Caracterização e múltiplos usos de espécies nativas da Mata Atlântica
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/9369 |
Resumo: | A pesquisa foi realizada com material oriundo da Reserva Natural Vale, localizada no município de Linhares, Espírito Santo e teve como objetivo estudar seis espécies nativas, sendo estas: Joannesia princeps Vell., Spondias venulosa (Engl.) Engl., Copaifera lucens Dwyer, Astronium concinnum Schott ex Spreng., Handroanthus serratifolius (Vahl) S. O. Grose, e Libidibia ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz visando caracterizar as propriedades das madeiras nativas brasileiras e potencial uso das mesmas. De acordo com o inventário disponibilizado pela empresa foram selecionados 15 indivíduos por espécie, com idades variando entre 17 e 31 anos, e com o material obtido na área, 3 toras de 2.10 m por espécie, originando o material para realização das análises propostas. Os resultados comprovaram uma significativa correlação (R2) com as espécies mais densas (Handroanthus serratifolius e Libidibia ferrea var. parvifolia). A avaliação dos resíduos de Joannesia princeps e Astronium concinnum no processo de briquetagem usando diferentes condições de pressão (900, 1200 e 1500 Pound-Force por Square Inch - PSI) e adição de lignina Kraft (2, 4 e 6% em relação ao peso total) afirmou que a adição de 6% KL com um valor de pressão de 1500 PSI promoveu melhores propriedades do briquete (densidade aparente, módulo de ruptura e valores de aquecimento) em Joannesia princeps Vell. A espécie Astronium concinnum (Engl.) Schott apresentou resultados distintos, sendo os melhores promovidos quando se utiliza 2% KL com 900 PSI, mas o aumento no% KL pode promover melhores propriedades de resistência. A análise da extração de lignina e conversão de carboidratos após a etapa de tratamento hidrotérmico (HTT) utilizando hidrólise enzimática (EH) e solventes em madeiras de Joannesia princeps e Astronium concinnum mostraram que a Rota 1 resultou em maior eficiência na remoção de lignina mais expressiva nas espécies Joannesia princeps. A inclusão da sequência EH após HTT, estudada na Rota 2, não resultou em maior eficiência de remoção de lignina para as duas biomassas estudadas, mas influenciou no rendimento de conversão de glucana. Joannesia princeps apresenta maior potencial de extração de lignina quando submetida a reações mais prolongadas a 195 ° C, fato relacionado à composição química, estrutura anatômica e propriedades físicas. Ressalta-se que esta pesquisa contribui, mas há necessidade de pesquisas com espécies nativas brasileiras, de diferentes biomas, para gerar dados florestais e propriedades tecnológicas visando seu uso potencial em diferentes segmentos industriais |
id |
UFRRJ-1_85f19334c33d2271aaf564b77b55bb7a |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/9369 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Silva, Carlos Eduardo Silveira daCarvalho, Alexandre Monteiro de177.637.878-48http://lattes.cnpq.br/1858250183196632Gomes, Fernando José Borges064.999.956-81https://orcid.org/0000-0003-0363-4888http://lattes.cnpq.br/0502504979310236Latorraca, João Vicente de Figueiredo284.741.551-34https://orcid.org/0000-0002-5969-5199http://lattes.cnpq.br/9612404360795583Carvalho, Alexandre Monteiro de177.637.878-48http://lattes.cnpq.br/9612404360795583Pedrazzi, Cristiane: http://lattes.cnpq.br/5167571704789298Piotto, Danielhttps://orcid.org/0000-0002-6505-0098http://lattes.cnpq.br/0527409617518472Vidaurre, Graziela Baptistahttps://orcid.org/0000-0001-9285-7105http://lattes.cnpq.br/2988548512574129Lelis, Roberto Carlos Costahttp://lattes.cnpq.br/5175502780570226118.482.777-09https://orcid.org/0000-0002-8070-6809http://lattes.cnpq.br/98422025271523592023-12-21T18:38:14Z2023-12-21T18:38:14Z2021-08-25SILVA, Carlos Eduardo Silveira da. Caracterização e múltiplos usos de espécies nativas da Mata Atlântica. 2021. 112 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/9369A pesquisa foi realizada com material oriundo da Reserva Natural Vale, localizada no município de Linhares, Espírito Santo e teve como objetivo estudar seis espécies nativas, sendo estas: Joannesia princeps Vell., Spondias venulosa (Engl.) Engl., Copaifera lucens Dwyer, Astronium concinnum Schott ex Spreng., Handroanthus serratifolius (Vahl) S. O. Grose, e Libidibia ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz visando caracterizar as propriedades das madeiras nativas brasileiras e potencial uso das mesmas. De acordo com o inventário disponibilizado pela empresa foram selecionados 15 indivíduos por espécie, com idades variando entre 17 e 31 anos, e com o material obtido na área, 3 toras de 2.10 m por espécie, originando o material para realização das análises propostas. Os resultados comprovaram uma significativa correlação (R2) com as espécies mais densas (Handroanthus serratifolius e Libidibia ferrea var. parvifolia). A avaliação dos resíduos de Joannesia princeps e Astronium concinnum no processo de briquetagem usando diferentes condições de pressão (900, 1200 e 1500 Pound-Force por Square Inch - PSI) e adição de lignina Kraft (2, 4 e 6% em relação ao peso total) afirmou que a adição de 6% KL com um valor de pressão de 1500 PSI promoveu melhores propriedades do briquete (densidade aparente, módulo de ruptura e valores de aquecimento) em Joannesia princeps Vell. A espécie Astronium concinnum (Engl.) Schott apresentou resultados distintos, sendo os melhores promovidos quando se utiliza 2% KL com 900 PSI, mas o aumento no% KL pode promover melhores propriedades de resistência. A análise da extração de lignina e conversão de carboidratos após a etapa de tratamento hidrotérmico (HTT) utilizando hidrólise enzimática (EH) e solventes em madeiras de Joannesia princeps e Astronium concinnum mostraram que a Rota 1 resultou em maior eficiência na remoção de lignina mais expressiva nas espécies Joannesia princeps. A inclusão da sequência EH após HTT, estudada na Rota 2, não resultou em maior eficiência de remoção de lignina para as duas biomassas estudadas, mas influenciou no rendimento de conversão de glucana. Joannesia princeps apresenta maior potencial de extração de lignina quando submetida a reações mais prolongadas a 195 ° C, fato relacionado à composição química, estrutura anatômica e propriedades físicas. Ressalta-se que esta pesquisa contribui, mas há necessidade de pesquisas com espécies nativas brasileiras, de diferentes biomas, para gerar dados florestais e propriedades tecnológicas visando seu uso potencial em diferentes segmentos industriaisCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe research was carried out in the Vale Natural Reserve, located in the city of Sooretama, Espírito Santo state and its objective was to evaluate the wood properties of six native species, Joannesia princeps Vell., Spondias venulosa (Engl.) Engl., Copaifera lucens Dwyer, Astronium concinnum Schott ex Spreng., Handroanthus serratifolius (Vahl) S. O. Grose, and Libidibia ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz, aiming to characterize the properties of these woods and their potential use. According to the inventory available by the company, 15 individuals were selected per species, aged between 17 and 31 years, and with the material obtained in the area, 3 logs of 2.10 m per species originating the material for the analyzes proposed. The results proved a significant correlation (R2) with resistographic analysis and the densest wood species (Handroanthus serratifolius and Libidibia ferrea var. parvifolia). The evaluation of Joannesia princeps and Astronium concinnum residues in briquetting using different pressure conditions (900, 1200 and 1500 Pound-Force per Square Inch - PSI) and addition of Kraft lignin (2, 4 and 6% in relation to the total weight) stated that the addition of 6% KL with a pressure value of 1500 PSI promoted better briquette properties (bulk density, modulus of rupture and heating values) in Joannesia princeps Vell. The Astronium concinnum (Engl.) Schott species presented distinct results, with the best ones being promoted when using 2% KL with 900 PSI, but the increase in % KL can promote better strength properties. The analysis of lignin extraction and carbohydrate conversion after the hydrothermal treatment (HTT) step using enzymatic hydrolysis (EH) and solvents in Joannesia princeps and Astronium concinnum woods showed that Route 1 resulted in greater efficiency in the removal of lignin more expressive in the species Joannesia princeps. The inclusion of the EH sequence after HTT, studied in Route 2, did not result in higher lignin removal efficiency for the two studied biomasses, but it did influence the glucan conversion yield. Joannesia princeps has greater lignin extraction potential when subjected to longer reactions at 195 °C, a fact related to chemical composition, anatomical structure and physical properties. It is noteworthy that this research contributes, but there is a need for research on Brazilian native species, from different biomes, to generate forestry data and technological properties aiming at their potential use in different industrial segmentsapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências Ambientais e FlorestaisUFRRJBrasilInstituto de FlorestasFlorestas nativasPropriedades tecnológicas da madeiraBriquetesLigninaNative forestsTechnological properties of woodBriquettesligninRecursos Florestais e Engenharia FlorestalCaracterização e múltiplos usos de espécies nativas da Mata AtlânticaCharacterization and multiple uses of brazilian Atlantic Forest speciesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisCAO, Y.; CHEN, S. S.; ZHANG, S.; OK, Y. S.; MATSAGAR, B. M.; WU, K. C-W.; TSANG, D. C. W. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, v. 291, p. 1-11, 2019. COCHRAN, W. G. The comparison of percentages in matched samples. Biometrika, v. 7, p. 256-266, 1950. ESTEVES, B.; GRAÇA, J.; HELENA, P. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, v. 62, p. 344-351, 2008. EUROPEAN COMISSION. Sustainable and optimal use of biomass for energy in the EU beyond 2020. Annexes of the Final Report. 2017. GELLERSTEDT, G. The Chemistry of Bleaching and Post-Color Formation in Kraft Pulps, in 3rd International Colloquium on Eucalyptus Pulp (ICEP). Belo Horizonte, Brazil. 2007 GOMES, F. J. B.; COLODETTE, J. L.; BURNET, A.; BATALHA, L. A. R.; SANTOS, F. A.; DEMUNER, I. F. Through characterization of Brazilian new generation of eucalypt clones and grass for pulp production. International Journal of Forestry, v. 2015, 814071, p. 1-10, 2015. GOMIDE, J. L.; COLODETTE, J. L.; OLIVEIRA, R. C.; SILVA, C. M. Caracterização tecnológica, para produção de celulose, da nova geração de clones de Eucalyptus do Brasil. Revista Árvore, v. 29, n. 1, p. 129-137, 2005. GULLÓN, P.; CONDE, E.; MOURE, A.; DOMÍNGUEZ, H.; PARAJÓ, J. C. Selected process alternatives for biomass refining. A review. The Open Agriculture Journal; v. 4, p. 135-144, 2010. HARMSEN, P. F. H.; HUJGEN, W. J. J.; BERMÚDEZ LÓPEZ, L. M.; BAKKER, R. R. C. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. ECN-E--10-013. 50p., 2010. HU, F.; JUNG, S.; RAGAUSKAS, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, v. 117, p. 7-12, 2012. ISHIZAWA, C. I.; DAVIS, M. F.; SCHELL, D. F.; JOHNSON, D. K. Porosity and its efect on the digestibility of dilute sulfuric acid pretreated corn stover. Journal of Agricultural & Food Chemistry, v. 55, p. 2575-2581, 2007. JESÚS RANGEL, M.; HORNUS, M.; FELISSIA, F. E.; AREA, M. C. Hydrothermal treatment of eucalyptus sawdust for a forest biorefinery. Cellulose Chemistry and Technology, v. 50, n. 5-6, p. 521-528, 2016. 108 JING, L.; MENG, L.; LUO, X.; CHEN, L.; HUANG, L. Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of eucalyptus during the HWE–Kraft–ECF bleaching process. Bioresource Technology, v. 181, p. 183-190, 2015. KUMAR, D.; MURTHY, G. S. Enzymatic Hydrolysis of Cellulose for Ethanol Production: Fundamentals, Optimal Enzyme Ratio, and Hydrolysis Modeling. In: Chapter 7 of New and Future Developments in Microbial Biotechnology and Bioengineering. 2016. LESCHINSKY, M.; ZUCKERSTÄTTER, G.; WEBER, H. K.; PATT, R.; SIXTA, H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part I: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung, v. 62, p. 645-652, 2008. LIN, S. Y.; DENCE, C. W. Methods in lignin chemistry. Berlin: Springer Verlag, 578 p.,1992. LIU, J.; SHUAI, L.; YOU, J.; HAO, Y.; CHEN, L.; LI, M.; CHEN, L.; HUANG, L.; LUO, X. Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Industrial Crops and Products, v. 107, p. 139-148, 2017. LORA, J. H.; WAYMAN, M. Delignification of hardwoods by autohydrolysis and extraction. Tappi Journal, v. 61, n. 6, 1978. LOURENÇON, T. V.; GRECA, L. G.; TARASOV, D.; BORREGA, M.; TAMMINEN, T.; ROJAS, O. R.; BALAKSHIN, M. Lignin-first integrates hydrothermal treatment (HTT) and synthesis of low-cost biorefinery particles. ACS Sustainable Chemistry & Engineering, v. 8, n. 2, p. 1230-1239, 2019. LUO, X.; LIU, J.; WANG, H.; HUANG, L.; CHEN, L. Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose, v. 2, n. 3, p. 1445-1457, 2014. MOKFIENSKI, A.; COLODETTE, J. L.; GOMIDE, J. L.; CARVALHO, A. M. M. L. A importância relativa da densidade da madeira e do teor de carboidratos no rendimento de polpa e na qualidade do produto. Ciência Florestal, v. 18, n. 3, p. 401-413, 2008. MORAIS, P. H. D.; JÚNIOR, D. L.; COLODETTE, J. L.; MORAIS, E. H. C.; JARDIM, C. M. Influence of clone harvesting age of Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla in the wood chemical composition and in kraft pulpability. Ciência Florestal, v. 27, n. 1, p. 237-248, 2017. MOSIER, N.; WYMAN, C.; DALE, B.; ELANDER, R.; LEE, Y. Y.; HOLTZAPPLE, M.; LADISCH, M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, p. 673-685, 2005. PALONEN, H. Role of lignin in the enzymatic hydrolysis of lignocellulose. Dissertation. VTT Publications 520, 84p., 2004. 109 PAONE, E.; TABANELLI, T.; MAURIELLO, F. The Rise of Lignin Biorefinery. Current Opinion in Green and Sustainable Chemistry, v. 24, p. 1-6, 2020. PEI, Y.; LI, Y.; ZHANG, Y.; YU, C.; FU, T.; ZOU, J.; TU, Y.; PENG, L.; CHEN, P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, v. 203, p. 325-333, 2016. PERCIVAL ZHANG, Y-H.; HIMMEL, M. E.; MIELENZ, J. R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, v. 24, n. 5, p. 452-481. 2006. ROLIM, S. G.; PIOTTO, D. Silviculture and wood properties of natives species of the Atlantic Forest of Brazil. Ed. Rupestre. ISBN 9786580945016. Belo Horizonte, Brazil, 2019. RUIZ, H. A.; RUZENE, D. S.; SILVA, D. P.; MACIEIRA DA SILVA, F. F.; VICENTE, A. A.; TEIXEIRA, J. A. Development and characterisation of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Applied Biochemistry and Biotechnology, v. 164, p. 629-641, 2011. RUIZ, H. A.; RODRÍGUEZ-JASSO, R. M.; FERNANDES, B. D.; VICENTE, A. A.; TEIXEIRA, J. A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, v. 21, p. 35-51, 2013. SANTANA, M. A. E. OKINO, E. Y. A. Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung, v. 61, n. 5, p. 469-477, 2007. SCANDINAVIAN PULP, PAPER AND BOARD TESTING COMMITTEE (SCAN). SCAN-CM 71:09. Pulps – Carbohydrate content. Stockholm, Sweden, 2009. SELIG, M. J.; VIAMAJALA, S.; DECKER, S. R.; TUCKER, M. P.; HIMMEL, M. E.; VINZANT, T. B. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose. Biotechnology Progress, v. 23, n. 6, p. 1333-1339, 2007. SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete sample). Biometrika, v. 52, p. 591-611, 1965. SHIMIZU, K.; SUDO, K.; ONO, H.; FUJII, T. Total utilisation of wood components by steam explosion pretreatment. In: Wood processing and utilization. Ed. Ellis Horwood Lim. Chichester, p. 407-412, 1989. SHINDE, S. D.; MENG, X.; KUMAR, R.; RAGAUSKAS, A. J. Recent advances in understanding the pseudolignin formation in a lignocellulosic biorefinery. Green Chemistry, v. 20, n. 10, p. 2192-2205, 2018. 110 SILVA, C. E. S. S., PACE, J. H. C., GOMES, F. J. B., CARVALHO, P. C. L., REIS, C. A., LATORRACA, J. V. F., ROLIM, S. G., CARVALHO, A. M. Comparison between Resistograph analysis with Physical Properties of the Wood of Brazilian Native Tree Species. Floresta e Ambiente, v. 27: e20190052, p. 1-7, 2020. SIPPONEN, M. J.; PIHLAJANIEMI, V.; SIPPONEN, S.; PASTINEN, O.; LAAKSO, S. Autohydrolysis and aqueous ammonia extraction of wheat straw: effect of treatment severity on yield and structure of hemicellulose and lignin. RSC Advances, v. 44, p. 23177-23184, 2014. SIXTA, H. Handbook of pulp. WILEY‐VCH Verlag GmbH & Co. KGaA. 1352p., 2006. SLUITER, A.; HAMES, B.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Technical Report (National Renewable Energy Laboratory) TP-510-42618 Determination of structural carbohydrates and lignin in biomass. 2008. SOCCOL, C. R.; FARACO, V.; KARP, S.; VANDENBERGHE L. P. S., THOMAZ-SOCCOL, V.; WOICIECHOWSKI, A.; PANDEY, A. Lignocellulosic Bioethanol: Current Status and Future Perspectives. Pages 101-122. Chapter 5. In: PANDEY, A.; LARROCHE, C.; RICKE, S.C.; DUSSAP, C-G.; GNANSOUNOU, E. Alternative Feedstocks and Conversion Processes, 2011. SOLAR, R., F. KACIK, I. MELCER. Simple semimicro method for the determination of o-acetyl groups in wood and related materials. Nordic Pulp and Paper Research Journal, v. 4, p. 139-141, 1987. SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, v. 83, p. 1-11, 2002. TAPPI (Technical Association of Pulp and Paper Industry). Standard Method T264 om- 97 – Tappi Test Methods. 1997. TAPPI (Technical Association of Pulp and Paper Industry). Standard Method T257 cm-02: sampling and preparing wood for analysis. Atlanta: TAPPI Standard Method. 2012. TIAN, D.; CHANDRA, R. P.; LEE, J-S.; LU, C.; SADDLER, J. N. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnology for Biofuels, v. 10 n. 157, p. 1-10, 2017. TRAJANO, H. L.; ENGLE, N. L.; FOSTON, M.; RAGAUSKAS, A. J.; TSCHAPLINSKI, T. J.; WYMAN, C. E. The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, v. 6, n. 110, 16 p., 2013. TRIPATHI, N.; HILLS, C. D.; SINGH, R. S.; ATKINSON, C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Climate and Atmospheric Science, v. 2, n. 35, 2019. 111 VALLEJOS, M. E.; DIBZAMBON, M.; AREA, M. C.; SILVA CURVELO, A. A. Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Industrial Crops and Products, v. 65, p. 349-353, 2015b. VALLEJOS, M. E.; FELISSIA, F. E.; KRUYENISKI, J.; AREA, M. C. Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Industrial Crops and Products, v. 67, p. 1-6, 2015a. WALKER, L. P.; WILSON, D. B. Enzymatic Hydrolysis of Cellulose: An Overview. Bioresource Technology, v. 36, p. 3-14, 1991. WALLIS, A. F. A.; WEARNE, R. H. Fractionation on the polymeric components of hardwoods by autohydrolysis-explosion-extraction. Appita Journal, v. 38, p. 432-437, 1985. WANG, W.; ZHUANG, X.; YUAN, Z.; QI, W.; YU, Q.; WANG, Q. Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis. BioMed Research International, 7p., 2016. YANG, B.; DAI, Z.; DING, S-Y., WYMAN, C. E. Enzymatic hydrolysis of cellulosic biomass. Biofuels, v. 2, n. 4, p. 421-450, 2011. ZANUNCIO, A. J. V.; COLODETTE, J. L.; GOMES, F. J. B.; CARNEIRO, A. C. O.; VITAL, B. R. Composição química da madeira de eucalipto com diferentes níveis de desbaste. Ciência Florestal, v. 23, n. 4, 755-760, 2013. ZHENG, O.; ZHOU, T.; WANG, Y.; CAO, X.; WU, S.; ZHAO, M.; WANG, H.; XU, M.; ZHENG, B.; ZHENG, J.; GUAN, X. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific reports, v. 8, n. 1, p. 1-9, 2018https://tede.ufrrj.br/retrieve/72547/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6420Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-03-15T12:38:17Z No. of bitstreams: 1 2021 - Carlos Eduardo Silveira da Silva.pdf: 2799993 bytes, checksum: b4ac28e18dc200dbf9c340dbec000591 (MD5)Made available in DSpace on 2023-03-15T12:38:17Z (GMT). No. of bitstreams: 1 2021 - Carlos Eduardo Silveira da Silva.pdf: 2799993 bytes, checksum: b4ac28e18dc200dbf9c340dbec000591 (MD5) Previous issue date: 2021-08-25info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Carlos Eduardo Silveira da Silva.pdf.jpgGenerated Thumbnailimage/jpeg2104https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/1/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf.jpgc4715912a635b5fbde63d2a9b070733fMD51TEXT2021 - Carlos Eduardo Silveira da Silva.pdf.txtExtracted Texttext/plain217519https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/2/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf.txt0295004b6ce2fc1affcb652199a782d1MD52ORIGINAL2021 - Carlos Eduardo Silveira da Silva.pdf2021 - Carlos Eduardo Silveira da Silvaapplication/pdf2799993https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/3/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdfb4ac28e18dc200dbf9c340dbec000591MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/93692023-12-21 15:38:14.4oai:rima.ufrrj.br:20.500.14407/9369Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:38:14Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
dc.title.alternative.por.fl_str_mv |
Characterization and multiple uses of brazilian Atlantic Forest species |
title |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
spellingShingle |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica Silva, Carlos Eduardo Silveira da Florestas nativas Propriedades tecnológicas da madeira Briquetes Lignina Native forests Technological properties of wood Briquettes lignin Recursos Florestais e Engenharia Florestal |
title_short |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
title_full |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
title_fullStr |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
title_full_unstemmed |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
title_sort |
Caracterização e múltiplos usos de espécies nativas da Mata Atlântica |
author |
Silva, Carlos Eduardo Silveira da |
author_facet |
Silva, Carlos Eduardo Silveira da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Carlos Eduardo Silveira da |
dc.contributor.advisor1.fl_str_mv |
Carvalho, Alexandre Monteiro de |
dc.contributor.advisor1ID.fl_str_mv |
177.637.878-48 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1858250183196632 |
dc.contributor.advisor-co1.fl_str_mv |
Gomes, Fernando José Borges |
dc.contributor.advisor-co1ID.fl_str_mv |
064.999.956-81 https://orcid.org/0000-0003-0363-4888 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/0502504979310236 |
dc.contributor.advisor-co2.fl_str_mv |
Latorraca, João Vicente de Figueiredo |
dc.contributor.advisor-co2ID.fl_str_mv |
284.741.551-34 https://orcid.org/0000-0002-5969-5199 |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/9612404360795583 |
dc.contributor.referee1.fl_str_mv |
Carvalho, Alexandre Monteiro de |
dc.contributor.referee1ID.fl_str_mv |
177.637.878-48 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/9612404360795583 |
dc.contributor.referee2.fl_str_mv |
Pedrazzi, Cristiane |
dc.contributor.referee2Lattes.fl_str_mv |
: http://lattes.cnpq.br/5167571704789298 |
dc.contributor.referee3.fl_str_mv |
Piotto, Daniel |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0002-6505-0098 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/0527409617518472 |
dc.contributor.referee4.fl_str_mv |
Vidaurre, Graziela Baptista |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0001-9285-7105 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/2988548512574129 |
dc.contributor.referee5.fl_str_mv |
Lelis, Roberto Carlos Costa |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/5175502780570226 |
dc.contributor.authorID.fl_str_mv |
118.482.777-09 https://orcid.org/0000-0002-8070-6809 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9842202527152359 |
contributor_str_mv |
Carvalho, Alexandre Monteiro de Gomes, Fernando José Borges Latorraca, João Vicente de Figueiredo Carvalho, Alexandre Monteiro de Pedrazzi, Cristiane Piotto, Daniel Vidaurre, Graziela Baptista Lelis, Roberto Carlos Costa |
dc.subject.por.fl_str_mv |
Florestas nativas Propriedades tecnológicas da madeira Briquetes Lignina |
topic |
Florestas nativas Propriedades tecnológicas da madeira Briquetes Lignina Native forests Technological properties of wood Briquettes lignin Recursos Florestais e Engenharia Florestal |
dc.subject.eng.fl_str_mv |
Native forests Technological properties of wood Briquettes lignin |
dc.subject.cnpq.fl_str_mv |
Recursos Florestais e Engenharia Florestal |
description |
A pesquisa foi realizada com material oriundo da Reserva Natural Vale, localizada no município de Linhares, Espírito Santo e teve como objetivo estudar seis espécies nativas, sendo estas: Joannesia princeps Vell., Spondias venulosa (Engl.) Engl., Copaifera lucens Dwyer, Astronium concinnum Schott ex Spreng., Handroanthus serratifolius (Vahl) S. O. Grose, e Libidibia ferrea var. parvifolia (Mart. ex Tul.) L. P. Queiroz visando caracterizar as propriedades das madeiras nativas brasileiras e potencial uso das mesmas. De acordo com o inventário disponibilizado pela empresa foram selecionados 15 indivíduos por espécie, com idades variando entre 17 e 31 anos, e com o material obtido na área, 3 toras de 2.10 m por espécie, originando o material para realização das análises propostas. Os resultados comprovaram uma significativa correlação (R2) com as espécies mais densas (Handroanthus serratifolius e Libidibia ferrea var. parvifolia). A avaliação dos resíduos de Joannesia princeps e Astronium concinnum no processo de briquetagem usando diferentes condições de pressão (900, 1200 e 1500 Pound-Force por Square Inch - PSI) e adição de lignina Kraft (2, 4 e 6% em relação ao peso total) afirmou que a adição de 6% KL com um valor de pressão de 1500 PSI promoveu melhores propriedades do briquete (densidade aparente, módulo de ruptura e valores de aquecimento) em Joannesia princeps Vell. A espécie Astronium concinnum (Engl.) Schott apresentou resultados distintos, sendo os melhores promovidos quando se utiliza 2% KL com 900 PSI, mas o aumento no% KL pode promover melhores propriedades de resistência. A análise da extração de lignina e conversão de carboidratos após a etapa de tratamento hidrotérmico (HTT) utilizando hidrólise enzimática (EH) e solventes em madeiras de Joannesia princeps e Astronium concinnum mostraram que a Rota 1 resultou em maior eficiência na remoção de lignina mais expressiva nas espécies Joannesia princeps. A inclusão da sequência EH após HTT, estudada na Rota 2, não resultou em maior eficiência de remoção de lignina para as duas biomassas estudadas, mas influenciou no rendimento de conversão de glucana. Joannesia princeps apresenta maior potencial de extração de lignina quando submetida a reações mais prolongadas a 195 ° C, fato relacionado à composição química, estrutura anatômica e propriedades físicas. Ressalta-se que esta pesquisa contribui, mas há necessidade de pesquisas com espécies nativas brasileiras, de diferentes biomas, para gerar dados florestais e propriedades tecnológicas visando seu uso potencial em diferentes segmentos industriais |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-08-25 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:38:14Z |
dc.date.available.fl_str_mv |
2023-12-21T18:38:14Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Carlos Eduardo Silveira da. Caracterização e múltiplos usos de espécies nativas da Mata Atlântica. 2021. 112 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9369 |
identifier_str_mv |
SILVA, Carlos Eduardo Silveira da. Caracterização e múltiplos usos de espécies nativas da Mata Atlântica. 2021. 112 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9369 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
CAO, Y.; CHEN, S. S.; ZHANG, S.; OK, Y. S.; MATSAGAR, B. M.; WU, K. C-W.; TSANG, D. C. W. Advances in lignin valorization towards bio-based chemicals and fuels: Lignin biorefinery. Bioresource Technology, v. 291, p. 1-11, 2019. COCHRAN, W. G. The comparison of percentages in matched samples. Biometrika, v. 7, p. 256-266, 1950. ESTEVES, B.; GRAÇA, J.; HELENA, P. Extractive composition and summative chemical analysis of thermally treated eucalypt wood. Holzforschung, v. 62, p. 344-351, 2008. EUROPEAN COMISSION. Sustainable and optimal use of biomass for energy in the EU beyond 2020. Annexes of the Final Report. 2017. GELLERSTEDT, G. The Chemistry of Bleaching and Post-Color Formation in Kraft Pulps, in 3rd International Colloquium on Eucalyptus Pulp (ICEP). Belo Horizonte, Brazil. 2007 GOMES, F. J. B.; COLODETTE, J. L.; BURNET, A.; BATALHA, L. A. R.; SANTOS, F. A.; DEMUNER, I. F. Through characterization of Brazilian new generation of eucalypt clones and grass for pulp production. International Journal of Forestry, v. 2015, 814071, p. 1-10, 2015. GOMIDE, J. L.; COLODETTE, J. L.; OLIVEIRA, R. C.; SILVA, C. M. Caracterização tecnológica, para produção de celulose, da nova geração de clones de Eucalyptus do Brasil. Revista Árvore, v. 29, n. 1, p. 129-137, 2005. GULLÓN, P.; CONDE, E.; MOURE, A.; DOMÍNGUEZ, H.; PARAJÓ, J. C. Selected process alternatives for biomass refining. A review. The Open Agriculture Journal; v. 4, p. 135-144, 2010. HARMSEN, P. F. H.; HUJGEN, W. J. J.; BERMÚDEZ LÓPEZ, L. M.; BAKKER, R. R. C. Literature review of physical and chemical pretreatment processes for lignocellulosic biomass. ECN-E--10-013. 50p., 2010. HU, F.; JUNG, S.; RAGAUSKAS, A. Pseudo-lignin formation and its impact on enzymatic hydrolysis. Bioresource Technology, v. 117, p. 7-12, 2012. ISHIZAWA, C. I.; DAVIS, M. F.; SCHELL, D. F.; JOHNSON, D. K. Porosity and its efect on the digestibility of dilute sulfuric acid pretreated corn stover. Journal of Agricultural & Food Chemistry, v. 55, p. 2575-2581, 2007. JESÚS RANGEL, M.; HORNUS, M.; FELISSIA, F. E.; AREA, M. C. Hydrothermal treatment of eucalyptus sawdust for a forest biorefinery. Cellulose Chemistry and Technology, v. 50, n. 5-6, p. 521-528, 2016. 108 JING, L.; MENG, L.; LUO, X.; CHEN, L.; HUANG, L. Effect of hot-water extraction (HWE) severity on bleached pulp based biorefinery performance of eucalyptus during the HWE–Kraft–ECF bleaching process. Bioresource Technology, v. 181, p. 183-190, 2015. KUMAR, D.; MURTHY, G. S. Enzymatic Hydrolysis of Cellulose for Ethanol Production: Fundamentals, Optimal Enzyme Ratio, and Hydrolysis Modeling. In: Chapter 7 of New and Future Developments in Microbial Biotechnology and Bioengineering. 2016. LESCHINSKY, M.; ZUCKERSTÄTTER, G.; WEBER, H. K.; PATT, R.; SIXTA, H. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. Part I: comparison of different lignin fractions formed during water prehydrolysis. Holzforschung, v. 62, p. 645-652, 2008. LIN, S. Y.; DENCE, C. W. Methods in lignin chemistry. Berlin: Springer Verlag, 578 p.,1992. LIU, J.; SHUAI, L.; YOU, J.; HAO, Y.; CHEN, L.; LI, M.; CHEN, L.; HUANG, L.; LUO, X. Comparison of liquid hot water (LHW) and high boiling alcohol/water (HBAW) pretreatments for improving enzymatic saccharification of cellulose in bamboo. Industrial Crops and Products, v. 107, p. 139-148, 2017. LORA, J. H.; WAYMAN, M. Delignification of hardwoods by autohydrolysis and extraction. Tappi Journal, v. 61, n. 6, 1978. LOURENÇON, T. V.; GRECA, L. G.; TARASOV, D.; BORREGA, M.; TAMMINEN, T.; ROJAS, O. R.; BALAKSHIN, M. Lignin-first integrates hydrothermal treatment (HTT) and synthesis of low-cost biorefinery particles. ACS Sustainable Chemistry & Engineering, v. 8, n. 2, p. 1230-1239, 2019. LUO, X.; LIU, J.; WANG, H.; HUANG, L.; CHEN, L. Comparison of hot-water extraction and steam treatment for production of high purity-grade dissolving pulp from green bamboo. Cellulose, v. 2, n. 3, p. 1445-1457, 2014. MOKFIENSKI, A.; COLODETTE, J. L.; GOMIDE, J. L.; CARVALHO, A. M. M. L. A importância relativa da densidade da madeira e do teor de carboidratos no rendimento de polpa e na qualidade do produto. Ciência Florestal, v. 18, n. 3, p. 401-413, 2008. MORAIS, P. H. D.; JÚNIOR, D. L.; COLODETTE, J. L.; MORAIS, E. H. C.; JARDIM, C. M. Influence of clone harvesting age of Eucalyptus grandis and hybrids of Eucalyptus grandis x Eucalyptus urophylla in the wood chemical composition and in kraft pulpability. Ciência Florestal, v. 27, n. 1, p. 237-248, 2017. MOSIER, N.; WYMAN, C.; DALE, B.; ELANDER, R.; LEE, Y. Y.; HOLTZAPPLE, M.; LADISCH, M: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, v. 96, p. 673-685, 2005. PALONEN, H. Role of lignin in the enzymatic hydrolysis of lignocellulose. Dissertation. VTT Publications 520, 84p., 2004. 109 PAONE, E.; TABANELLI, T.; MAURIELLO, F. The Rise of Lignin Biorefinery. Current Opinion in Green and Sustainable Chemistry, v. 24, p. 1-6, 2020. PEI, Y.; LI, Y.; ZHANG, Y.; YU, C.; FU, T.; ZOU, J.; TU, Y.; PENG, L.; CHEN, P. G-lignin and hemicellulosic monosaccharides distinctively affect biomass digestibility in rapeseed. Bioresource Technology, v. 203, p. 325-333, 2016. PERCIVAL ZHANG, Y-H.; HIMMEL, M. E.; MIELENZ, J. R. Outlook for cellulase improvement: Screening and selection strategies. Biotechnology Advances, v. 24, n. 5, p. 452-481. 2006. ROLIM, S. G.; PIOTTO, D. Silviculture and wood properties of natives species of the Atlantic Forest of Brazil. Ed. Rupestre. ISBN 9786580945016. Belo Horizonte, Brazil, 2019. RUIZ, H. A.; RUZENE, D. S.; SILVA, D. P.; MACIEIRA DA SILVA, F. F.; VICENTE, A. A.; TEIXEIRA, J. A. Development and characterisation of an environmentally friendly process sequence (autohydrolysis and organosolv) for wheat straw delignification. Applied Biochemistry and Biotechnology, v. 164, p. 629-641, 2011. RUIZ, H. A.; RODRÍGUEZ-JASSO, R. M.; FERNANDES, B. D.; VICENTE, A. A.; TEIXEIRA, J. A. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: A review. Renewable and Sustainable Energy Reviews, v. 21, p. 35-51, 2013. SANTANA, M. A. E. OKINO, E. Y. A. Chemical composition of 36 Brazilian Amazon forest wood species. Holzforschung, v. 61, n. 5, p. 469-477, 2007. SCANDINAVIAN PULP, PAPER AND BOARD TESTING COMMITTEE (SCAN). SCAN-CM 71:09. Pulps – Carbohydrate content. Stockholm, Sweden, 2009. SELIG, M. J.; VIAMAJALA, S.; DECKER, S. R.; TUCKER, M. P.; HIMMEL, M. E.; VINZANT, T. B. Deposition of Lignin Droplets Produced During Dilute Acid Pretreatment of Maize Stems Retards Enzymatic Hydrolysis of Cellulose. Biotechnology Progress, v. 23, n. 6, p. 1333-1339, 2007. SHAPIRO, S. S.; WILK, M. B. An analysis of variance test for normality (complete sample). Biometrika, v. 52, p. 591-611, 1965. SHIMIZU, K.; SUDO, K.; ONO, H.; FUJII, T. Total utilisation of wood components by steam explosion pretreatment. In: Wood processing and utilization. Ed. Ellis Horwood Lim. Chichester, p. 407-412, 1989. SHINDE, S. D.; MENG, X.; KUMAR, R.; RAGAUSKAS, A. J. Recent advances in understanding the pseudolignin formation in a lignocellulosic biorefinery. Green Chemistry, v. 20, n. 10, p. 2192-2205, 2018. 110 SILVA, C. E. S. S., PACE, J. H. C., GOMES, F. J. B., CARVALHO, P. C. L., REIS, C. A., LATORRACA, J. V. F., ROLIM, S. G., CARVALHO, A. M. Comparison between Resistograph analysis with Physical Properties of the Wood of Brazilian Native Tree Species. Floresta e Ambiente, v. 27: e20190052, p. 1-7, 2020. SIPPONEN, M. J.; PIHLAJANIEMI, V.; SIPPONEN, S.; PASTINEN, O.; LAAKSO, S. Autohydrolysis and aqueous ammonia extraction of wheat straw: effect of treatment severity on yield and structure of hemicellulose and lignin. RSC Advances, v. 44, p. 23177-23184, 2014. SIXTA, H. Handbook of pulp. WILEY‐VCH Verlag GmbH & Co. KGaA. 1352p., 2006. SLUITER, A.; HAMES, B.; RUIZ, R.; SCARLATA, C.; SLUITER, J.; TEMPLETON, D.; CROCKER, D. Technical Report (National Renewable Energy Laboratory) TP-510-42618 Determination of structural carbohydrates and lignin in biomass. 2008. SOCCOL, C. R.; FARACO, V.; KARP, S.; VANDENBERGHE L. P. S., THOMAZ-SOCCOL, V.; WOICIECHOWSKI, A.; PANDEY, A. Lignocellulosic Bioethanol: Current Status and Future Perspectives. Pages 101-122. Chapter 5. In: PANDEY, A.; LARROCHE, C.; RICKE, S.C.; DUSSAP, C-G.; GNANSOUNOU, E. Alternative Feedstocks and Conversion Processes, 2011. SOLAR, R., F. KACIK, I. MELCER. Simple semimicro method for the determination of o-acetyl groups in wood and related materials. Nordic Pulp and Paper Research Journal, v. 4, p. 139-141, 1987. SUN, Y.; CHENG, J. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology, v. 83, p. 1-11, 2002. TAPPI (Technical Association of Pulp and Paper Industry). Standard Method T264 om- 97 – Tappi Test Methods. 1997. TAPPI (Technical Association of Pulp and Paper Industry). Standard Method T257 cm-02: sampling and preparing wood for analysis. Atlanta: TAPPI Standard Method. 2012. TIAN, D.; CHANDRA, R. P.; LEE, J-S.; LU, C.; SADDLER, J. N. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar. Biotechnology for Biofuels, v. 10 n. 157, p. 1-10, 2017. TRAJANO, H. L.; ENGLE, N. L.; FOSTON, M.; RAGAUSKAS, A. J.; TSCHAPLINSKI, T. J.; WYMAN, C. E. The fate of lignin during hydrothermal pretreatment. Biotechnology for Biofuels, v. 6, n. 110, 16 p., 2013. TRIPATHI, N.; HILLS, C. D.; SINGH, R. S.; ATKINSON, C. J. Biomass waste utilisation in low-carbon products: harnessing a major potential resource. Climate and Atmospheric Science, v. 2, n. 35, 2019. 111 VALLEJOS, M. E.; DIBZAMBON, M.; AREA, M. C.; SILVA CURVELO, A. A. Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification. Industrial Crops and Products, v. 65, p. 349-353, 2015b. VALLEJOS, M. E.; FELISSIA, F. E.; KRUYENISKI, J.; AREA, M. C. Kinetic study of the extraction of hemicellulosic carbohydrates from sugarcane bagasse by hot water treatment. Industrial Crops and Products, v. 67, p. 1-6, 2015a. WALKER, L. P.; WILSON, D. B. Enzymatic Hydrolysis of Cellulose: An Overview. Bioresource Technology, v. 36, p. 3-14, 1991. WALLIS, A. F. A.; WEARNE, R. H. Fractionation on the polymeric components of hardwoods by autohydrolysis-explosion-extraction. Appita Journal, v. 38, p. 432-437, 1985. WANG, W.; ZHUANG, X.; YUAN, Z.; QI, W.; YU, Q.; WANG, Q. Structural Changes of Lignin after Liquid Hot Water Pretreatment and Its Effect on the Enzymatic Hydrolysis. BioMed Research International, 7p., 2016. YANG, B.; DAI, Z.; DING, S-Y., WYMAN, C. E. Enzymatic hydrolysis of cellulosic biomass. Biofuels, v. 2, n. 4, p. 421-450, 2011. ZANUNCIO, A. J. V.; COLODETTE, J. L.; GOMES, F. J. B.; CARNEIRO, A. C. O.; VITAL, B. R. Composição química da madeira de eucalipto com diferentes níveis de desbaste. Ciência Florestal, v. 23, n. 4, 755-760, 2013. ZHENG, O.; ZHOU, T.; WANG, Y.; CAO, X.; WU, S.; ZHAO, M.; WANG, H.; XU, M.; ZHENG, B.; ZHENG, J.; GUAN, X. Pretreatment of wheat straw leads to structural changes and improved enzymatic hydrolysis. Scientific reports, v. 8, n. 1, p. 1-9, 2018 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Ambientais e Florestais |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Florestas |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/1/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/2/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/3/2021%20-%20Carlos%20Eduardo%20Silveira%20da%20Silva.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9369/4/license.txt |
bitstream.checksum.fl_str_mv |
c4715912a635b5fbde63d2a9b070733f 0295004b6ce2fc1affcb652199a782d1 b4ac28e18dc200dbf9c340dbec000591 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108207122612224 |