 SOVA, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini reviews in medicinal chemistry, v. 12, n. 8, p. 749–67, 2012. SREEDHARAN, V.; VENKATACHALAM, K. K.; NAMASIVAYAM, N. Effect of morin on tissue lipid peroxidation and antioxidant status in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis. Investigational New Drugs, v. 27, n. 1, p. 21–30, 2009. STEELS, E. L.; LEARMONTH, R. P.; WATSON, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology (Reading, England), v. 140 ( Pt 3, n. 1994, p. 569–76, 1994. STĘPNIAK, J.; LEWIŃSKI, A.; KARBOWNIK-LEWIŃSKA, M. Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicology in vitro, v. 27, n. 1, p. 71–8, fev. 2013. SUN, K. et al. Anti-Aging Effects of Hesperidin on Saccharomyces cerevisiae via Inhibition of Reactive Oxygen Species and UTH1 Gene Expression. Bioscience, Biotechnology, and Biochemistry, v. 76, n. 4, p. 640–645, 2012. TOHAMY, A. A. et al. Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts. Cytotechnology, v. 66, n. 2, p. 283–297, 2014. TOLEDANO, M. B. et al. Oxidative stress responses in yeast. Yeast Stress Responses, v. 1, p. 242–87, 2003. TREUSCH, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science (New York, N.Y.), v. 334, n. 6060, p. 1241–5, 2011. VALENZUELA-BARRA, G. et al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Regi??n Metropolitana de Santiago, Chile. Journal of Ethnopharmacology, v. 168, p. 37–44, 2015. VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, v. 39, n. 1, p. 44–84, 2007. VAN RAAMSDONK, J. M.; HEKIMI, S. From the Cover: Superoxide dismutase is dispensable for normal animal lifespan. Proceedings of the National Academy of Sciences, v. 109, n. 15, p. 5785–5790, 2012. 73 VANDAMME, L. et al. Honey in modern wound care: A systematic review. Burns, v. 39, n. 8, p. 1514–1525, 2013. VENU GOPAL, J. Morin Hydrate: Botanical origin, pharmacological activity and its applications: A mini-review. Pharmacognosy Journal, v. 5, n. 3, p. 123–126, 2013. VILLAÑO, D. et al. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, v. 71, n. 1, p. 230–235, 2007. VIUDA-MARTOS, M. et al. Functional properties of honey, propolis, and royal jelly. Journal of food science, v. 73, n. 9, p. R117–24, nov. 2008. WILMSEN, P. K.; SPADA, D. S.; SALVADOR, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of Agricultural and Food Chemistry, v. 53, n. 12, p. 4757–4761, 2005. WU, M. J. et al. An antioxidant screening assay based on oxidant-induced growth arrest in Saccharomyces cerevisiae. FEMS Yeast Research, v. 11, n. 4, p. 379–387, 2011. WU, W. M. et al. Free radical scavenging and antioxidative activities of caffeic acid phenethyl ester (CAPE) and its related compounds in solution and membranes: A structure-activity insight. Food Chemistry, v. 105, n. 1, p. 107–115, 2007. XIANG, L. et al. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Bioscience, biotechnology, and biochemistry, v. 75, n. 5, p. 854–858, 2011. XIANG, Z. N.; NING, Z. X. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. LWT - Food Science and Technology, v. 41, n. 7, p. 1189–1203, 2008. YANG, J.; GUO, J.; YUAN, J. In vitro antioxidant properties of rutin. LWT - Food Science and Technology, v. 41, n. 6, p. 1060–1066, 2008. YE, Z.-W. et al. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta (BBA) - General Subjects, v. 1850, n. 8, p. 1607–1621, 2014. YEN, G.-C. et al. Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, biotechnology, and biochemistry, v. 67, n. 6, p. 1215–1222, 2003. ZHANG, H. et al. Inhibitory Properties of Aqueous Ethanol Extracts of Propolis on Alpha-Glucosidase. Evidence-Based Complementary and Alternative Medicine, v. 2015, p. 1–7, 74 2015a. ZHANG, Y. et al. Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid-oxidation capability of phenolic antioxidants. LWT - Food Science and Technology, v. 63, n. 1, p. 569–574, 2015b. ZYRACKA, E. et al. Yeast as a biosensor for antioxidants: Simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase. Acta Biochimica Polonica, v. 52, n. 3, p. 679–684, 2005.https://tede.ufrrj.br/retrieve/5621/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/20352/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/26621/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/33034/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/39458/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/45816/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/52228/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/retrieve/58688/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1626Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-11T13:41:47Z No. of bitstreams: 1 2016 - Edlene Ribeiro Prudêncio.pdf: 1465673 bytes, checksum: 5714fb486b0694f0e6ac0482d5b775a5 (MD5)Made available in DSpace on 2017-05-11T13:41:47Z (GMT). No. of bitstreams: 1 2016 - Edlene Ribeiro Prudêncio.pdf: 1465673 bytes, checksum: 5714fb486b0694f0e6ac0482d5b775a5 (MD5) Previous issue date: 2016-08-04info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2016 - Edlene Ribeiro Prudêncio.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/1/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2016 - Edlene Ribeiro Prudêncio.pdf.txtExtracted Texttext/plain154574https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/2/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.txt26e0528179ef2ec50e4c7608eac82a71MD52ORIGINAL2016 - Edlene Ribeiro Prudêncio.pdf2016 - Edlene Ribeiro Prudêncioapplication/pdf1465673https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/3/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf5714fb486b0694f0e6ac0482d5b775a5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/146482023-12-22 00:03:58.971oai:rima.ufrrj.br:20.500.14407/14648Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:03:58Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
dc.title.alternative.eng.fl_str_mv Study of different molecules classes isolated from honey and propolis antioxidant activity in Saccharomyces cerevisiae cells
title Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
spellingShingle Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
Prudêncio, Edlene Ribeiro
Saccharomyces cerevisiae
phenolic compounds
oxidative stress
Saccharomyces cerevisiae
compostos fenólicos
estresse oxidativo
Química
title_short Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
title_full Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
title_fullStr Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
title_full_unstemmed Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
title_sort Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae
author Prudêncio, Edlene Ribeiro
author_facet Prudêncio, Edlene Ribeiro
author_role author
dc.contributor.author.fl_str_mv Prudêncio, Edlene Ribeiro
dc.contributor.advisor1.fl_str_mv Riger, Cristiano Jorge
dc.contributor.advisor1ID.fl_str_mv 3009627700
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8756160468801705
dc.contributor.advisor-co1.fl_str_mv Salles, Cristiane Martins Cardoso de
dc.contributor.advisor-co1ID.fl_str_mv 3539928790
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/3610279707231709
dc.contributor.referee1.fl_str_mv Barbosa, Maria Ivone Martins Jacintho
dc.contributor.referee2.fl_str_mv Pereira, Marcos Dias
dc.contributor.authorID.fl_str_mv 133.663.677-76
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4073001345884045
contributor_str_mv Riger, Cristiano Jorge
Salles, Cristiane Martins Cardoso de
Barbosa, Maria Ivone Martins Jacintho
Pereira, Marcos Dias
dc.subject.eng.fl_str_mv Saccharomyces cerevisiae
phenolic compounds
oxidative stress
topic Saccharomyces cerevisiae
phenolic compounds
oxidative stress
Saccharomyces cerevisiae
compostos fenólicos
estresse oxidativo
Química
dc.subject.por.fl_str_mv Saccharomyces cerevisiae
compostos fenólicos
estresse oxidativo
dc.subject.cnpq.fl_str_mv Química
description O mel e a própolis são produzidos por abelhas, a partir da coleta de néctar e seiva das plantas. No processo, os compostos fenólicos oriundos do metabolismo secundário dos vegetais são incorporados aos produtos mencionados. Amostras de mel e própolis de diferentes regiões foram caracterizadas e o conteúdo de compostos fenólicos pode ser dividido em: derivados do ácido hidroxibenzoico, derivados do ácido hidroxicinâmico, flavonoides e flavonoides glicosilados. Na literatura, valores de atividade antioxidante in vitro descritos divergem consideravelmente entre os autores. Além disso, os métodos in vitro (DPPH, ABTS, FRAPP, dentre outros) não representam condições fisiológicas como concentração de substratos e interação de metabólitos. A levedura Saccharomyces cerevisie é uma ferramenta para ensaio biológico, uma vez que apresenta elevada semelhança com células de mamíferos superiores no sistema de defesa antioxidante. O objetivo deste trabalho foi comparar o potencial antioxidante de diferentes classes de compostos fenólicos, utilizando os representantes morina, rutina, ácido siríngico e clorogênico em cepas controle (BY4741) e mutantes (sod1 e gsh1) de S. cerevisiae. Foram avaliados toxidez dose-dependente, tolerância ao estresse e peroxidação lipídica. Todos os compostos fenólicos testados foram efetivos em reduzir danos oxidativos intracelulares, com destaque para o ácido clorogênico na cepa controle. Quando comparado às células estressadas, este promoveu aumentos de 75% de sobrevivência, contra 57% em média dos demais tratamentos; e diminuição de 60% em níveis de peroxidação lipídica, contra redução próxima a 47% dos demais tratamentos. Nas cepas mutantes, todas as substâncias tiveram resultados semelhantes entre si. Desta forma, outros dois componentes da classe do ácido hidroxicinâmico, ácido cafeico e éster fenetílico do ácido cafeico (CAPE), foram testados comparativamente. Ambos atuaram como antioxidante em S. cerevisiae, entretanto CAPE foi a substância mais tóxica e também a que promoveu aumento mais significativo de glutationa reduzida dentre os derivados hidroxicinâmicos. Esse resultado corrobora com dados de estudos que apontam que a atividade protetora dos compostos fenólicos está relacionada a ativação do sistema antioxidante por ação xenobiótica dessas substâncias
publishDate 2016
dc.date.issued.fl_str_mv 2016-08-04
dc.date.accessioned.fl_str_mv 2023-12-22T03:03:58Z
dc.date.available.fl_str_mv 2023-12-22T03:03:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PRUDÊNCIO, Edlene Ribeiro. Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae. 2016. 74 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/14648
identifier_str_mv PRUDÊNCIO, Edlene Ribeiro. Estudo do potencial antioxidante de diferentes classes de moléculas isoladas de mel e própolis em células de Saccharomyces cerevisiae. 2016. 74 f. Dissertação (Mestrado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2016.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/14648
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AMARI, F. et al. Antioxidant small molecules confer variable protection against oxidative damage in yeast mutants. Journal of Agricultural and Food Chemistry, v. 56, n. 24, p. 11740–11751, 2008. AYALA, A. et al. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxidative Medicine and Cellular Longevity, v. 2014, p. 1–31, 2014. AZUMA, K. et al. Absorption of chlorogenic acid and caffeic acid in rats after oral administration. Journal of agricultural and food chemistry, v. 48, n. 11, p. 5496–5500, 2000. BALTRUSAITYTE, V.; VENSKUTONIS, P. R.; CEKSTERYTE, V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry, v. 101, n. 2, p. 502–514, 2007. BARBOSA, K. B. F. et al. Estresse oxidativo: Conceito, implicações e fatores modulatórios. Revista de Nutricao, v. 23, n. 4, p. 629–643, 2010. BELINHA, I. et al. Quercetin Increases Oxidative Stress Resistance and Longevity in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 55, p. 2446–2451, 2007. BERNT, E.; BERGMEYER, H. U. Methods of Enzymatic Analysis, Glutathione. 4. ed. Londres: Chemie Weinheim, Academic Press, 1974. BIENERT, G. P.; SCHJOERRING, J. K.; JAHN, T. P. Membrane transport of hydrogen peroxide. Biochimica et biophysica acta, v. 1758, n. 8, p. 994–1003, ago. 2006. BRASIL. Instrução Normativa 11 de 20 de outubro de 2000. Regulamento Técnico de Identidade e Qualidade do Mel. Disponível em: <http://extranet.agricultura.gov.br/sislegis-consulta/consultarLegislacao.do?operacao=visualizar&id=7797>. BRAUER, M. J. et al. Homeostatic Adjustment and Metabolic Remodeling in Glucose-limited Yeast Cultures. Molecular Biology of the Cell, v. 16, n. 8, p. 2503–2517, 2005. BREGER, J. et al. Antifungal chemical compounds identified using a C. elegans pathogenicity assay. PLoS Pathogens, v. 3, n. 2, p. 0168–0178, 2007. 65 BRIGELIUS-FLOHÉ, R.; MAIORINO, M. Glutathione peroxidases. Biochimica et Biophysica Acta - General Subjects, v. 1830, n. 5, p. 3289–3303, 2013. BÚFALO, M. C.; SFORCIN, J. M. The modulatory effects of caffeic acid on human monocytes and its involvement in propolis action. Journal of Pharmacy and Pharmacology, v. 67, n. 5, p. 740–745, 2015. CAI, Y. et al. Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life sciences, v. 78, n. 25, p. 2872–2888, 2006. CALLEMIEN, D.; COLLIN, S. Structure, Organoleptic Properties, Quantification Methods, and Stability of Phenolic Compounds in Beer—A Review. Food Reviews International, v. 26, n. June 2014, p. 1–84, 2009. CAN, Z. et al. An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry, v. 180, p. 133–141, 2015. CARILLON, J. et al. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: Several routes of supplementation and proposal of an original mechanism of action. Pharmaceutical Research, v. 30, n. 11, p. 2718–2728, 2013. CARLOS, J. et al. Antimicrobial activity , phenolic profile and role in the inflammation of propolis. Food and Chemical Toxicology, v. 50, p. 1790–1795, 2012. CELIK, S.; ERDOGAN, S. Caffeic acid phenethyl ester (CAPE) protects brain against oxidative stress and inflammation induced by diabetes in rats. Molecular and Cellular Biochemistry, v. 312, n. 1-2, p. 39–46, 2008. CELLI, N. et al. In vitro and in vivo stability of caffeic acid phenethyl ester, a bioactive compound of propolis. Journal of Agricultural and Food Chemistry, v. 55, n. 9, p. 3398–3407, 2007. CHEN, F.; GONG, P. Caffeic acid phenethyl ester protect mice hepatic damage against Cadmium exposure. Procedia Environmental Sciences, v. 8, p. 633–636, 2011. CIGUT, T. et al. Antioxidative activity of propolis extract in yeast cells. Journal of Agricultural and Food Chemistry, v. 59, n. 21, p. 11449–11455, 2011. COELHO, V. R. et al. Antiepileptogenic, antioxidant and genotoxic evaluation of rosmarinic acid and its metabolite caffeic acid in mice. Life Sciences, v. 122, p. 65–71, 2015. COSTA, V.; MORADAS-FERREIRA, P. Oxidative stress and signal transduction in 66 Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Molecular Aspects of Medicine, v. 22, n. 4-5, p. 217–246, 2001. CRUZ, M. A. O. Evaluation and characterization of antioxidant and antigenotoxic properties of Portuguese propolis. [s.l: s.n.]. DA SILVA, C. G. et al. Protective effects of flavonoids and extract from Vellozia kolbekii Alves against oxidative stress induced by hydrogen peroxide in yeast. Journal of Natural Medicines, v. 66, n. 2, p. 367–372, 2012. DA SILVA, I. A. A. et al. Phenolic profile, antioxidant activity and palynological analysis of stingless bee honey from Amazonas, Northern Brazil. Food chemistry, v. 141, n. 4, p. 3552–8, 15 dez. 2013. DA SILVA, P. M. et al. Honey: Chemical composition, stability and authenticity. Food Chemistry, v. 196, p. 309–323, 2016. DANI, C. et al. Antioxidant protection of resveratrol and catechin in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, v. 56, n. 11, p. 4268–4272, 2008. DEMIDCHIK, V. Mechanisms of oxidative stress in plants: From classical chemistry to cell biology. Environmental and Experimental Botany, v. 109, p. 212–228, jul. 2014. EL-SEEDI, H. R. et al. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. Journal of Agricultural and Food Chemistry, v. 60, n. 44, p. 10877–10895, 2012. ETERAF-OSKOUEI, T.; NAJAFI, M. Traditional and modern uses of natural honey in human diseases: A review. Iranian Journal of Basic Medical Sciences, v. 16, n. 6, p. 731–742, 2013. FARAH, A.; DUARTE, G. Bioavailability and Metabolism of Chlorogenic Acids from Coffee. [s.l.] Elsevier Inc., 2015. FENG, R. et al. Inhibition of activator protein-1, NF-??B, and MAPKs and induction of phase 2 detoxifying enzyme activity by chlorogenic acid. Journal of Biological Chemistry, v. 280, n. 30, p. 27888–27895, 2005. FERNANDES, P. N. et al. Oxidative stress response in eukaryotes: effect of glutathione, superoxide dismutase and catalase on adaptation to peroxide and menadione stresses in Saccharomyces cerevisiae. Redox report : communications in free radical research, v. 12, 67 n. 5, p. 236–244, 2007. FROZZA, C. O. DA S. et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food and Chemical Toxicology, v. 52, p. 137–142, 2013. GAŠIĆ, U. et al. Phenolic profile and antioxidant activity of Serbian polyfloral honeys. Food Chemistry, v. 145, p. 599–607, 2014. GIACOMETTI MUHVI, D., PAVLETI, A., DUDARI, L., J. Cocoa polyphenols exhibit antioxidant, anti-inflammatory, anticancerogenic, and anti-necrotic activity in carbon tetrachloride-intoxicated mice. Journal of Functional Foods, v. 23, p. 177–187, 2016. GÖÇER, H.; GÜLÇIN, I. Caffeic acid phenethyl ester (CAPE): correlation of structure and antioxidant properties. International journal of food sciences and nutrition, v. 62, n. 8, p. 821–5, 2011. GONTHIER, M. P. et al. Microbial metabolism of caffeic acid and its esters chlorogenic and caftaric acids by human faecal microbiota in vitro. Biomedicine and Pharmacotherapy, v. 60, n. 9, p. 536–540, 2006. GOSTIMSKAYA, I.; GRANT, C. M. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radical Biology and Medicine, v. 94, p. 55–65, 2016. GRANT, C. M.; MACIVER, F. H.; DAWES, I. W. Mitochondrial function is required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. FEBS Letters, v. 410, n. 2-3, p. 219–222, 1997. GREGORIS, E.; STEVANATO, R. Correlations between polyphenolic composition and antioxidant activity of Venetian propolis. Food and Chemical Toxicology, v. 48, n. 1, p. 76–82, 2010. HABIB, H. M. et al. Bioactive components, antioxidant and DNA damage inhibitory activities of honeys from arid regions. Food chemistry, v. 153, p. 28–34, 15 jun. 2014. HERMAN, P. K. Stationary phase in yeast. Current Opinion in Microbiology, v. 5, n. 6, p. 602–607, 2002. IMLAY, J. A. The molecular mechanisms and physiological consequences of oxidative stress: lessons from a model bacterium. Nature reviews. Microbiology, v. 11, n. 7, p. 443–54, 2013. ITOH, A. et al. Hepatoprotective Effect of Syringic Acid and Vanillic Acid on CCl 4 - 68 Induced Liver Injury. Biological & pharmaceutical bulletin, v. 33, n. 6, p. 983–987, 2010. JENSEN, S. J. K. Oxidative stress and free radicals. Journal of Molecular Structure: THEOCHEM, v. 666-667, p. 387–392, 2003. KECKEŠ, S. et al. The determination of phenolic profiles of Serbian unifloral honeys using ultra-high-performance liquid chromatography/high resolution accurate mass spectrometry. Food Chemistry, v. 138, n. 1, p. 32–40, 2013. KIM, J.; LEE, K. W. Coffee and its Active Compounds are Neuroprotective. Coffee in Health and Disease Prevention, p. 423–427, 2015. KONISHI, Y.; KOBAYASHI, S. Transepithelial Transport of Cholorogenic Acid, Caffeic Acid, and Their Colonic Metabolites in Intestinal Caco-2 Cell Monolayers. J. Agric. Food Chem, v. 52, p. 2518–2526, 2004. KRISHNAIAH, D.; SARBATLY, R.; NITHYANANDAM, R. A review of the antioxidant potential of medicinal plant species. Food and Bioproducts Processing, v. 89, n. 3, p. 217–233, 2011. LAMBERT, J. D.; ELIAS, R. J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Archives of Biochemistry and Biophysics, v. 501, n. 1, p. 65–72, 2010. LAVOVÁ, B. et al. Diauxic growth of Saccharomyces cerevisiae. Journal of Microbiology,Biotechnology and Food Sciences, n. 2002, p. 122–123, 2014. LEÓN-GONZÁLEZ, A. J.; AUGER, C.; SCHINI-KERTH, V. B. Pro-oxidant activity of polyphenols and its implication on cancer chemoprevention and chemotherapy. Biochemical Pharmacology, v. 98, n. 3, p. 371–380, 2015. LI, S. et al. Research progress of natural antioxidants in foods for the treatment of diseases. Food Science and Human Wellness, dez. 2014. LIMA, É. S.; SAES, D.; ABDALLA, P. Peroxidação lipídica : mecanismos e avaliação em amostras biológicas. Revista Brasileira de Ciências Farmacêuticas, v. 37, n. 3, p. 293–303, 2001. LOUREIRO, A. P. M.; DI, P.; MEDEIROS, M. H. G. Formação de adutos exocíclicoscom bases de DNA:Implicações em mutagenese e carcinogênese. Química Nova, v. 25, n. 5, p. 777–793, 2002. 69 LOZANO, R. et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. The Lancet, v. 380, n. 9859, p. 2095–2128, 2012. LUSHCHAK, V. I. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotesActa Biochimica Polonica, 2006. LUSHCHAK, V. I. Oxidative stress in yeast. Biochemistry. Biokhimiia, v. 75, n. 3, p. 281–296, 2010. LUSHCHAK, V. I. Free radicals, reactive oxygen species, oxidative stress and its classification. Chemico-Biological Interactions, v. 224, p. 164–175, 2014. MAETA, K. et al. Green tea polyphenols function as prooxidants to activate oxidative-stress-responsive transcription factors in yeasts. Applied and Environmental Microbiology, v. 73, n. 2, p. 572–580, 2007. MANDALARI, G. et al. Antimicrobial activity of flavonoids extracted from bergamot (Citrus bergamia Risso) peel, a byproduct of the essential oil industry. Journal of Applied Microbiology, v. 103, n. 6, p. 2056–2064, 2007. MANFREDINI, V. et al. Glutathione peroxidase induction protects Saccharomyces cerevisiae sod1Δ sod2Δ double mutants against oxidative damage. Brazilian Journal of Medical and Biological Research, v. 37, n. 2, p. 159–165, 2004. MARÇO, P. H.; POPPI, R. J.; SCARMINIO, I. S. Procedimentos analíticos para identificação de antocianinas presentes em extratos naturais. Quimica Nova, v. 31, n. 5, p. 1218–1223, 2008. MARCUCCI, M. C. Biological and therapeutic properties of chemical propolis constituents. Quimica Nova, v. 19, n. 5, p. 529–536, 1996. MARIANI, D. et al. Involvement of glutathione transferases, Gtt1and Gtt2, with oxidative stress response generated by H2O2 during growth of Saccharomyces cerevisiae. Redox Report, v. 13, n. 6, p. 246–254, 2008. MASUOKA, N.; MATSUDA, M.; KUBO, I. Characterisation of the antioxidant activity of flavonoids. Food Chemistry, v. 131, n. 2, p. 541–545, 2012. MAURYA, D. K.; DEVASAGAYAM, T. P. A. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food and Chemical Toxicology, 70 v. 48, n. 12, p. 3369–3373, 2010. MENDOZA-WILSON, A. M.; SANTACRUZ-ORTEGA, H.; BALANDRÁN-QUINTANA, R. R. Relationship between structure, properties, and the radical scavenging activity of morin. Journal of Molecular Structure, v. 995, n. 1-3, p. 134–141, 2011. MORGAN, B. et al. Multiple glutathione disulfide removal pathways mediate cytosolic redox homeostasis. Nat Chem Biol, v. 9, n. 2, p. 119–125, 2013. MURTAZA, G.; KARIM, S.; AKRAM, M. Caffeic Acid Phenethyl Ester and Therapeutic Potentials. BioMed Research International, v. 2014, p. 1–9, 2014. NELSON, D. L.; COX, M. M. Princípios de Bioquímica de Lehninger. 6a. ed. [s.l.] Artmed, 2014. v. 2 NELSON, S. K. et al. The induction of human superoxide dismutase and catalase in vivo: A fundamentally new approach to antioxidant therapy. Free Radical Biology and Medicine, v. 40, n. 2, p. 341–347, 2006. ORINO, K. et al. Ferritin and the response to oxidative stress. The Biochemical journal, v. 357, n. Pt 1, p. 241–247, 2001. OSAWA, C. C.; DE FELÍCIO, P. E.; GONÇALVES, L. A. G. Teste de TBA aplicado a carnes e derivados: Métodos tradicionais, modificados e alternativos. Quimica Nova, v. 28, n. 4, p. 655–663, 2005. PEREIRA, M. D. et al. Targets of oxidative stress in yeast sod mutants. Biochimica et Biophysica Acta, v. 1620, n. 1-3, p. 245–251, 2003. PEREIRA, M. D.; ELEUTHERIO, E. C.; PANEK, A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC microbiology, v. 1, p. 11, 2001. PROCHÁZKOVÁ, D.; BOUŠOVÁ, I.; WILHELMOVÁ, N. Antioxidant and prooxidant properties of flavonoids. Fitoterapia, v. 82, n. 4, p. 513–523, 2011. RAO, P. V. et al. Biological and therapeutic effects of honey produced by honey bees and stingless bees: a comparative review. Revista Brasileira de Farmacognosia, p. 1–8, 2016. REGINATO, F. F. Z.; DA SILVA, A. R. H.; BAUERMANN, L. D. F. Avaliação do uso de flavonoides no tratamento da inflamação. Revista Cubana de Farmacia, v. 49, n. 3, p. 569–582, 2015. ROLEIRA, F. M. F. et al. Plant derived and dietary phenolic antioxidants: Anticancer 71 properties. Food Chemistry, v. 183, p. 235–258, 2015. SÁ, R. A. DE et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Brazilian journal of microbiology, v. 44, n. 3, p. 993–1000, 2013. SADOWSKA-BARTOSZ, I. et al. Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS yeast research, v. 13, n. 8, p. 820–30, 2013. SALGUEIRO, F. B. et al. Phenolic Composition and antioxidant proprieties of brasilian honeys. Química Nova, v. 37, n. 5, p. 821–826, 2014. SATO, Y. et al. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. International Journal of Pharmaceutics, 2011. SETHIYA, N. K.; TRIVEDI, A.; MISHRA, S. The total antioxidant content and radical scavenging investigation on 17 phytochemical from dietary plant sources used globally as functional food. Biomedicine & Preventive Nutrition, v. 4, n. 3, p. 439–444, jul. 2014. SHAHIDI, F.; AMBIGAIPALAN, P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects - A review. Journal of Functional Foods, v. 18, p. 820–897, 2015. SILVA, J. A. et al. Aplicação da metodologia de planejamento fatorial e análise de superfícies de resposta para otimização da fermentação alcoólica. Quimica Nova, v. 31, n. 5, p. 1073–1077, 2008. SILVA, R. et al. Flavonóides: constituição química, ações medicinais e potencial tóxico. Acta toxicológica argentina, v. 23, p. 36–43, 2015. SOARES, D. G.; ANDREAZZA, A. C.; SALVADOR, M. Avaliação de compostos com atividade antioxidante em células da levedura Saccharomyces cerevisiae. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 1, p. 95–100, 2005. SOARES, S. E. Ácidos fenólicos como antioxidantes Phenolic acids as antioxidants. Revista de Nutrição, v. 15, n. 1, p. 71–81, 2002. SOUSA, C. M. D. M. et al. Fenóis totais e atividade antioxidante de cinco plantas medicinais. Quimica Nova, v. 30, n. 2, p. 351–355, 2007. SOUSA, J. M. et al. Polyphenolic profile and antioxidant and antibacterial activities of monofloral honeys produced by Meliponini in the Brazilian semiarid region. Food Research International, v. 84, p. 61–68, 2016. 72 SOVA, M. Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini reviews in medicinal chemistry, v. 12, n. 8, p. 749–67, 2012. SREEDHARAN, V.; VENKATACHALAM, K. K.; NAMASIVAYAM, N. Effect of morin on tissue lipid peroxidation and antioxidant status in 1, 2-dimethylhydrazine induced experimental colon carcinogenesis. Investigational New Drugs, v. 27, n. 1, p. 21–30, 2009. STEELS, E. L.; LEARMONTH, R. P.; WATSON, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology (Reading, England), v. 140 ( Pt 3, n. 1994, p. 569–76, 1994. STĘPNIAK, J.; LEWIŃSKI, A.; KARBOWNIK-LEWIŃSKA, M. Membrane lipids and nuclear DNA are differently susceptive to Fenton reaction substrates in porcine thyroid. Toxicology in vitro, v. 27, n. 1, p. 71–8, fev. 2013. SUN, K. et al. Anti-Aging Effects of Hesperidin on Saccharomyces cerevisiae via Inhibition of Reactive Oxygen Species and UTH1 Gene Expression. Bioscience, Biotechnology, and Biochemistry, v. 76, n. 4, p. 640–645, 2012. TOHAMY, A. A. et al. Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts. Cytotechnology, v. 66, n. 2, p. 283–297, 2014. TOLEDANO, M. B. et al. Oxidative stress responses in yeast. Yeast Stress Responses, v. 1, p. 242–87, 2003. TREUSCH, S. et al. Functional links between Aβ toxicity, endocytic trafficking, and Alzheimer’s disease risk factors in yeast. Science (New York, N.Y.), v. 334, n. 6060, p. 1241–5, 2011. VALENZUELA-BARRA, G. et al. Anti-inflammatory activity and phenolic profile of propolis from two locations in Regi??n Metropolitana de Santiago, Chile. Journal of Ethnopharmacology, v. 168, p. 37–44, 2015. VALKO, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, v. 39, n. 1, p. 44–84, 2007. VAN RAAMSDONK, J. M.; HEKIMI, S. From the Cover: Superoxide dismutase is dispensable for normal animal lifespan. Proceedings of the National Academy of Sciences, v. 109, n. 15, p. 5785–5790, 2012. 73 VANDAMME, L. et al. Honey in modern wound care: A systematic review. Burns, v. 39, n. 8, p. 1514–1525, 2013. VENU GOPAL, J. Morin Hydrate: Botanical origin, pharmacological activity and its applications: A mini-review. Pharmacognosy Journal, v. 5, n. 3, p. 123–126, 2013. VILLAÑO, D. et al. Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta, v. 71, n. 1, p. 230–235, 2007. VIUDA-MARTOS, M. et al. Functional properties of honey, propolis, and royal jelly. Journal of food science, v. 73, n. 9, p. R117–24, nov. 2008. WILMSEN, P. K.; SPADA, D. S.; SALVADOR, M. Antioxidant activity of the flavonoid hesperidin in chemical and biological systems. Journal of Agricultural and Food Chemistry, v. 53, n. 12, p. 4757–4761, 2005. WU, M. J. et al. An antioxidant screening assay based on oxidant-induced growth arrest in Saccharomyces cerevisiae. FEMS Yeast Research, v. 11, n. 4, p. 379–387, 2011. WU, W. M. et al. Free radical scavenging and antioxidative activities of caffeic acid phenethyl ester (CAPE) and its related compounds in solution and membranes: A structure-activity insight. Food Chemistry, v. 105, n. 1, p. 107–115, 2007. XIANG, L. et al. Anti-aging effects of phloridzin, an apple polyphenol, on yeast via the SOD and Sir2 genes. Bioscience, biotechnology, and biochemistry, v. 75, n. 5, p. 854–858, 2011. XIANG, Z. N.; NING, Z. X. Scavenging and antioxidant properties of compound derived from chlorogenic acid in South-China honeysuckle. LWT - Food Science and Technology, v. 41, n. 7, p. 1189–1203, 2008. YANG, J.; GUO, J.; YUAN, J. In vitro antioxidant properties of rutin. LWT - Food Science and Technology, v. 41, n. 6, p. 1060–1066, 2008. YE, Z.-W. et al. Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta (BBA) - General Subjects, v. 1850, n. 8, p. 1607–1621, 2014. YEN, G.-C. et al. Pro-oxidative properties of flavonoids in human lymphocytes. Bioscience, biotechnology, and biochemistry, v. 67, n. 6, p. 1215–1222, 2003. ZHANG, H. et al. Inhibitory Properties of Aqueous Ethanol Extracts of Propolis on Alpha-Glucosidase. Evidence-Based Complementary and Alternative Medicine, v. 2015, p. 1–7, 74 2015a. ZHANG, Y. et al. Assessment of the correlations between reducing power, scavenging DPPH activity and anti-lipid-oxidation capability of phenolic antioxidants. LWT - Food Science and Technology, v. 63, n. 1, p. 569–574, 2015b. ZYRACKA, E. et al. Yeast as a biosensor for antioxidants: Simple growth tests employing a Saccharomyces cerevisiae mutant defective in superoxide dismutase. Acta Biochimica Polonica, v. 52, n. 3, p. 679–684, 2005.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/1/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/2/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/3/2016%20-%20Edlene%20Ribeiro%20Prud%c3%aancio.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14648/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
26e0528179ef2ec50e4c7608eac82a71
5714fb486b0694f0e6ac0482d5b775a5
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108179080544256