Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame

Detalhes bibliográficos
Autor(a) principal: Rangel, Natália D' Assumpção Lima
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11399
Resumo: A obesidade tornou-se um problema de saúde pública no mundo. Mulheres grávidas com sobrepeso podem causar programação metabólica na linhagem, com o surgimento de diabetes tipo2, dislipidemias e doenças cardiovasculares na fase adulta da progênie. Nosso grupo de pesquisa demonstrou anteriormente que o consumo materno de dieta hiperlipídica promoveu aumento da massa corporal, adiposidade, hiperleptinemia na prole de ratas ao desmame, além de prejuízo na função sistólica aos 30 dias de idade. O sistema renina angiotensina (SRA) expresso no coração parece desencadear hipertrofia cardíaca (HC), através da super expressão de Angiotensina II (Ang II) e ativação do seu receptor, AT1. Este estudo teve como objetivo investigar se o consumo materno de dieta hiperlipídica promove HC, e correlacionar este fenótipo à alterações ao sistema SRA cardíaco em animais machos e fêmeas da prole ao desmame. Para isso, ratas Wistar receberam dieta controle (9% lipídeos, grupo C) ou hiperlipídica (29% lipídeos, grupo DH) durante 8 semanas antes do acasalamento, e durante a gestação e lactação. Ao desmame, 21 dias de vida, as proles foram pesadas e eutanasiadas. O coração e os tecidos adiposos branco (retroperitoneal, inguinal e perigonadal) foram pesados. Análises histológicas (cortes corados com HE e picrossírius) foram realizadas utilizando amostras dos ventrículos e análises bioquímicas e moleculares (RIA e qPCR) foram realizadas utilizando amostras do ventrículo esquerdo (VE) e a expressão do receptor AT1 foi avaliada através da técnica de Western Blotting. Fêmeas e machos da prole DH, apresentaram maior massa corporal, adiposidade, hipertrofia do VE, mas não apresentaram fibrose; maior expressão do RNAm de Nppn; e menor de β-MHC, SERCA2a e Ryr2. A expressão do RNAm de α-MHC estava reduzida somente nos machos da prole DH. Não houve diferença na dosagem de Ang II entre as proles. A expressão protéica de AT1 estava maior nas fêmeas da prole DH, mas não foi alterada nos machos. Estes resultados sugerem que o consumo materno de dieta hiperlipídica promove hipertrofia do VE em fêmeas e machos, no entanto verificamos alteração na expressão de AT1 somente nas fêmeas, o que sugere que o sistema RAS pode estar envolvido com a HC observada nas fêmeas mas não nos animais machos da prole.
id UFRRJ-1_894bb9d917766527329648433f56dd3d
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11399
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Rangel, Natália D' Assumpção LimaOliveira, Norma Aparecida Almeida Figueiredo de072.340.197-74http://lattes.cnpq.br/8601494649709728Oliveira, Norma Aparecida Almeida Figueiredo de072.340.197-74http://lattes.cnpq.br/8601494649709728Silveira, Anderson Luiz Bezerra dahttp://lattes.cnpq.br/2389812933788850Souza, Luciane Claudia Barcellos dos Santos060.010.817-19http://lattes.cnpq.br/89288051417225202023-12-22T01:52:18Z2023-12-22T01:52:18Z2018-03-08RANGEL, Natália D’Assumpção Lima. Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame. 2018. 88 f. Dissertação (Mestrado em Ciências Fisiológicas) -Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/11399A obesidade tornou-se um problema de saúde pública no mundo. Mulheres grávidas com sobrepeso podem causar programação metabólica na linhagem, com o surgimento de diabetes tipo2, dislipidemias e doenças cardiovasculares na fase adulta da progênie. Nosso grupo de pesquisa demonstrou anteriormente que o consumo materno de dieta hiperlipídica promoveu aumento da massa corporal, adiposidade, hiperleptinemia na prole de ratas ao desmame, além de prejuízo na função sistólica aos 30 dias de idade. O sistema renina angiotensina (SRA) expresso no coração parece desencadear hipertrofia cardíaca (HC), através da super expressão de Angiotensina II (Ang II) e ativação do seu receptor, AT1. Este estudo teve como objetivo investigar se o consumo materno de dieta hiperlipídica promove HC, e correlacionar este fenótipo à alterações ao sistema SRA cardíaco em animais machos e fêmeas da prole ao desmame. Para isso, ratas Wistar receberam dieta controle (9% lipídeos, grupo C) ou hiperlipídica (29% lipídeos, grupo DH) durante 8 semanas antes do acasalamento, e durante a gestação e lactação. Ao desmame, 21 dias de vida, as proles foram pesadas e eutanasiadas. O coração e os tecidos adiposos branco (retroperitoneal, inguinal e perigonadal) foram pesados. Análises histológicas (cortes corados com HE e picrossírius) foram realizadas utilizando amostras dos ventrículos e análises bioquímicas e moleculares (RIA e qPCR) foram realizadas utilizando amostras do ventrículo esquerdo (VE) e a expressão do receptor AT1 foi avaliada através da técnica de Western Blotting. Fêmeas e machos da prole DH, apresentaram maior massa corporal, adiposidade, hipertrofia do VE, mas não apresentaram fibrose; maior expressão do RNAm de Nppn; e menor de β-MHC, SERCA2a e Ryr2. A expressão do RNAm de α-MHC estava reduzida somente nos machos da prole DH. Não houve diferença na dosagem de Ang II entre as proles. A expressão protéica de AT1 estava maior nas fêmeas da prole DH, mas não foi alterada nos machos. Estes resultados sugerem que o consumo materno de dieta hiperlipídica promove hipertrofia do VE em fêmeas e machos, no entanto verificamos alteração na expressão de AT1 somente nas fêmeas, o que sugere que o sistema RAS pode estar envolvido com a HC observada nas fêmeas mas não nos animais machos da prole.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroObesity has become a public health problem in the world. Overweight pregnant women can cause metabolic programming in the lineage, with the emergence of type 2 diabetes, dyslipidemias and cardiovascular diseases in the adult progeny. Our research group has previously shown that maternal consumption of a high fat diet promoted increased body mass, adiposity, hyperleptinemia in the offspring of rats at weaning, as well as impairment of systolic function at 30 days of age. The renin angiotensin system (RAS) expressed in the heart appears to trigger cardiac hypertrophy (CH), through the overexpression of Angiotensin II (Ang II) and activation of it’s receptor, AT1. This study aimed to investigate whether the maternal consumption of a high fat diet promotes CH, and correlate such changes to the cardiac RAS system in male and female offspring. For this, Wistar rats received control diet (9% lipids, group C) or high fat (29% lipids, HF group) for 8 weeks before mating, and during gestation and lactation. At weaning, 21 days of life, the offspring were weighed and euthanized. The heart and adipose white tissue (retroperitoneal, inguinal and perigonadal) were weighed. Histological analyzes (sections stained with HE and picrosirius) were realized using samples from the ventricles and biochemical and molecular analyzes (RIA and qPCR) were performed using left ventricular (LV) samples and AT1 receptor expression was assessed by Western blotting. Females and males of the HF progeny presented higher body mass, adiposity, LV hypertrophy, but did not present fibrosis; higher mRNA expression of Nppn; and less expression of β-MHC, SERCA2a and Ryr2. mRNA expression of α-MHC was reduced only in males of the DH offspring. There was no difference in Ang II dosage among the offspring. Protein expression of AT1 was higher in females of the HF progeny, but was not altered in males. These results suggest that the maternal consumption of high fat diet promotes LV hypertrophy in females and males of the HF offspring, however we verified alteration in the AT1 protein expression only in females of HF progeny, which suggests that the RAS system may be involved with HC observed in the females and not in the male animals of the HF offspring.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e da SaúdeDieta hiperlipídicaProgramação metabólicaHipertrofia cardíacaHigh fat dietMetabolic programmingCardiac hypertrophyFisiologiaConsumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmameMaternal high fat diet consumption: change in the angiotensina II receptor expression (AT1) and left ventricular hypertrophy in the offspring at weaninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisADAMS TD, YANOWITZ FG, FISHER AG, RIDGES JD, LOVELL K, AND PRYOR TA. Noninvasive evaluation of exercise training in college-age men. Circulation. V. 64, p. 958– 965, 1981. AGARWAL D, HAQUE M, SRIRAMULA S, MARIAPPAN N, PARIAUT R, FRANCIS J. Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension. V.54, p. 1393±1400, 2009. AHIMA RS, LAZAR MA.Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. V.22, p.1023-31, 2008. AHIMA RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring). Aug;14 Suppl. V.5, p.242S-249S, 2006. AHIMA, R. S. Central actions of adipocyte hormones. Trends Endocrinol Metab, AHIMA, R. S. Central actions of adipocyte hormones. Trends Endocrinol Metab, v.16, p. 307-313, 2005. AKHTER SA, SKAER CA, KYPSON AP, MCDONALD PH, PEPPEL KC, GLOWER DD, Lefkowitz RJ and Koch WJ. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. PNAS. V. 94, p. 12100-12105, 1997. ALLO SN, MCDERMOTT PJ, CARL LL, MORGAN HE. Phorbol ester stimulation of protein kinase C activity and ribosomal DNA transcription. Role in hypertrophic growth of cultured cardiomyocytes. The Journal of biological chemistry. V. 266, p. 22003–22009, 1991. ARBUSTINI E, DIEGOLI M, FASANI R, GRASSO M, MORBINI P, BANCHIERI N, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. The American journal of pathology. V. 153, p. 1501–1510, 1998. ARMITAGE JA, LAKASING L, TAYLOR PD, BALACHANDRAN AA, JENSEN RI, DEKOU V, et al. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J. Physiol. V.565, p.171–184, 2005. 60 ASHRAFIAN H, FRENNEAUX MP, OPIE LH. METABOLIC MECHANISMS IN HEARTFAILURE. CIRCULATION. V.116, P. 434-48, 2007. ASHRAFIAN H, FRENNEAUX MP. Metabolic modulation in heart failure: the coming of age. Cardiovasc Drugs Ther. V.21, p.5–7, 2007. AYALON N, GOPAL DM, MOONEY DM, SIMONETTI JS, GROSSMAN JR, DWIVEDIA, DONOHUE C, PEREZ AJ, DOWNING J, GOKCE N, MILLER EJ, LIANG CS, APROVIAN CM, COLUCCI WS, HO JE. Preclinical left ventricular diastolic dysfunction in metabolic syndrome. Am J Cardiol. V.114, p.838–842, 2014. BAKER KM, ACETO JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. V.259, p. H610-H618, 1990. BAKER KM, BOOZ GW. DOSTAL DE.Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol. V.54, p.227-241, 1992. BARKER DJ, OSMOND C, FORSEN TJ, KAJANTIE E, ERIKSSON JG. Maternal and social origins of hypertension. Hypertension. V.50, p.565–571, 2007. BARROS RA, OKOSHI MP, CICOGNA AC. Via beta-adrenérgica em corações normais e hipertrofiados. Arq Bras Cardiol. V.72, p. 641-8, 1999. BARTON M, CARMONA R, MORAWIETZ H, D'USCIO LV, GOETTSCH W, HILLEN H, HAUDENSCHILD CC, KRIEGER JE, MÜNTER K, LATTMANN T, LÜSCHER TF, SHAW S. Obesity is associated with tissue-specific activation of renal angiotensin- converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension. V.35, p.329-360, 2000. BEISVAG V, KEMI OJ, ARBO I, LOENNECHEN JP, WISLOFF U, LANGAAS M,SANDVIK AK, ELLINQSEN O. Pathological and physiological hypertrophies areregulated by distinct gene programs. Eur J Cardiovasc Prev Rehabil. V.16, p. 690- 697, 2009. BELL CG, WALLEY AJ, FROGUEL P. The genetics of human obesity. Nat.Rev. Genet, v. 6, p. 221–23, 2005. BERK BC, VEKSHTEIN V, GORDON HM, TSUDA T. Angiotensin Il-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. V.13, p. 305-314, 1989. 61 BERNARDO BC, WEEKS KL, PRETORIUS L, MCMULLEN JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. PharmacolTher. V. 128, p. 191-227, 2010. BJORBAEK C, KAHN BB. Leptin signaling in the central nervous system and theperiphery. Recent Prog Horm Res, v.59, p. 305–33, 2004. BLACKMORE HL, NIU Y, FERNANDEZ- TWINN, TARRY- ADKINS JL, GIUSSANI DA, OZANNE SE. Maternal Diet-induced Obesity Programs Cardiovascular Dysfunction in Adult Male Mouse Offspring Independent of Current Body Weight. Endocrinology. V. 155, p. 3970- 3980, 2014. BOTELHO LM, BLOCK CH, KHOSLA MC, SANTOS RA. PLASMA ANGIOTENSIN(1- 7)IMMUNOREACTIVITY IS INCREASED BY SALT LOAD, WATER DEPRIVATION, AND HEMORRHAGE.PEPTIDES. V. 15, P. 723-729, 1994. BOURET SG. Neurodevelopmental Actions of Leptin. Brain research. V. 1350, p. 2-9, 2010. BRAVO P.E., MORSE S., BORNE D.M., AGUILAR E.A., REISIN E. Leptin and hypertension in obesity. Vascular Health Risk Management. V. 2, p. 163–169, 2006. BRAY, GA. Medical consequences of obesity. J clinical endocrinol metabolism, V. 89, p. 2583- 2589, 2004. BRIFFA JF, MCAINCH AJ, ROMANO T, WLODEK ME, HRYCIW DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab. V. 308, p. E335–E350, 2015. BRUIN JE, KELLENBERGER LD, GERSTEIN HC, MORRISON KM, HOLLOWAY AC. Fetal and neonatal nicotine exposure and postnatal glucose homeostasis: identifying critical windows of exposure. J Endocrinol. V.194, p.171–178, 2007. BUETTNER R, SCHÖLMERICH J, BOLLHEIMER LC.High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). V.15, p.798-808, 2007. BURDGE GC, SLATER-JEFFERIES JL, TORRENS C, PHILLIPS ES, HANSON MA, LILLYCROP KA. Dietary protein restriction of pregnant rats in the F0 generation induces 62 altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. V.97, p.435–9, 2007. CAMBONIE G, COMTE B, YZYDORCZYK C, NTIMBANE T, GERMAIN N, LE NL, PLADYS P, GAUTHIER C, LAHAIE I, ABRAN D, LAVOIE JC, NUYT AM. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol. V.292, p.R1236– R1245, 2007. CARDOZO ER, NEFF LM, BROCKS ME, et al. Infertility patients’ knowledge of the effects of obesity on reproductive health outcomes. American journal of obstetrics and gynecology. V.207, p.509.e1-509.e10, 2012. CARÈ A, CATALUCCI D, FELICETTI F, BONCI D, ADDARIO A, GALLO P, BANG ML, SEGNALINI P, GU Y, DALTON ND, ELIA L, LATRONICO MV, et al.MicroRNA-133 controls cardiac hypertrophy. Nat Med, V. 13, p. 613–618, 2007. CARREÓN-TORRES, E.; DÍAZ-DÍAZ, E.; GUARNER-LANS, V. Angiotensin II and 1- 7during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors inabdominal white adipose tissue. Peptides, V. 57, p. 101-8, 2014. CASSIS LA, LYNCH KR, PEACH MJ.Localization of angiotensinogen messenger RNA in rat aorta. Circ Res. V.62, p.1259-62, 1988. CATALANO PM, EHRENBERG HM. The short- and long-term implications of maternal obesity on the mother and her offspring. Bjog. V.113, p. 1126–1133, 2006. CHAAR LJ, ALVES TP, BATISTA JUNIOR AM, MICHELINI LC. Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas-The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS ONE. V.10, p. e0137395, 2015. CHAN SH, TAI MH, LI CY, CHAN JY.Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic. Biol. Med. V.40, p. 2028–2039, 2006. CHEN H, SIMAR D, MORRIS MJ. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS One. V.4, p. e6259, 2009. 63 CHENG Y, JI R, YUE J, YANG J, LIU X, CHEN H, DEAN DB, ZHANG C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. V.170, p. 1831-1840, 2007. CHESS DJ, STANLEY WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. V.79, p.269–278, 2008. CHESS DJ, STANLEY WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. V.79, p.269–278, 2008. CHIEN KR, KNOWLTON KU, ZHU H, et al. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiological response. FASEB J. V.5, p. 3037-46, 1991. CHRISTIAENS V, LIJNEN HR.Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. V.318, p.2-9, 2010. CLARK WA, RUDNICK SJ, ANDERSEN LC, LAPRES JJ.Myosin heavy chain synthesis is independently regulated in hypertrophy and atrophy of isolated adult cardiac myocytes. J BiolChem. V. 269, p. 25562–25569, 1994. CLEUTJENS JPM. The role of matrix metalloproteinases in heart disease. Cardiovasc Res. V, 32, p. 816-21, 1996. COELHO MS, LOPES KL, FREITAS RDE A, DE OLIVEIRA-SALES EB, BERGASMASCHI CT, CAMPOS RR, CASARINI DE, CARMONA AK, ARAÚJO MDA S, HEIMANN JC, DOLNIKOFF MS.High-sucrose intake in rats is associated with increased ACE2 and angiotensin-(1-7) levels in the adipose tissue. Regul Pept. V.162, p.61–67, 2010. COHN JN, FERRARI R, SHARPE N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. V.35, p. 569-82, 2000. CONSIDINE RV, SINHA MK, HEIMAN ML, et al. Serumimmunoreactive-leptin concentrations in normal-weight andobese humans. N Engl J Med. V.334, p. 292–5, 1996. controversies. Trends Endocrinol Metab, v. 16, p. 390-394, 2005. CORDEIRO A, DE SOUZA LL, OLIVEIRA LS, FAUSTINO LC, SANTIAGO LA, BLOISE FF, ORTIGA-CARVALHO TM, ALMEIDA NA, PAZOS-MOURA CC.Thyroid hormone 64 regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice. Journal of Endocrinology, V. 216, n. 2, p. 181-193, 2013. CORRAL-DEBRINSKI M, SHOFFNER JM, LOTT MT, WALLACE DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutation research. V. 275, p. 169–180, 1992. COSTA-SILVA JH, SILVA PA, PEDI N, LUZARDO R, EINICKER-LAMAS M., LARA LS, et al. Chronic undernutrition alters renal active Na+ transport in young rats: potential hidden basis for pathophysiological alterations in adulthood? Eur. J. Nutr. V.48, p. 437–445, 2009. CRANDALL DL, ARMELLINO DC, BUSLER DE, MCHENDRY-RINDE B, KRAL JG. Angiotensin II receptors in human preadipocytes: role in cell cycle regulation. Endocrinology. V.140, p.154–158, 1999. CROWLEY SD, GURLEY SB, HERRERA MJ, RUIZ P, GRIFFITHS R, KUMAR AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. V.103, p. 17985±17990, 2006. CROWLEY VE, YEO GS, O'RAHILLY S. OBESITY THERAPY: ALTERING THE ENERGY INTAKE-AND-EXPENDITURE BALANCE SHEET. NAT REV DRUG DISCOV, V. 1, N. 4, P. 276-86, 2002. DAI DF, HSIEH EJ, LIU Y, CHEN T, BEYER RP, CHIN MT, et al. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovascular research. V.93, p.79–88, 2012. DAI DF, JOHNSON SC, VILLARIN JJ, CHIN MT, NIEVES-CINTRON M, CHEN T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation research. V. 108, p. 837–846, 2011. DASSOULI A, SULPICE J-C, ROUX S, et al. Stretch-induced inositol triphosphate and tetrakisphosphate production in rat cardiomyocytes. J Mol Cell Cardiol. V.25, p. 973-82, 1993. DE BOO HA, HARDING JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J ObstetGynaecol. V.46, p. 4-14, 2006. 65 DE BRITO ALVES J. L., DE OLIVEIRA J. M., FERREIRA D. J., DE BARROS M. A., NOGUEIRA V. O., ALVES D. S., ET AL.Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin. Exp. Pharmacol. Physiol. V. 43, p.1177-1184, 2016 DE BRITO ALVES JL, NOGUEIRA VO, DE OLIVEIRA GB, DA SILVA GS, WANDERLEY AG, LEANDRO CG, et al. Short- and long-term effects of a maternal low- protein diet on ventilation, O2/CO2chemoreception and arterial blood pressure in male rat offspring. Br. J. Nutr. V.111, p.606–615, 2014. DE MOURA EG, PASSOS MC.Neonatal programming of body weight regulation and energetic metabolism. Biosci Rep. V. 25, p.251-69, 2005. DESAI M, JELLYMAN JK, HAN G. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J ObstetGynecol. V. 211, p. 237.e1-13, 2014. developmental origins of cardiovascular disease. J Physiol. V. 19, p. 4709- 4720, 2008. DHALLA AK, HILL MF, SINGAL PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. V. 28, p. 506–514, 1996. DIEP QN, EL MABROUK M, COHN JS, ENDEMANN D, AMIRI F, VIRDIS A, NEVES MF, SCHIFFRIN EL.Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor- gamma. Circulation. V. 105, p. 2296-302, 2002. DOENST T, PYTEL G, SCHREPPER A, AMORIM P, FARBER G, SHINGU Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovascular research. V. 86, p. 461–470, 2010. DRAKE AJ, REYNOLDS RM. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction, v. 140, p. 387–398, 2010. DUBEY RK, ROY A, OVERBECK HW. Culture of renal arteriolar smooth muscle cells: mitogenic responses to angiotensin II. Circ Res. V.71, p. 1143-1152, 1992. DZAU VJ, PRATT RE. Cardiac, vascular and intrarenal renin angiotensin system in normal physiology and disease. In: Robertson JIS, Nicholis MG, eds. The Renin-Angiotensin System. London, England: Gower Medical Publishing. V.42, p.1-42, 1993. 66 ELAHI MM, CAGAMPANG FR, MUKHTAR D, ANTHONY FW, OHRI SK, HANSON MA. Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr. V. 102, p. 514–519, 2009. ENGELHARDT, S, HEIN L, WIESMAN F, LOHSE MJ. Progressivehypertrophy and heart failure in b1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA. V. 96, p. 7059 – 7064, 1999. ESSICK EE, SAM F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell Longev. V. 3, p. 168–177, 2010. experimental study. Circulation. V.65, p. 1446-50, 1982. FAGARD RH. Impact of different sports and training on cardiac structure and function. CardiolClin. V. 15, p. 397–412, 1997. FAGUNDES AT, MOURA EG, PASSOS MC, SANTOS-SILVA AP, DE OLIVEIRA E, TREVENZOLI IH, CASIMIRO-LOPES G, NOGUEIRA-NETO JF, LISBOA PC.Temporal evaluation of body composition, glucose homeostasis and lipid profile of male rats programmed by maternal protein restriction during lactation. Horm Metab Res. V.41, p.866-73, 2009. FALCÃO-TEBAS F, BENTO-SANTOS A, FIDALGO MA, DE ALMEIDA MB, DOS SANTOS JA, LOPES DE SOUZA S, et al. Maternal low-protein diet-induced delayed reflex ontogeny is attenuated by moderate physical training during gestation in rats. Br. J. Nutr. V. 107, p. 372–377, 2012. FAN L, LINDSLEY SR, COMSTOCK SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond). V. 37, p. 254–262, 2013. FAN L, LINDSLEY SR, COMSTOCK SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond). V.37, p. 254–262, 2013. FELIX JVC, MICHELINI LC. Training-induced pressure fall in spontaneously hypertensive rats is associated with reduced angiotensinogen mRNA expression within the nucleus tractus solitarii. Hypertension. V.50, p. 780±785, 2007. 67 FEREZOU-VIALA J, ROY AF, SEROUGNE C, et al. Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J PhysiolRegulIntegr Comp Physiol. V. 293, p. R1056–R1062, 2007. FERNANDEZ-TWINN DS, BLACKMORE HL, SIGGENS L, GIUSSANI DA, CROSS CM, FOO R, OZANNE SE.The Programming of Cardiac Hypertrophy in the Offspring by Maternal Obesity Is Associated with Hyperinsulinemia, AKT, ERK, and mTOR Activation. Endocrinology. V. 153, p. 5961–5971, 2012. FERREIRA DS, LIU Y, FERNANDES MP, LAGRANHA CJ.Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr Neurosci. V. 19, p. 369-375, 2016. FIDALGO M., FALCÃO-TEBAS F., BENTO-SANTOS A., DE OLIVEIRA E., NOGUEIRA-NETO J. F., DE MOURA E. G., et al. Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate-low physical training. Br. J. Nutr. V. 109, p. 449–456, 2013. FILIPOWICZ, W., BHATTACHARYYA, S.N., SONENBERG, N. Mechanisms of post- transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. V.9, p.102-114, 2008. FITZSIMONS KJ, MODDER J, GREER IA. Obesity in pregnancy: risks and management. Obstetric Medicine. V. 2, p. 52–62, 2009. FLIER JS.Obesity wars: molecular progress confronts an expandingepidemic. Cell. V.23, p. 116:337–50, 2004. FORSÉN T, ERIKSSON JG, TUOMILEHTO J, TERAMO K, OSMOND C, BARKER DJ. Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: Follow up study. BMJ. V.315, p.837–840, 1997. FRANCIS GS. Pathophysiology of chronic heart failure. Am J Med. V.110, p. 37S-46S, 2001. FRANCO JG, FERNANDES TP, ROCHA CPD, CALVIÑO C, PAZOSMOURA CC, LISBOA PC, MOURA EG, TREVENZOLI IH. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J Physiol, v. 590, n.21, p. 5503–5518, 2012. 68 FURUKAWA S, FUJITA T, SHIMABUKURO M, IWAKI M, YAMADA Y,NAKAJIMA Y, NAKAYAMA O, MAKISHIMA M, MATSUDA M, SHIMOMURA I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, V. 114, p.1752–1761, 2004. GAASCH WH. Left ventricular radius to wall thickness ratio. Am J Cardiol, V 43, p.1189- 1194, 1979. GALLAGHER PE, et al. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. V. 33, n. II, p. 323–328, 1999. GARNIER A, FORTIN D, DELOMENIE C, MOMKEN I, VEKSLER V, VENTURA- CLAPIER R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of physiology. V.551, p.491–501, 2003. GARRISON JC, PEACH MJ. The Pharmacological Basis of Therapeutics. Pergamon Press, Inc. p.749-763, 1990. GEISTERFER AAT, PEACH MJ, OWENS GK. Angiotensin II induces hypertrophy, not hyperplasia, olf cultured rat aortic smooth muscle cells. Circ Res. V.62, p. 749-756, 1988. GHOSH P, BITSANIS D, GHEBREMESKEL K, CRAWFORD MA, POSTON L. Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol. V.533, p. 815–822, 2001. GIORDANO FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. V.115, p. 500-8, 2005. GRIENDLING KK, LASSEGUE B, MURPHY TJ, ALEXANDER RW. Angiotensin II receptor pharmacology. Adv Pharmacol. V.28, p. 269-306, 1994. GRIENDLING KK, LASSEGUE B, MURPHY TJ, ALEXANDER RW. Angiotensin II receptor pharmacology. Adv Pharmacol. V.28, p. 269-306, 1994. GRIEVE DJ, BYRNE JA, CAVE AC, SHAH AM. Role of oxidative stress in cardiac remodeling after myocardial infarction. Heart Lung Circ. V.13, p. 132-8, 2004. GRIFFITHS ER, FRIEHS I, SCHERR E, POUTIAS D, MCGOWAN FX, DEL NIDO PJ. Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes 69 cardiomyocyte apoptosis independent of oxidative stress. The Journal of thoracic and cardiovascular surgery. V.139, p.1609–1617, 2010. GRUNDY, S. M. Multifactorial causation of obesity: implications for prevention. Am J ClinNutr, V. 67, n.3, p.563S-72S, 1998. GUBERMAN C, JELLYMAN JK, HAN G, ROSS MG, DESAI M. Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol. V.209, p. 262.e261–e268, 2013. GUILHERME A, VIRBASIUS JV, PURI V, CZECH MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol V.9, p. 367–377, 2008. GUPTA A, SRINVASAN M, THAMADILOK S, PATEL MS. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. V. 200, p. 293-300, 2009. HALES CN, BARKER DJ. The thrifty phenotype hypothesis. Br Med Bull. V. 60, p. 5-20, 2011. HALES, C. N. AND D. J. BARKER. The thrifty phenotype hypothesis. Br. Med. Bull. V.60, p. 5-20, 2001. HANSON MA, GLUCKMAN PD.Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. V. 94, p. 1027–1076, 2014. HARADA K, KOMURO I, SHIOJIMA I, HAYASHI D, KUDOH S, MIZUNO T, KIJIMA K, MATSUBARA H, SUGAYA T, MURAKAMI K, YAZAKI Y.Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation. V.97, p.1952-9, 1998. HASENFUUS G, MEYER M, SCHILLINGER W, PREUS M, PIESKE B, JUST H. CALCIUM HANDLING PROTEINS IN THE FAILING HUMAN HEART. BASIC RES CARDIOL. V.92, P.87-93, 1997. HEINEKE J, MOLKENTIN JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. V.7, p. 589±600, 2006. 70 HENRY WL, CLARK CE, EPSTEIN SE. Asymmetric septal hypertrophy. Echocardiography identification of the pathognomormic anatomic abnormality ofIHSS. Circulation. V. 47, p. 225-33, 1973. HESLEHURST N, SIMPSON H, ELLS LJ, et al. The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta- analysis. Obes Rev. V.9, p.635–683, 2008. HINGTGEN SD, TIAN X, YANG J, DUNLAY SM, PEEK AS, WU Y, SHARMA RV, ENGELHARDT JF, DAVISSON RL. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics. V. 26, p. 180-91, 2006. HOCKMAN JS, BULKLEY BH. Expansion of acute myocardial infarction: anexperimental study. Circulation. V.65, P. 1446-50, 1982. HOFFMAN ML, REED SA, PILLAI SM, JONES AK, MCFADDEN KK, ZINN SA, GOVONI KE. The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J Anim Sci. V.95, p. 2222-2232, 2017. HORIE T, ONO K, NISHI H, IWANAGA Y, NAGAO K, KINOSHITA M, KUWABARA Y, TAKANABE R, HASEGAWA K, KITA T, KIMURA T. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. BiochemBiophys Res Commun. V. 389, p. 315–320, 2009. HOTTA K, FUNAHASHI T, BODKIN NL, ORTMEYER HK, ARITA Y, HANSEN BC, MATSUZAWA Y.Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. V.50, p.1126-33, 2001. HUNTER JJ, CHEIN KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. V.341, p. 1276- 1283, 1999. IDE T, TSUTSUI H, HAYASHIDANI S, KANG D, SUEMATSU N, NAKAMURA K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation research. V. 88, p. 529–535, 2001. 71 ISO T, ARAI M, WADA A, KOGURE K, SUZUKI T, AND NAGAI R. Humoral factor(s) produced by pressure overload enhance cardiac hypertrophy and natriuretic peptide expression. Am J Physiol Heart CircPhysiol V. 273, p. H113–H118, 1997. ITOH H, MUKOYAMA M, PRATT RE, GIBBONS GH, DZAU VJ. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest. V. 91, p. 2268-74, 1993. IZUMO S, NADAL-GINARD B, MAHDAVI V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA. V.85, p. 339-43, 1988. JONES BH, STANDRIDGE MK & MOUSTAID N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology. V.138, p. 1512–1519, 1997. JUGE-AUBRY CE, HENRICHOT E, MEIER CA.Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. V.19, p.547-66, 2005. JUNG UJ, CHOI MS. Obesity and its metabolic complications: the role of adipokines and relationship between obesity inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. V. 15, p. 6184- 6223, 2014. KADOWAKI T, YAMAUCHI T.Adiponectin and adiponectinreceptors. Endocr Rev. V.26, p. 439 –51, 2005. KARAMANLIDIS G, BAUTISTA-HERNANDEZ V, FYNN-THOMPSON F, DEL NIDO P, TIAN R. Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail. V. 4, p. 707–713, 2011. KAVAZIS, AN. Pathological vs. physiological cardiac hypertrophy. J Physiol V. 593, p 3767, 2015. KEHAT I, MOLKENTIN JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. V. 122, p. 2727- 2735, 2010. KHAIRALLAH PA, KANABUS J. Angiotensin and myocardial protein synthesis. Perspect Cardiovasc Res. V.8, p. 337-347, 1983. KIM SY, DIETZ PM, ENGLAND L. Trends in pre-pregnancy obesity in nine states, 1993– 2003. Obesity. V. 15, p. 986-993, 2007. 72 KLEIN I, OJAMAA K. Mechanisms of disease: thyroid hormone and the cardiovascular system. N Engl J Med, V. 344, n. 7, p. 501-509, 2001. KOJIMA M, SHIOJIMA I, YAMAZAKI T, KOMURO I, ZOU Y, WANG Y, MIZUNO T, UEKI K, TOBE K, KADOWAKI T, NAGAI R, AND YAZAKI Y. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation. V. 89, p. 2204–2211, 1994. KORECKY B, ZAK R, SCHWARTZ K, et al. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of heterotopically isotransplanted rat heart. Circ Res. V.60, p.824-30, 1987. KOWEY PR, EISENBERG R, ENGEL TR.Sustained arrhythmias in hypertrophic obstructive cardiomyopathy. N Eng J Med. V. 310, p. 1566-69, 1984. KRISHNAVENI GV, VEENA SR, HILL JC, KEHOE S, KARAT SC, FALL CH. Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care V.33, p.402–404, 2010. KUBOTA N, TERAUCHI Y, YAMAUCHI T, et al. Disruption ofadiponectin causes insulin resistance and neointimal formation. J Biol Chem. V.277, p. 25863– 6, 2002. KUDEJ RK, IWASE M, UECHI M., VATNER DE, OKA N, ISHIKAWA Y, SHANNON RP, BISHOP SP, VATNER SF. Effects of chronic beta-adrenergic receptor stimulation in mice. J Mol Cell Cardiol. V. 10, p. 2735-46,1997.7 KUMAR R, SINGH VP, BAKER KM. The intracellular renin-angiotensin system in the heart. Curr Hypertens Rep. V.11, p. 104±110, 2009. LANDSBERG L, ARONNE LJ, BEILIN LJ, BURKE V, IGEL LI, LLOYD-JONES D, ET AL. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment–a position paper of the obesity society and The American Society of Hypertension. Obesity (Silver Spring) V.21, p. 8–24, 2013. LEANDRO CG, DA SILVA RIBEIRO W, DOS SANTOS JA, BENTO-SANTOS A, LIMA- COELHO CH, FALCÃO-TEBAS F, et al. Moderate physical training attenuates muscle- 73 specific effects on fibre type composition in adult rats submitted to a perinatal maternal low- protein diet. Eur. J. Nutr. V. 51, p. 807–815, 2012. LEDDY MA, POWER ML, SCHULKIN J. The Impact of Maternal Obesity on Maternal and Fetal Health. Reviews in Obstetrics and Gynecology. V.1, p.170-178, 2008. LEE H, JANG HC, PARK HK, CHO NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract, V.78, p.238–245, 2007. LEOPOLDO AS, SUGIZAKI MM, LIMA-LEOPOLDO AP, DO NASCIMENTO AF, LUVIZOTTO RDE A, CAMPOS DHS, OKOSHI K, DAL PAI-SILVA M, PADOVANI CR, CICOGNA AC. Cardiac remodeling in a rat model of diet-induced obesity. Can J Cardiol, V.26, p.423–429, 2010. LEVY D, KENCHAIAH S, LARSON MG, BENJAMIN EJ, KUPKA MJ, HO KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. V.347, p. 1397±402, 2002. LI M, SLOBODA DM, VICKERS MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res. V.2011, p. 9, 2011. LIANG C, OEST ME, PRATER MR. Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol. V.86, p. 377–384, 2009. LINDENMAYER GE, SORDAHL LA, HARIGAYA S, ALLEN JC, BESCH HR JR, SCHWARTZ A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. The American journal of cardiology. V. 27, p. 277–283, 1971. LINDPAINTNER K, GANTEN D. The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence. Circ Res. V.68, p. 905-921, 1991. LINZ W, SCHOELKENS BA, GANTEN D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens. V.11, p. 1325-1350, 1989. 74 LO J, PATEL VB, WANG Z, LEVASSEUR J, KAUFMAN S, PENNINGER JM, et al. Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously hypertensive rats. Exp Physiol. V.98, p. 109±122, 2013. LOUEY S, THORNBURG KL.The prenatal environment and later cardiovascular disease. Early Hum Dev. V.81, p.745-51, 2005. LUCAS A. Programming by early nutrition: an experimental approach. J. Nutr. V.128, p. 401S–406S, 1998. LUCAS A. Role of nutritional programming in determining adult morbidity. Arch Dis Child, v. 71, p. 288-290, 1994. LYNCH CM, SEXTON DJ, HESSION M, MORRISON JJ. Obesity and mode of delivery in primigravid and multigravid women. Am J Perinatol. V. 25, p. 163-167, 2008 MAEDA N, SHIMOMURA I, KISHIDA K, et al. Diet-inducedinsulin resistance in mice lacking adiponectin/ACRP30. Nat Med. V.8, p. 731–7, 2002. MANABE I, SHINDO T, NAGAI R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res. V.91, p. 1103±13, 2002. MARON BJ, GOTTDIENER JS, EPSTEIN SE. Patterns and significance of distribution of left ventricular hypertrophy in hypertrophic cardiomyopathy. A wide angle, two dimensional echocardiographic study of 125 patients. Am J Cardio. V. 48, p. 418-28, 1981. MARTÍNEZ-MARTÍNEZ E, JURADO-LÓPEZ R, VALERO-MUÑOZ M, BARTOLOMÉ MV, BALLESTEROS S, LUACES M, BRIONES AM, LÓPEZ-ANDRÉS N, MIANA M, CACHOFEIRO V. Leptin induces cardiac fibrosis through galectin-3, mTOR and oxidative stress: potential role in obesity. Journal of Hypertension. V. 5, p. 1104–1114, 2014. MARTIN-GRONERT MS, OZANNE SE. Mechanisms linking suboptimal early nutrition and increased risk of type 2 diabetes and obesity. J. Nutr. V.140, p.662–666, 2010. MASSIÉRA F, BLOCH-FAURE M, CEILER D, MURAKAMI K, FUKAMIZU A, GASC JM, QUIGNARD-BOULANGE A, NEGREL R, AILHAUD G, SEYDOUX J,et al. Adipose angiotensinogen is involved in adipose tissue growth and blood pressure regulation. FASEB Journal V.15, p. 2727–2729, 2001.. 75 MASSON GS, COSTA TSR, YSHII L, FERNANDES DC, SOARES PPS, LAURINDO FR, et al. Time-Dependent Effects of Training on Cardiovascular Control in Spontaneously Hypertensive Rats: Role for Brain Oxidative Stress and Inflammation and Baroreflex Sensitivity. PLoS One. V.9, p. e94927, 2014. MATSUBARA BB, ZORNOFF LAM. Matriz colágena intersticial e sua relação com a expansão miocárdica no infarto agudo. Arq Bras Cardiol. V.64, p. 559-63, 1995. MATSUZAWA Y.White adipose tissue and cardiovascular disease. Best Pract Res Clin Endocrinol Metab. V.19, p.637– 47, 2005. MAZZIO EA, SOLIMAN KF. Epigenetics and nutritional environmental signals. Integr. Comp. Biol. V.54, p.21–30, 2014. MCDERMOTT PJ, CARL LL, CONNER KJ, ALLO SN. Transcriptional regulation of ribosomal RNA synthesis during growth of cardiac myocytes in culture. The Journal of biological chemistry. V. 266, p. 4409–4416, 1991. MCKENNA WJ, KRIKLER DM, GOODWIN JF. Arrhythmias in dilated and hypertrophic cardiomyopathy. Cardiac Arrhythmias. I. Med Clin N Am. V. 68, p. 983-1000, 1984. MCMILLEN IC, ROBINSON JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. V.85, p.571-633, 2005. MEAGHAN A. LEDDY, MICHAEL L. POWER, JAY SCHULKIN.THE IMPACT OF MATERNAL OBESITYON MATERNAL AND FETAL HEALTH.Rev Obstet Gynecol. V.1, p.170-178, 2008. MEANS CK, BROWN JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc Res. V.82, p. 193±200, 2009. Metab Disord, v. 26, s.04, p. 2-4, 2002. MILLS JL, TROENDLE J, CONLEY MR, CARTER T, DRUSCHEL CM.Maternal obesity and congenital heart defects: a population-based study. Am J Clin Nutr 91:1543–1549, 2010. MINGRONE G, MANCO M, MORA ME, GUIDONEC, IACONELLIA, GNIULI D, LECCESI L, CHIELLINI C, GHIRLANDA G. Influence of maternal obesity on insulin sensitivity and secretion in offspring. Diabetes Care, V. 31, p. 1872–1876, 2008. 76 miocárdio: conceitos, fisiopatologia e abordagem terapêutica. Arq Bras Cardiol. V.68, p. 453-60, 1997. MITTENDORFER B. Origins of metabolic complications in obesity: adiposity tissue and free fatty acid trafficking. Curr Oin Clin Nuttr Metab Care. V. 14, p. 535- 541, 2011. MIZUNO K, NAKAMARU M, HIASHIMORI K, INAGAMI T. Local generation and release of angiotensin II in peripheral vascular tissue. Hypertension.V.11, p. 223-229, 1988. MOCKEL M AND STORK T. Diastolic function in various forms of left ventricular hypertrophy: contribution of active Doppler stress echo. Int J Sports Med. V. 17, p. S184– S190, 1996. MOLKENTIN JD, ROBBINS J.With great power comes great responsibility: using mouse genetics to study cardiac hypertrophy and failure. J Mol Cell Cardiol V. 46, p. 130–136, 2009. MOREIRA AS, TEIXEIRA TEIXEIRA M, DA SILVEIRA OSSO F, et al. Left ventricular hypertrophy induced by overnutrition early in life. Nutr Metab Cardiovasc Dis. V.19, p. 805– 810, 2009. MORISCO C, SADOSHIMA J, TRIMARCO B, ARORA R, VATNER DE, VATNER SF.Is treating cardiac hypertrophy salutary or detrimental: the two faces of Janus. Am J Physiol Heart Circ Physiol. V. 284, p. H1043±7, 2003. MORISHITA R, HIGAKI J, MIYAZAKI M, OGIHARA T.Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy. Hypertension. V. 19, p. II62-7, 1992. MUNZBERG H, MYERS MG JR.Molecular and anatomicaldeterminants of central leptin resistance. Nat Neurosci. V.8, p. 566 –70, 2005. NAGANO M, HIGAKI J, NAKAMURA F, HIGASHIMORI K, NAGANO N, MIKAMI H, et al. Role of cardiac angiotensin II in isoproterenol-induced left ventricular hypertrophy. Hypertension. V. 19, p. 708–712, 1992. NAKAJIMA Y, NAKAYAMA O, MAKISHIMA M, MATSUDA M, SHIMOMURA I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, V. 114, p.1752–1761, 2004. 77 NEELS J, THINNES T, LOSKUTOFF D. Angiogenesis in an in vivo model of adipose tissue development. FASEB J. V.18, p.983-5, 2004. NELSON SM, MATTHEWS P, POSTON L. Maternal metabolism and obesity: modifiable determinants of pregnancy outcome. Hum Reprod Update. V.16, p.255–275, 2010. NEUBAUER S. The failing heart--an engine out of fuel. The New England journal of medicine. V.356, p.1140–1151, 2007. NISHIZUKA Y. Turnover of inositol phospholipids and signal transduction. Science. V. 225, p. 1365–1370, 1984. NISHIZUKA Y. Turnover of inositol phospholipids and signal transduction. Science. V.225, p.1365–1370, 1984. NISTALA R, HAYDEN MR, DEMARCO VG, HENRIKSEN EJ, LACKLAND DT, SOWERS JR. Prenatal Programming and Epigenetics in the Genesis of the Cardiorenal Syndrome. Cardiorenal Med. V. 1, p. 243–254, 2011. O’BRIEN TE, RAY JG, CHAN W-S. Maternal body mass index and the risk of preeclampsia: a systematic overview. Epidemiology. V. 14, p. 368 –74, 2003. O’REILLY JR, REYNOLDS RM. The risk of maternal obesity to the long-termhealth of the offspring. Clin Endocrinol (Oxf), v. 78, p. 9–16, 2013. OGDEN C, CARROLL M. Prevalence of Obesity Among Children and Adolescents: United States, Trends 1963–1965 Through 2007–2008. CDC-NCHS Health E-Stat. 2010. Available:http://www.cdc.gov/nchs/data/hestat/obesity_child_07_08/obesity_child_07_08.ht m. OGDEN, C. L.; CARROLL, M. D.; KIT, B. K.; FLEGAL, K. M. Prevalence of Childhood and Adult Obesity in the United States, 2011-2012. JAMA, V. 311, n. 8, p. 806- 814, 2014. OLIVEIRA E, MOURA EG, SANTOS-SILVA AP, FAGUNDES AT, RIOS AS, ABREU- VILLACA Y, et al. Short- and long-term effects of maternal nicotine exposure during lactation on body adiposity, lipid profile, and thyroid function of rat offspring. J Endocrinol. V.202, p.397–405, 2009. 78 OLIVEIRA E, MOURA EG, SANTOS-SILVA AP, PINHEIRO CR, LIMA N, NOGUEIRA- NETO J, et al. Neonatal nicotine exposure causes insulin and leptin resistance and inhibits hypothalamic leptin signaling in adult rat offspring. J Endocrinol. V.206, p.55–63, 2010. OLIVEIRA JUNIOR SA, DAL PAI-SILVA M, MARTINEZ PF, CAMPOS DH, LIMA- LEOPOLDO AP, LEOPOLDO AS, NASCIMENTO AF, OKOSHI MP, OKOSHI K, PADOVANI CR, CICOGNA AC.Differential nutritional, endocrine, and cardiovascular effects in obesity-prone and obesity-resistant rats fed standard and hypercaloric diets. Med Sci Monit. V.16, p.BR208–BR217, 2010. OLIVEIRA SA JR, OKOSHI K, LIMA-LEOPOLDO AP, LEOPOLDO AS, CAMPOS DH, MARTINEZ PF, OKOSHI MP, PADOVANI CR, PAI-SILVA MD, CICOGNA AC.Nutritional and cardiovascular profiles of normotensive and hypertensive rats kept on a high fat diet. Arq Bras Cardiol. V.93, p.526–533, 2009. OTTEN JV, FITCH CD, WHEATLEY JB, FISCHER VW. Thyrotoxic myopathy in mice: accentuation by a creatine transport inhibitor. Metabolism, V. 35, n. 6, p. 481-4, Jun 1986. OWENS GK. Control of hypertrophic versus hyperplastic growth of vascular smooth muscle cells. Am J Physiol. V.257, p. H1755 -H1765, 1989. OZANNE SE, HALES CN. Lifespan: catch-up growth and obesity in male mice. Nature V.427, p.411–412, 2004. PAQUET J-L, BAUDOUIN-LEGROS M, BRUNELLE G, MEYER P. Angiotensin lI- induced proliferation of aortic myocytes in spontaneously hypertensive rats. J Hypertens. V.8, p. 565-572, 1990. PAULINO-SILVA K. M., COSTA-SILVA J. H. Hypertension in rat offspring subjected to perinatal protein malnutrition is not related to the baroreflex dysfunction. Clin. Exp. Pharmacol. Physiol. V.43, p.1046–1053, 2016. PAUSOVA, Z. From big fat cells to high blood pressure: a pathway to obesityassociated hypertension. Curr Opin Nephrol Hypertens. V. 15, p. 173–178, 2006. PEACH MJ. Renin-Angiotensin System: Biochemistry and Mechanisms of Action. Physiological Reviews. V. 57, No 2, 1977. 79 PERRINO C, NAGA PRASAD SV, MAO L, NOMA T, YAN Z, KIM HS, SMITHIES O, ROCKMAN HA. Intermittent pressure overload triggers hypertrophy- independent cardiac dysfunction and vascular rarefaction. J Clin Invest. V. 116, p. 1547- 1560, 2006. PFEFFER JM, PFEFFER MA, BRAUNWALD E. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ Res. V.57, p. 84-95, 1985. PIERUZZI F, ABASSI ZA, AND KEISER HR. Expression of reninangiotensin system components in the heart, kidneys, and lungs of rats with experimental heart failure. Circulation. V. 92, p. 3105– 3112, 1995. PINHEIRO AR, CUNHA AR, AGUILA MB, MANDARIM-DE-LACERDA CA. Beneficial effects of physical exercise on hypertension and cardiovascular adverse remodeling of diet- induced obese rats. Nutr Metab Cardiol Dis. V.17, p.365–375, 2007. PITCHER D, WAINWRIGHT R, MAISEY M, CURRY P, SOWTON E. Assessment of chest pain in hypertrophic cardiomyopathy using exercise thallium-201 myocardial scintigraphy. Br Heart J. V. 44, p. 650-56, 1980. POORNIMA IG, PARIKH P, SHANNON RP. Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res V. 98, p. 596–605, 2006. PORRELLO ER, D'AMORE A, CURL CL, ALLEN AM, HARRAP SB, THOMAS WG, DELBRIDGE LM.Angiotensin II type 2 receptor antagonizes angiotensin II type 1 receptor-mediated cardiomyocyte autophagy. Hypertension. V.53, p.1032-40, 2009. POSTON L, HARTHOOTN L, VAN DER BEEK EM, DAMM P.Obesity in pregnancy: implications for the mother and lifelong health of the child. A consensus statement. Pediatric Research, Vol. 2011, No. 69, p. 175-180, 2011. POUDYAL H, PANCHAL SK, WARD LC, WAANDERS J, BROWN L.Chronic high- carbohydrate, high-fat feeding in rats induces reversible metabolic, cardiovascular, and liver changes. Am J Physiol Endocrinol Metab. V.302, p.1472–E1482, 2012. POWERS SK, SMUDER AJ, KAVAZIS AN & QUINDRY JC. Mechanisms of exercise- induced cardioprotection. Physiology (Bethesda). V. 29, p. 27–38, 2014. programmed by leptin treatment on the neonatal period. Horm Metab Res, v. 38, p. 827–831, 2006a. 80 PROUDLER AJ, et al. Hormone replacement therapy and serum angiotensin-converting- enzyme activity in postmenopausal women. Lancet. V. 346, p. 89–90, 1995. RAJALA MW, SCHERER PE.Minireview: The adipocyte--at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology. V.144, p.3765-73, 2003. RASKOFF WJ, GOLDMAN S, AND COHN K. The “athletic heart.” Prevalence and physiological significance of left ventricular enlargement in distance runners. JAMA. V. 236, p. 158–162, 1976. REDDY DS. Cellular and molecular biology of cardiac hypertrophy. Curr Sci. V. 72, p. 13– 30, 1997. REN J, PULAKAT L, WHALEY-CONNELL A, et al. Mitochondrial biogenesis in the metabolic syndrome and cardiovascular disease. J. Mol. Med. (Berl). V. 88, p. 993–1001, 2010. REYNOLDS RM, ALLAN KM, RAJA EA, et al. Maternal obesity during pregnancy and premature mortality from cardiovascular event in adult offspring: Follow-up of 1 323 275 person years. BMJ. V.347, p. f4539, 2013. RICHEY PA AND BROWN SP. Pathological versus physiological left ventricular hypertrophy: a review. J Sports Sci. V. 16, p. 129–141, 1998 ROBERTSON JIS, NICHOLLS MG, et al. The Renin-Angiotensin System. London, England: Gower Medical Publishing; V. 42, p. 102, 1993. ROBKER RL. Evidence that obesity alters the quality of oocytes and embryos. Pathophysiology. V. 15, p. 115–121, 2008. RODFORD JL, TORRENS C, SIOW RC, MANN GE, HANSON MA, CLOUGH GF.Endothelial dysfunction and reduced antioxidant protection in animal model ofdevelopmental origins of cardiovascular disease. J Physiol. V. 19, p. 4709- 4720, 2008. RODRIGUES AL, DE MOURA EG, PASSOS MC, DUTRA SC & LISBOA PC. Postnatal early overnutrition changes the leptin signalling pathway in the hypothalamic-pituitary- thyroid axis of young and adult rats. J Physiol V.587, p. 2647–2661, 2009. 81 ROHDE LE, DUCHARME A, ARROYO LH, AIKAWA M, HOUCK WC, LOPEZ-ANAYA A, et al. Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after myocardial infarction in mice. Circulation. V.99, p. 3063-70, 1999. ROSCA MG, HOPPEL CL. New aspects of impaired mitochondrial function in heart failure. Journal of bioenergetics and biomembranes. V.41, p. 107–112, 2009. ROSCA MG, HOPPEL CL. New aspects of impaired mitochondrial function in heart failure. Journal of bioenergetics and biomembranes. V.41, p.107–112, 2009. ROSCA MG, TANDLER B, HOPPEL CL. Mitochondria in cardiac hypertrophy and heart failure. Journal of Molecular and Cellular Cardiology. V.55, p.31–41, 2013. ROSS MG, DESAI M. Developmental programming of offspring obesity, adipogenesis, and appetite. ClinObstetGynecol. V. 56, p. 529-36, 2013. ROSSNER, S. Obesity: the disease of the twenty-first century. Int J Obes Relat RUBIN KA, MORRISON J, PADNICK MB, BINDER AJ, CHIARAMIDA S, MARGOULEFF D, et al. Idiopathic hypertrophic subaortic stenosis evaluation of anginal symptoms with thallium-201 myocardial imaging. Am J Cardiol. V. 44, p. 1040-45, 1979. RUBIO-RUÍZ, M. E.; DEL VALLE-MONDRAGÓN, L.; CASTREJÓN-TELLEZ, V.; SADOSHIMA J, XU Y, SLAYTER HS, et al. Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell. V.75, p. 977-84, 1993. SAINT-MARC P, KOZAK LP, AILHAUD G, DARIMONT C, NEGREL R. Angiotensin II as a Trophic Factor of White Adipose Tissue: Stimulation of Adipose Cell Formation. Endocrinology. V.142, p.487-92, 2001. SAKAI S, MIYAUCHI T, AND YAMAGUCHI I. Long-term endothelin receptor antagonist administration improves alterations in expression of various cardiac genes in failing myocardium of rats with heart failure. Circulation. V. 101, p. 2849–2853, 2000. SAMUELSSON AM, MATTHEWS PA, ARGENTON M, CHRISTIE MR, MCCONNELL JM, JANSEN EH, PIERSMA AH, OZANNE SE, TWINN DF, REMACLE C, ROWLERSON A, POSTON L, TAYLOR PD. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension, v. 51, p. 383–392, 2008. 82 SAMUELSSON AM, MATTHEWS PA, JANSEN E, TAYLOR PD, POSTON L. Sucrose feeding in mouse pregnancy leads to hypertension, and sex-linked obesity and insulin resistance in female offspring. Front Physiol., v. 4, p. 14, Fev-2013a. SAMUELSSON AM, MORRIS A, IGOSHEVA N, et al. Evidence for sympathetic origins of hypertension in juvenile offspring of obese rats. Hypertension. V.55, p. 76–82, 2010. SANDVIK AK, ELLINQSEN O. Pathological and physiological hypertrophies are SATOH N, OGAWA Y, KATSUURA G, HAYASE M, TSUJI T, IMAGAWA K, YOSHIMASA Y, NISHI S, HOSODA K, NAKAO K. The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci Lett. V. 224, p. 149–152, 1997. SATOH N, OGAWA Y, KATSUURA G, NUMATA Y, TSUJI T, HAYASE M, EBIHARA K, MASUZAKI H, HOSODA K, YOSHIMASA Y, NAKAO K. Sympathetic activation of leptin via the ventromedial hypothalamus: leptin-induced increase in catecholamine secretion. Diabetes. V. 48, p. 1787–93, 1999. SAVAGE DD, SEIDES SF, MARON BJ, MYERS DJ, EPSTEIN SE. Prevalence of arrhythmias during 24 hour electrocardiographic monitoring and exercise testing in patients with obstructive and nonobstructive hypertrophic cardiomyopathy. Circulation. V. 59, p. 866- 75, 1979 SAWYER DB, SIWIK DA, XIAO J, PIMENTEL DR, SINGH K, COLUCCI WS. Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol. V.34, p. 379-88, 2002. SAYED D, HONG C, CHEN IY, LYPOWY J, ABDELLATIF M. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. V.100, p. 416-424, 2007. SCHEUBEL RJ, TOSTLEBE M, SIMM A, ROHRBACH S, PRONDZINSKY R, GELLERICH FN, et al. Dysfunction of mitochondrial respiratory chain complex I in human failing myocardium is not due to disturbed mitochondrial gene expression. Journal of the American College of Cardiology. V.40, p.2174–2181, 2002. SCHUNKERT H, DANSER AH, HENSE HW, DERKX FH, KÜRZINGER S, RIEGGER GA.Effects of Estrogen Replacement Therapy on the Renin-Angiotensin System in Postmenopausal Women. Circulation Volume. V.95, p.39-45, 1997. 83 SCOTT-BURDEN T , RESINK TJ , HAHN AW , VANHOUTTE PM. Induction of endothelin secretion by angiotensin II: effects on growth and synthetic activity of vascular smooth muscle cells. Journal of Cardiovascular Pharmacology. V. 7, p. S96-100, 1991. SENBONMATSU T, SAITO T, LANDON EJ, et al. A novel angiotensin II type 2 receptor signaling pathway: possible role in cardiac hypertrophy. The EMBO Journal. V.22, p.6471- 6482, 2003. SENGUPTA P.The Laboratory Rat: Relating Its Age With Human's. Int J Prev Med. V.4, p.624-30, 2013. SHAPIRO LM AND SMITH RG. Effect of training on left ventricular structure and function: an echocardiographic study. Br Heart J. V. 50, p. 534–539, 1983 SHARMA N, OKERE IC, BARROWS BR, LEI B, DUDA MK, YUAN CL, PREVIS SF, SHAROV VG, AZIMZADEH AM, ERNSBERGER P, HOIT BD, SABBAH H, STANLEYWC. High- sugar diets increase cardiac dysfunction and mortality in Hypertension compared to low-carbohydrate or high-starch diets. J Hypert. V.26, p.1402–1410, 2008. SHARMA N, OKERE IC, DUDA MK, CHESS DJ, O’SHEA KM, STANLEY WC: Potential impact of carbohydrate and fat intake on pathological left ventricular hypertrophy. Cardiovasc Res. V.73, p.257–268, 2007. SHAROV VG, GOUSSEV A, LESCH M, GOLDSTEIN S, SABBAH HN. Abnormal mitochondrial function in myocardium of dogs with chronic heart failure. Journal of molecular and cellular cardiology. V.30, p.1757–1762, 1998. SHAROV VG, TODOR AV, SILVERMAN N, GOLDSTEIN S, SABBAH HN. Abnormal mitochondrial respiration in failed human myocardium. Journal of molecular and cellular cardiology. V.32, p.2361–2367, 2000. SHIMIZU I, MINAMINO T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol, V. 97, p. 245- 262, 2016. SHIMIZU I, MINAMINO T. Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol, V. 97, p. 245- 262, 2016. SILVA-ANTONIALLI MM, TOSTES RC, FERNANDES L, FIOR-CHADI DR, AKAMINE EH, CARVALHO MH, FORTES ZB, NIGRO D. A lower ratio of AT1/AT2 receptors of 84 angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc Res. V.62, p.587-93, 2004. SIMMERMAN HK, JONES LR. Phospholamban: protein structure, mechanism of action, and role in cardiac function. Physiol Rev. V. 78, p. 921–947, 1998.SIMMONS R. Developmental origins of adult metabolic disease: concepts and controversies. Trends Endocrinol Metab, V. 16, p. 390-394, 2005. SIMON JA, HSIA J, CAULEY JA, RICHARDS C, HARRIS F, FONG J, BARRETT- CONNOR E, HULLEY SB. Postmenopausal hormone therapy and risk of stroke: The Heart and Estrogen-progestin Replacement Study (HERS). Circulation. V.103, p. 638-42, 2001. SJAASTAD I, SEJERSTED OM, ILEBEKK A & BJORNERHEIM R. Echocardiographic criteria for detection of postinfarction congestive heart failure in rats. J Appl Physiol. V. 89, p. 1445–1454, 2000. SKURK T, HAUNER H.Obesity and impaired fibrinolysis: roleof adipose production of plasminogen activator inhibitor-1. Int J ObesRelatMetabDisord. V.28:, p. 1357– 64, 2004. SOMM E, SCHWITZGEBEL VM, VAUTHAY DM, AUBERT ML, HUPPI PS. Prenatal nicotine exposure and the programming of metabolic and cardiovascular disorders. Mol Cell Endocrinol. V.304, p.69–77, 2009. SOMM E, SCHWITZGEBEL VM, VAUTHAY DM, CAMM EJ, CHEN CY, GIACOBINO JP, et al. Prenatal nicotine exposure alters early pancreatic islet and adipose tissue development with consequences on the control of body weight and glucose metabolism later in life. Endocrinology. V.149, p.6289–6299, 2008. SPINALE FG. Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res. V.90, p. 520-30, 2002. STEVENSON JC. Cardiovascular effects of estrogens. Journal of Steroid Biochemistry & Molecular Biology. V. 74, p. 387–393, 2000. SWYNGHEDAUW B. Molecular mechanisms of myocardial remodeling. Physiol Rev. V.79, p. 215-62, 1999. TAKUWA Y, OKAMOTO Y, YOSHIOKA K, TAKUWA N. Sphingosine-1-phosphate signaling in physiology and diseases. Biofactors. V.38, p. 329±37, 2012. 85 TAN HC, ROBERTS J, CATOV J, KRISHNAMURTHY R, SHYPAILO R, BACHA F. Mother's pre-pregnancy BMI is an important determinant of adverse cardiometabolic risk in childhood. Pediatr. Diabetes V.16, p.419–426, 2015. TATSUGUCHI M, SEOK HY, CALLIS TE, THOMSON JM, CHEN JF, NEWMAN M, ROJAS M, HAMMOND SM, WANG DZ.Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. V.42, p. 1137-1141, 2007. TAYLOR PD, MCCONNELL J, KHAN IY, HOLEMANS K, LAWRENCE KM, ASARE- ANANE H, et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am. J. Physiol. Regul. Integr. Comp. Physiol. V.288, p.23, 2005. TEIXEIRA C, PASSOS M, RAMOS C, DUTRA S & MOURA E. Leptin serum concentration, food intake and body weight in rats whose mothers were exposed to malnutrition during lactation. J Nutr Biochem V.13, p. 493, 2002. THUM T, GALUPPO P, WOLF C, FIEDLER J, KNEITZ S, VAN LAAKE LW, DOEVENDANS PA, MUMMERY CL, BORLAK J, HAVERICH A, GROSS C, ENGELHARDT S, ERTL G, BAUERSACHS J. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation. V.116, p. 258-267, 2007. TOLMACHOV O, MA YL, THEMIS M, PATEL P, SPOHR H, MACLEOD KT, et al. Overexpression of connexin 43 using a retroviral vector improves electrical coupling of skeletal myoblasts with cardiac myocytes in vitro. BMC Cardiovasc. BMC Cardiovasc Disord. V. 6, p. 25, 2006. TOSTE FP, ALVES SB, DUTRA SC, BONOMO IT, LISBOA PC, MOURA EG, PASSOS MC. Temporal evaluation of the thyroid function of rats TOSTE FP, DE MOURA EG, LISBOA PC, FAGUNDES AT, DE OLIVEIRA E, PASSOS MC. Neonatal leptin treatment programmes leptin hypothalamic resistance and intermediary metabolic parameters in adult rats. Br J Nutr, v. 95, p. 830-7, 2006b. VAN BIESEN T, HAWES BE, LUTTRELL DK, KRUEGER KM, TOUHARA K, PORFIRI E, et al. Receptor-tyrosinekinase- and G beta gamma-mediated MAP kinase activation by a common signalling pathway. Nature. V. 376, p. 781–784, 1995. 86 VAN DIJK-OTTENS M, VOS IH, CORNELISSEN PW, DE BRUIN A & EVERTS ME. Thyroid hormone-induced cardiac mechano growth factor expression depends on beating activity. Endocrinology V.151, p.830–838, 2010. VAN ROOIJ E, SUTHERLAND LB, LIU N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U. S. A. V.103, p. 18255-18260, 2006. VICTORA CG, ADAIR L, FALL C, HALLAL PC, MARTORELL R., RICHTER L, et al. Maternal and child undernutrition: consequences for adult health and human capital. Lancet. V.371, p. 340–357, 2008. WAKATSUKI T, SCHLESSINGER J, ELSON EL. The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci. V.29, p. 609-17, 2004. WALSH BW, et al. Effects of postmenopausal estrogen replacement on the concentrations and metabolism of plasma lipoproteins. N Engl J Med. V. 325, p. 1196–1204, 1991. WANG B; LIAO Y; ZHOU Z; LI L; WEI F; WANG M; WEI Y Arterial structural changes in rats immunized by AT1-receptor peptide. Heart Vessels. V.20, p. 153-8, 2005. WANG J, GUO T. Metabolic remodeling in chronic heart failure. Journal of Zhejiang University Science B. V.14, p.688-695, 2013. WANG J, MA H, TONG C, ZHANG H, LAWLIS GB, LI Y, et al. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J. V.24, p.2066–2076, 2010. WEBER KT, SUN Y, GUNTAKA RV. Rebuilding and remodeling following myocardial infarction: the good, the bad, and the ugly of tissue repair. Dialogues in Cardiovascular Medicine. V.4, p. 3-19, 1999. WEBER KT. Targeting pathological remodeling: concepts of cardioprotection and reparation. Circulation. V.102, p. 1342-5, 2000. WEISBERG SP, MCCANN D, DESAI M, ROSENBAUM M, LEIBELRL, FERRANTE AW JR.Obesity is associated with macrophageaccumulation in adipose tissue. J Clin Invest. V.112, p. 1796–808, 2003. 87 WELLS JC. Obesity as malnutrition: the role of capitalism in the obesity global epidemic. Am. J. Hum. Biol. V.24, p. 261–276, 2012. WHITELAW NC, WHITELAW E. How lifetimes shape epigenotype within and across generations. Hum Mol Genet. V. 15, p. R131–R137, 2006. WHO, 2017: http://www.who.int/topics/obesity/en/. WILLETT WC.Diet and health: what should we eat? Science. V.22, p.532-7, 1994. WOLF G, NELSON EG. Angiotensin II induces cellular hypertrophy in cultured murine proximal tubular cells. Am J Physiol. V.259, p. F768 -F777, 1990. WOLF G, ZIYADEH FN, ZAHNER G, STAHL RA. Angiotensin II is mitogenic for cultured rat glomerular endothelial cells. Hypertension. V. 27, p. 897-905, 1996. WOO AYH, XIAO RP.β-Adrenergic receptor subtype signaling in heart: From bench to bedside. Acta Pharmacologica Sinica. V.33, p. 335–341, 2012. XIAO J, LUO X, LIN H, ZHANG Y, LU Y, WANG N, ZHANG Y, YANG B, WANG Z. MicroRNA miR-133 represses HERG K+ channel expression contributing to QT prolongation in diabetic hearts. J Biol Chem. V. 282, p. 12363–12367, 2007. XU C, LU Y, PAN Z, CHU W, LUO X, LIN H, XIAO J, SHAN H, WANG Z, YANG B. The muscle-specific microRNAs miR-1 and miR-133 produce opposing effects on apoptosis by targeting HSP60, HSP70 and caspase-9 in cardiomyocytes. J Cell Sci. V. 120, p. 3045–3052, 2007. XU H, BARNES GT, YANG Q, et al. Chronic inflammation infat plays a crucial role in the development of obesity-relatedinsulin resistance. J Clin Invest. V.112, p.1821–30, 2003. YAMAGUSHI H, ISHIMURA T; NISHIYAMA S, NAGASAKI F, NAKANISHI S, TAKOTSU F, et al. Hypertrophic nonobstructive cardiomyopathy with giant negative T- waves (apical hypertrophy): Ventriculographic and echocardiographic features in 30 patients. Am J Cardio. V. 44, p. 401-12, 1979. YAMAZAKI T, KOMURO I, KUDOH S, ZOU Y, SHIOJIMA I, MIZUNO T, TAKANO H, HIROI Y, UEKI K, TOBE K, KADOWAKI T, NAGAI R, AND YAZAKI Y. Angiotensin II partly mediates mechanical stress-induced cardiac hypertrophy. Circ Res. V. 77, p. 258– 265, 1995. 88 YUEN CY, WONG SL, LAU CW, TSANG SY, XU A, ZHU Z, et al. From skeleton to cytoskeleton: osteocalcin transforms vascular fibroblasts to myofibroblasts via angiotensin II and Toll-like receptor 4. Circ Res. V.111, p. e55±66, 2012. ZEISBERG EM, KALLURI R. Origins of cardiac fibroblasts. Circ Res. V.107, p. 1304±12, 2010. ZHAO Y, RANSOM JF, LI A, VEDANTHAM V, VON DREHLE M, MUTH AN, TSUCHIHASHI T, MCMANUS MT, SCHWARTZ RJ, SRIVASTAVA D. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell. V. 129, p. 303–317, 2007. ZIELINSKY P, PICCOLI AL. Myocardial hypertrophy and dysfunction in maternal diabetes. Early Hum Dev. V.88, p.273–278, 2012. ZORAD S, FICKOVA M, ZELEZNA B, MACHO L, KRAL JG.The role of angiotensin II and its receptors in regulation of adipose tissue metabolism and cellularity. Gen. Physiol. Biophys. V.14, p.383—391, 1995. ZORNOFF LAM, SPADARO J. REMODELAÇÃO VENTRICULAR APÓS INFARTO AGUDO DO MIOCÁRDIO: CONCEITOS, FISIOPATOLOGIA E ABORDAGEM TERAPÊUTICA. ARQ BRAS CARDIOL. V.68, P. 453-60, 1997.https://tede.ufrrj.br/retrieve/68348/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5427Submitted by Leticia Schettini (leticia@ufrrj.br) on 2022-02-23T19:45:16Z No. of bitstreams: 1 2018 - Natália D’Assumpção Lima Rangel.pdf: 2077092 bytes, checksum: eff11506900dd9df65942e523ee62343 (MD5)Made available in DSpace on 2022-02-23T19:45:16Z (GMT). No. of bitstreams: 1 2018 - Natália D’Assumpção Lima Rangel.pdf: 2077092 bytes, checksum: eff11506900dd9df65942e523ee62343 (MD5) Previous issue date: 2018-03-08info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Natália D’Assumpção Lima Rangel.pdf.jpgGenerated Thumbnailimage/jpeg2224https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/1/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf.jpg56256b9218ed0f0c027853846d88053aMD51TEXT2018 - Natália D’Assumpção Lima Rangel.pdf.txtExtracted Texttext/plain193968https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/2/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf.txtc00d5bcb0dbee027e4887e2bca8e7da9MD52ORIGINAL2018 - Natália D’Assumpção Lima Rangel.pdf2018 - Natália D’Assumpção Lima Rangelapplication/pdf2077092https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/3/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdfeff11506900dd9df65942e523ee62343MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/113992023-12-21 22:52:18.02oai:rima.ufrrj.br:20.500.14407/11399Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:52:18Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
dc.title.alternative.eng.fl_str_mv Maternal high fat diet consumption: change in the angiotensina II receptor expression (AT1) and left ventricular hypertrophy in the offspring at weaning
title Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
spellingShingle Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
Rangel, Natália D' Assumpção Lima
Dieta hiperlipídica
Programação metabólica
Hipertrofia cardíaca
High fat diet
Metabolic programming
Cardiac hypertrophy
Fisiologia
title_short Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
title_full Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
title_fullStr Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
title_full_unstemmed Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
title_sort Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame
author Rangel, Natália D' Assumpção Lima
author_facet Rangel, Natália D' Assumpção Lima
author_role author
dc.contributor.author.fl_str_mv Rangel, Natália D' Assumpção Lima
dc.contributor.advisor1.fl_str_mv Oliveira, Norma Aparecida Almeida Figueiredo de
dc.contributor.advisor1ID.fl_str_mv 072.340.197-74
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8601494649709728
dc.contributor.referee1.fl_str_mv Oliveira, Norma Aparecida Almeida Figueiredo de
dc.contributor.referee1ID.fl_str_mv 072.340.197-74
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8601494649709728
dc.contributor.referee2.fl_str_mv Silveira, Anderson Luiz Bezerra da
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/2389812933788850
dc.contributor.referee3.fl_str_mv Souza, Luciane Claudia Barcellos dos Santos
dc.contributor.authorID.fl_str_mv 060.010.817-19
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8928805141722520
contributor_str_mv Oliveira, Norma Aparecida Almeida Figueiredo de
Oliveira, Norma Aparecida Almeida Figueiredo de
Silveira, Anderson Luiz Bezerra da
Souza, Luciane Claudia Barcellos dos Santos
dc.subject.por.fl_str_mv Dieta hiperlipídica
Programação metabólica
Hipertrofia cardíaca
topic Dieta hiperlipídica
Programação metabólica
Hipertrofia cardíaca
High fat diet
Metabolic programming
Cardiac hypertrophy
Fisiologia
dc.subject.eng.fl_str_mv High fat diet
Metabolic programming
Cardiac hypertrophy
dc.subject.cnpq.fl_str_mv Fisiologia
description A obesidade tornou-se um problema de saúde pública no mundo. Mulheres grávidas com sobrepeso podem causar programação metabólica na linhagem, com o surgimento de diabetes tipo2, dislipidemias e doenças cardiovasculares na fase adulta da progênie. Nosso grupo de pesquisa demonstrou anteriormente que o consumo materno de dieta hiperlipídica promoveu aumento da massa corporal, adiposidade, hiperleptinemia na prole de ratas ao desmame, além de prejuízo na função sistólica aos 30 dias de idade. O sistema renina angiotensina (SRA) expresso no coração parece desencadear hipertrofia cardíaca (HC), através da super expressão de Angiotensina II (Ang II) e ativação do seu receptor, AT1. Este estudo teve como objetivo investigar se o consumo materno de dieta hiperlipídica promove HC, e correlacionar este fenótipo à alterações ao sistema SRA cardíaco em animais machos e fêmeas da prole ao desmame. Para isso, ratas Wistar receberam dieta controle (9% lipídeos, grupo C) ou hiperlipídica (29% lipídeos, grupo DH) durante 8 semanas antes do acasalamento, e durante a gestação e lactação. Ao desmame, 21 dias de vida, as proles foram pesadas e eutanasiadas. O coração e os tecidos adiposos branco (retroperitoneal, inguinal e perigonadal) foram pesados. Análises histológicas (cortes corados com HE e picrossírius) foram realizadas utilizando amostras dos ventrículos e análises bioquímicas e moleculares (RIA e qPCR) foram realizadas utilizando amostras do ventrículo esquerdo (VE) e a expressão do receptor AT1 foi avaliada através da técnica de Western Blotting. Fêmeas e machos da prole DH, apresentaram maior massa corporal, adiposidade, hipertrofia do VE, mas não apresentaram fibrose; maior expressão do RNAm de Nppn; e menor de β-MHC, SERCA2a e Ryr2. A expressão do RNAm de α-MHC estava reduzida somente nos machos da prole DH. Não houve diferença na dosagem de Ang II entre as proles. A expressão protéica de AT1 estava maior nas fêmeas da prole DH, mas não foi alterada nos machos. Estes resultados sugerem que o consumo materno de dieta hiperlipídica promove hipertrofia do VE em fêmeas e machos, no entanto verificamos alteração na expressão de AT1 somente nas fêmeas, o que sugere que o sistema RAS pode estar envolvido com a HC observada nas fêmeas mas não nos animais machos da prole.
publishDate 2018
dc.date.issued.fl_str_mv 2018-03-08
dc.date.accessioned.fl_str_mv 2023-12-22T01:52:18Z
dc.date.available.fl_str_mv 2023-12-22T01:52:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RANGEL, Natália D’Assumpção Lima. Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame. 2018. 88 f. Dissertação (Mestrado em Ciências Fisiológicas) -Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11399
identifier_str_mv RANGEL, Natália D’Assumpção Lima. Consumo materno de dieta hiperlipídica: alteração na expressão do receptor de angiotensina II (AT1) e hipertrofia no coração da prole ao desmame. 2018. 88 f. Dissertação (Mestrado em Ciências Fisiológicas) -Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2018.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11399
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ADAMS TD, YANOWITZ FG, FISHER AG, RIDGES JD, LOVELL K, AND PRYOR TA. Noninvasive evaluation of exercise training in college-age men. Circulation. V. 64, p. 958– 965, 1981. AGARWAL D, HAQUE M, SRIRAMULA S, MARIAPPAN N, PARIAUT R, FRANCIS J. Role of proinflammatory cytokines and redox homeostasis in exercise-induced delayed progression of hypertension in spontaneously hypertensive rats. Hypertension. V.54, p. 1393±1400, 2009. AHIMA RS, LAZAR MA.Adipokines and the peripheral and neural control of energy balance. Mol Endocrinol. V.22, p.1023-31, 2008. AHIMA RS. Adipose tissue as an endocrine organ. Obesity (Silver Spring). Aug;14 Suppl. V.5, p.242S-249S, 2006. AHIMA, R. S. Central actions of adipocyte hormones. Trends Endocrinol Metab, AHIMA, R. S. Central actions of adipocyte hormones. Trends Endocrinol Metab, v.16, p. 307-313, 2005. AKHTER SA, SKAER CA, KYPSON AP, MCDONALD PH, PEPPEL KC, GLOWER DD, Lefkowitz RJ and Koch WJ. Restoration of β-adrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. PNAS. V. 94, p. 12100-12105, 1997. ALLO SN, MCDERMOTT PJ, CARL LL, MORGAN HE. Phorbol ester stimulation of protein kinase C activity and ribosomal DNA transcription. Role in hypertrophic growth of cultured cardiomyocytes. The Journal of biological chemistry. V. 266, p. 22003–22009, 1991. ARBUSTINI E, DIEGOLI M, FASANI R, GRASSO M, MORBINI P, BANCHIERI N, et al. Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. The American journal of pathology. V. 153, p. 1501–1510, 1998. ARMITAGE JA, LAKASING L, TAYLOR PD, BALACHANDRAN AA, JENSEN RI, DEKOU V, et al. Developmental programming of aortic and renal structure in offspring of rats fed fat-rich diets in pregnancy. J. Physiol. V.565, p.171–184, 2005. 60 ASHRAFIAN H, FRENNEAUX MP, OPIE LH. METABOLIC MECHANISMS IN HEARTFAILURE. CIRCULATION. V.116, P. 434-48, 2007. ASHRAFIAN H, FRENNEAUX MP. Metabolic modulation in heart failure: the coming of age. Cardiovasc Drugs Ther. V.21, p.5–7, 2007. AYALON N, GOPAL DM, MOONEY DM, SIMONETTI JS, GROSSMAN JR, DWIVEDIA, DONOHUE C, PEREZ AJ, DOWNING J, GOKCE N, MILLER EJ, LIANG CS, APROVIAN CM, COLUCCI WS, HO JE. Preclinical left ventricular diastolic dysfunction in metabolic syndrome. Am J Cardiol. V.114, p.838–842, 2014. BAKER KM, ACETO JF. Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol. V.259, p. H610-H618, 1990. BAKER KM, BOOZ GW. DOSTAL DE.Cardiac actions of angiotensin II: role of an intracardiac renin-angiotensin system. Annu Rev Physiol. V.54, p.227-241, 1992. BARKER DJ, OSMOND C, FORSEN TJ, KAJANTIE E, ERIKSSON JG. Maternal and social origins of hypertension. Hypertension. V.50, p.565–571, 2007. BARROS RA, OKOSHI MP, CICOGNA AC. Via beta-adrenérgica em corações normais e hipertrofiados. Arq Bras Cardiol. V.72, p. 641-8, 1999. BARTON M, CARMONA R, MORAWIETZ H, D'USCIO LV, GOETTSCH W, HILLEN H, HAUDENSCHILD CC, KRIEGER JE, MÜNTER K, LATTMANN T, LÜSCHER TF, SHAW S. Obesity is associated with tissue-specific activation of renal angiotensin- converting enzyme in vivo: evidence for a regulatory role of endothelin. Hypertension. V.35, p.329-360, 2000. BEISVAG V, KEMI OJ, ARBO I, LOENNECHEN JP, WISLOFF U, LANGAAS M,SANDVIK AK, ELLINQSEN O. Pathological and physiological hypertrophies areregulated by distinct gene programs. Eur J Cardiovasc Prev Rehabil. V.16, p. 690- 697, 2009. BELL CG, WALLEY AJ, FROGUEL P. The genetics of human obesity. Nat.Rev. Genet, v. 6, p. 221–23, 2005. BERK BC, VEKSHTEIN V, GORDON HM, TSUDA T. Angiotensin Il-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. V.13, p. 305-314, 1989. 61 BERNARDO BC, WEEKS KL, PRETORIUS L, MCMULLEN JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. PharmacolTher. V. 128, p. 191-227, 2010. BJORBAEK C, KAHN BB. Leptin signaling in the central nervous system and theperiphery. Recent Prog Horm Res, v.59, p. 305–33, 2004. BLACKMORE HL, NIU Y, FERNANDEZ- TWINN, TARRY- ADKINS JL, GIUSSANI DA, OZANNE SE. Maternal Diet-induced Obesity Programs Cardiovascular Dysfunction in Adult Male Mouse Offspring Independent of Current Body Weight. Endocrinology. V. 155, p. 3970- 3980, 2014. BOTELHO LM, BLOCK CH, KHOSLA MC, SANTOS RA. PLASMA ANGIOTENSIN(1- 7)IMMUNOREACTIVITY IS INCREASED BY SALT LOAD, WATER DEPRIVATION, AND HEMORRHAGE.PEPTIDES. V. 15, P. 723-729, 1994. BOURET SG. Neurodevelopmental Actions of Leptin. Brain research. V. 1350, p. 2-9, 2010. BRAVO P.E., MORSE S., BORNE D.M., AGUILAR E.A., REISIN E. Leptin and hypertension in obesity. Vascular Health Risk Management. V. 2, p. 163–169, 2006. BRAY, GA. Medical consequences of obesity. J clinical endocrinol metabolism, V. 89, p. 2583- 2589, 2004. BRIFFA JF, MCAINCH AJ, ROMANO T, WLODEK ME, HRYCIW DH. Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab. V. 308, p. E335–E350, 2015. BRUIN JE, KELLENBERGER LD, GERSTEIN HC, MORRISON KM, HOLLOWAY AC. Fetal and neonatal nicotine exposure and postnatal glucose homeostasis: identifying critical windows of exposure. J Endocrinol. V.194, p.171–178, 2007. BUETTNER R, SCHÖLMERICH J, BOLLHEIMER LC.High-fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). V.15, p.798-808, 2007. BURDGE GC, SLATER-JEFFERIES JL, TORRENS C, PHILLIPS ES, HANSON MA, LILLYCROP KA. Dietary protein restriction of pregnant rats in the F0 generation induces 62 altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr. V.97, p.435–9, 2007. CAMBONIE G, COMTE B, YZYDORCZYK C, NTIMBANE T, GERMAIN N, LE NL, PLADYS P, GAUTHIER C, LAHAIE I, ABRAN D, LAVOIE JC, NUYT AM. Antenatal antioxidant prevents adult hypertension, vascular dysfunction, and microvascular rarefaction associated with in utero exposure to a low-protein diet. Am J Physiol. V.292, p.R1236– R1245, 2007. CARDOZO ER, NEFF LM, BROCKS ME, et al. Infertility patients’ knowledge of the effects of obesity on reproductive health outcomes. American journal of obstetrics and gynecology. V.207, p.509.e1-509.e10, 2012. CARÈ A, CATALUCCI D, FELICETTI F, BONCI D, ADDARIO A, GALLO P, BANG ML, SEGNALINI P, GU Y, DALTON ND, ELIA L, LATRONICO MV, et al.MicroRNA-133 controls cardiac hypertrophy. Nat Med, V. 13, p. 613–618, 2007. CARREÓN-TORRES, E.; DÍAZ-DÍAZ, E.; GUARNER-LANS, V. Angiotensin II and 1- 7during aging in Metabolic Syndrome rats. Expression of AT1, AT2 and Mas receptors inabdominal white adipose tissue. Peptides, V. 57, p. 101-8, 2014. CASSIS LA, LYNCH KR, PEACH MJ.Localization of angiotensinogen messenger RNA in rat aorta. Circ Res. V.62, p.1259-62, 1988. CATALANO PM, EHRENBERG HM. The short- and long-term implications of maternal obesity on the mother and her offspring. Bjog. V.113, p. 1126–1133, 2006. CHAAR LJ, ALVES TP, BATISTA JUNIOR AM, MICHELINI LC. Early Training-Induced Reduction of Angiotensinogen in Autonomic Areas-The Main Effect of Exercise on Brain Renin-Angiotensin System in Hypertensive Rats. PLoS ONE. V.10, p. e0137395, 2015. CHAN SH, TAI MH, LI CY, CHAN JY.Reduction in molecular synthesis or enzyme activity of superoxide dismutases and catalase contributes to oxidative stress and neurogenic hypertension in spontaneously hypertensive rats. Free Radic. Biol. Med. V.40, p. 2028–2039, 2006. CHEN H, SIMAR D, MORRIS MJ. Hypothalamic neuroendocrine circuitry is programmed by maternal obesity: interaction with postnatal nutritional environment. PLoS One. V.4, p. e6259, 2009. 63 CHENG Y, JI R, YUE J, YANG J, LIU X, CHEN H, DEAN DB, ZHANG C. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. V.170, p. 1831-1840, 2007. CHESS DJ, STANLEY WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. V.79, p.269–278, 2008. CHESS DJ, STANLEY WC. Role of diet and fuel overabundance in the development and progression of heart failure. Cardiovasc Res. V.79, p.269–278, 2008. CHIEN KR, KNOWLTON KU, ZHU H, et al. Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiological response. FASEB J. V.5, p. 3037-46, 1991. CHRISTIAENS V, LIJNEN HR.Angiogenesis and development of adipose tissue. Mol Cell Endocrinol. V.318, p.2-9, 2010. CLARK WA, RUDNICK SJ, ANDERSEN LC, LAPRES JJ.Myosin heavy chain synthesis is independently regulated in hypertrophy and atrophy of isolated adult cardiac myocytes. J BiolChem. V. 269, p. 25562–25569, 1994. CLEUTJENS JPM. The role of matrix metalloproteinases in heart disease. Cardiovasc Res. V, 32, p. 816-21, 1996. COELHO MS, LOPES KL, FREITAS RDE A, DE OLIVEIRA-SALES EB, BERGASMASCHI CT, CAMPOS RR, CASARINI DE, CARMONA AK, ARAÚJO MDA S, HEIMANN JC, DOLNIKOFF MS.High-sucrose intake in rats is associated with increased ACE2 and angiotensin-(1-7) levels in the adipose tissue. Regul Pept. V.162, p.61–67, 2010. COHN JN, FERRARI R, SHARPE N. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol. V.35, p. 569-82, 2000. CONSIDINE RV, SINHA MK, HEIMAN ML, et al. Serumimmunoreactive-leptin concentrations in normal-weight andobese humans. N Engl J Med. V.334, p. 292–5, 1996. controversies. Trends Endocrinol Metab, v. 16, p. 390-394, 2005. CORDEIRO A, DE SOUZA LL, OLIVEIRA LS, FAUSTINO LC, SANTIAGO LA, BLOISE FF, ORTIGA-CARVALHO TM, ALMEIDA NA, PAZOS-MOURA CC.Thyroid hormone 64 regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice. Journal of Endocrinology, V. 216, n. 2, p. 181-193, 2013. CORRAL-DEBRINSKI M, SHOFFNER JM, LOTT MT, WALLACE DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutation research. V. 275, p. 169–180, 1992. COSTA-SILVA JH, SILVA PA, PEDI N, LUZARDO R, EINICKER-LAMAS M., LARA LS, et al. Chronic undernutrition alters renal active Na+ transport in young rats: potential hidden basis for pathophysiological alterations in adulthood? Eur. J. Nutr. V.48, p. 437–445, 2009. CRANDALL DL, ARMELLINO DC, BUSLER DE, MCHENDRY-RINDE B, KRAL JG. Angiotensin II receptors in human preadipocytes: role in cell cycle regulation. Endocrinology. V.140, p.154–158, 1999. CROWLEY SD, GURLEY SB, HERRERA MJ, RUIZ P, GRIFFITHS R, KUMAR AP, et al. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc Natl Acad Sci USA. V.103, p. 17985±17990, 2006. CROWLEY VE, YEO GS, O'RAHILLY S. OBESITY THERAPY: ALTERING THE ENERGY INTAKE-AND-EXPENDITURE BALANCE SHEET. NAT REV DRUG DISCOV, V. 1, N. 4, P. 276-86, 2002. DAI DF, HSIEH EJ, LIU Y, CHEN T, BEYER RP, CHIN MT, et al. Mitochondrial proteome remodelling in pressure overload-induced heart failure: the role of mitochondrial oxidative stress. Cardiovascular research. V.93, p.79–88, 2012. DAI DF, JOHNSON SC, VILLARIN JJ, CHIN MT, NIEVES-CINTRON M, CHEN T, et al. Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circulation research. V. 108, p. 837–846, 2011. DASSOULI A, SULPICE J-C, ROUX S, et al. Stretch-induced inositol triphosphate and tetrakisphosphate production in rat cardiomyocytes. J Mol Cell Cardiol. V.25, p. 973-82, 1993. DE BOO HA, HARDING JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J ObstetGynaecol. V.46, p. 4-14, 2006. 65 DE BRITO ALVES J. L., DE OLIVEIRA J. M., FERREIRA D. J., DE BARROS M. A., NOGUEIRA V. O., ALVES D. S., ET AL.Maternal protein restriction induced-hypertension is associated to oxidative disruption at transcriptional and functional levels in the medulla oblongata. Clin. Exp. Pharmacol. Physiol. V. 43, p.1177-1184, 2016 DE BRITO ALVES JL, NOGUEIRA VO, DE OLIVEIRA GB, DA SILVA GS, WANDERLEY AG, LEANDRO CG, et al. Short- and long-term effects of a maternal low- protein diet on ventilation, O2/CO2chemoreception and arterial blood pressure in male rat offspring. Br. J. Nutr. V.111, p.606–615, 2014. DE MOURA EG, PASSOS MC.Neonatal programming of body weight regulation and energetic metabolism. Biosci Rep. V. 25, p.251-69, 2005. DESAI M, JELLYMAN JK, HAN G. Maternal obesity and high-fat diet program offspring metabolic syndrome. Am J ObstetGynecol. V. 211, p. 237.e1-13, 2014. developmental origins of cardiovascular disease. J Physiol. V. 19, p. 4709- 4720, 2008. DHALLA AK, HILL MF, SINGAL PK. Role of oxidative stress in transition of hypertrophy to heart failure. J Am Coll Cardiol. V. 28, p. 506–514, 1996. DIEP QN, EL MABROUK M, COHN JS, ENDEMANN D, AMIRI F, VIRDIS A, NEVES MF, SCHIFFRIN EL.Structure, endothelial function, cell growth, and inflammation in blood vessels of angiotensin II-infused rats: role of peroxisome proliferator-activated receptor- gamma. Circulation. V. 105, p. 2296-302, 2002. DOENST T, PYTEL G, SCHREPPER A, AMORIM P, FARBER G, SHINGU Y, et al. Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovascular research. V. 86, p. 461–470, 2010. DRAKE AJ, REYNOLDS RM. Impact of maternal obesity on offspring obesity and cardiometabolic disease risk. Reproduction, v. 140, p. 387–398, 2010. DUBEY RK, ROY A, OVERBECK HW. Culture of renal arteriolar smooth muscle cells: mitogenic responses to angiotensin II. Circ Res. V.71, p. 1143-1152, 1992. DZAU VJ, PRATT RE. Cardiac, vascular and intrarenal renin angiotensin system in normal physiology and disease. In: Robertson JIS, Nicholis MG, eds. The Renin-Angiotensin System. London, England: Gower Medical Publishing. V.42, p.1-42, 1993. 66 ELAHI MM, CAGAMPANG FR, MUKHTAR D, ANTHONY FW, OHRI SK, HANSON MA. Long-term maternal high-fat feeding from weaning through pregnancy and lactation predisposes offspring to hypertension, raised plasma lipids and fatty liver in mice. Br J Nutr. V. 102, p. 514–519, 2009. ENGELHARDT, S, HEIN L, WIESMAN F, LOHSE MJ. Progressivehypertrophy and heart failure in b1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA. V. 96, p. 7059 – 7064, 1999. ESSICK EE, SAM F. Oxidative stress and autophagy in cardiac disease, neurological disorders, aging and cancer. Oxid. Med. Cell Longev. V. 3, p. 168–177, 2010. experimental study. Circulation. V.65, p. 1446-50, 1982. FAGARD RH. Impact of different sports and training on cardiac structure and function. CardiolClin. V. 15, p. 397–412, 1997. FAGUNDES AT, MOURA EG, PASSOS MC, SANTOS-SILVA AP, DE OLIVEIRA E, TREVENZOLI IH, CASIMIRO-LOPES G, NOGUEIRA-NETO JF, LISBOA PC.Temporal evaluation of body composition, glucose homeostasis and lipid profile of male rats programmed by maternal protein restriction during lactation. Horm Metab Res. V.41, p.866-73, 2009. FALCÃO-TEBAS F, BENTO-SANTOS A, FIDALGO MA, DE ALMEIDA MB, DOS SANTOS JA, LOPES DE SOUZA S, et al. Maternal low-protein diet-induced delayed reflex ontogeny is attenuated by moderate physical training during gestation in rats. Br. J. Nutr. V. 107, p. 372–377, 2012. FAN L, LINDSLEY SR, COMSTOCK SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond). V. 37, p. 254–262, 2013. FAN L, LINDSLEY SR, COMSTOCK SM, et al. Maternal high-fat diet impacts endothelial function in nonhuman primate offspring. Int J Obes (Lond). V.37, p. 254–262, 2013. FELIX JVC, MICHELINI LC. Training-induced pressure fall in spontaneously hypertensive rats is associated with reduced angiotensinogen mRNA expression within the nucleus tractus solitarii. Hypertension. V.50, p. 780±785, 2007. 67 FEREZOU-VIALA J, ROY AF, SEROUGNE C, et al. Long-term consequences of maternal high-fat feeding on hypothalamic leptin sensitivity and diet-induced obesity in the offspring. Am J PhysiolRegulIntegr Comp Physiol. V. 293, p. R1056–R1062, 2007. FERNANDEZ-TWINN DS, BLACKMORE HL, SIGGENS L, GIUSSANI DA, CROSS CM, FOO R, OZANNE SE.The Programming of Cardiac Hypertrophy in the Offspring by Maternal Obesity Is Associated with Hyperinsulinemia, AKT, ERK, and mTOR Activation. Endocrinology. V. 153, p. 5961–5971, 2012. FERREIRA DS, LIU Y, FERNANDES MP, LAGRANHA CJ.Perinatal low-protein diet alters brainstem antioxidant metabolism in adult offspring. Nutr Neurosci. V. 19, p. 369-375, 2016. FIDALGO M., FALCÃO-TEBAS F., BENTO-SANTOS A., DE OLIVEIRA E., NOGUEIRA-NETO J. F., DE MOURA E. G., et al. Programmed changes in the adult rat offspring caused by maternal protein restriction during gestation and lactation are attenuated by maternal moderate-low physical training. Br. J. Nutr. V. 109, p. 449–456, 2013. FILIPOWICZ, W., BHATTACHARYYA, S.N., SONENBERG, N. Mechanisms of post- transcriptional regulation by microRNAs: are the answers in sight? Nat. Rev. Genet. V.9, p.102-114, 2008. FITZSIMONS KJ, MODDER J, GREER IA. Obesity in pregnancy: risks and management. Obstetric Medicine. V. 2, p. 52–62, 2009. FLIER JS.Obesity wars: molecular progress confronts an expandingepidemic. Cell. V.23, p. 116:337–50, 2004. FORSÉN T, ERIKSSON JG, TUOMILEHTO J, TERAMO K, OSMOND C, BARKER DJ. Mother's weight in pregnancy and coronary heart disease in a cohort of Finnish men: Follow up study. BMJ. V.315, p.837–840, 1997. FRANCIS GS. Pathophysiology of chronic heart failure. Am J Med. V.110, p. 37S-46S, 2001. FRANCO JG, FERNANDES TP, ROCHA CPD, CALVIÑO C, PAZOSMOURA CC, LISBOA PC, MOURA EG, TREVENZOLI IH. Maternal high-fat diet induces obesity and adrenal and thyroid dysfunction in male rat offspring at weaning. J Physiol, v. 590, n.21, p. 5503–5518, 2012. 68 FURUKAWA S, FUJITA T, SHIMABUKURO M, IWAKI M, YAMADA Y,NAKAJIMA Y, NAKAYAMA O, MAKISHIMA M, MATSUDA M, SHIMOMURA I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest, V. 114, p.1752–1761, 2004. GAASCH WH. Left ventricular radius to wall thickness ratio. Am J Cardiol, V 43, p.1189- 1194, 1979. GALLAGHER PE, et al. Estrogen regulation of angiotensin-converting enzyme mRNA. Hypertension. V. 33, n. II, p. 323–328, 1999. GARNIER A, FORTIN D, DELOMENIE C, MOMKEN I, VEKSLER V, VENTURA- CLAPIER R. Depressed mitochondrial transcription factors and oxidative capacity in rat failing cardiac and skeletal muscles. The Journal of physiology. V.551, p.491–501, 2003. GARRISON JC, PEACH MJ. The Pharmacological Basis of Therapeutics. Pergamon Press, Inc. p.749-763, 1990. GEISTERFER AAT, PEACH MJ, OWENS GK. Angiotensin II induces hypertrophy, not hyperplasia, olf cultured rat aortic smooth muscle cells. Circ Res. V.62, p. 749-756, 1988. GHOSH P, BITSANIS D, GHEBREMESKEL K, CRAWFORD MA, POSTON L. Abnormal aortic fatty acid composition and small artery function in offspring of rats fed a high fat diet in pregnancy. J Physiol. V.533, p. 815–822, 2001. GIORDANO FJ. Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest. V.115, p. 500-8, 2005. GRIENDLING KK, LASSEGUE B, MURPHY TJ, ALEXANDER RW. Angiotensin II receptor pharmacology. Adv Pharmacol. V.28, p. 269-306, 1994. GRIENDLING KK, LASSEGUE B, MURPHY TJ, ALEXANDER RW. Angiotensin II receptor pharmacology. Adv Pharmacol. V.28, p. 269-306, 1994. GRIEVE DJ, BYRNE JA, CAVE AC, SHAH AM. Role of oxidative stress in cardiac remodeling after myocardial infarction. Heart Lung Circ. V.13, p. 132-8, 2004. GRIFFITHS ER, FRIEHS I, SCHERR E, POUTIAS D, MCGOWAN FX, DEL NIDO PJ. Electron transport chain dysfunction in neonatal pressure-overload hypertrophy precedes 69 cardiomyocyte apoptosis independent of oxidative stress. The Journal of thoracic and cardiovascular surgery. V.139, p.1609–1617, 2010. GRUNDY, S. M. Multifactorial causation of obesity: implications for prevention. Am J ClinNutr, V. 67, n.3, p.563S-72S, 1998. GUBERMAN C, JELLYMAN JK, HAN G, ROSS MG, DESAI M. Maternal high-fat diet programs rat offspring hypertension and activates the adipose renin-angiotensin system. Am J Obstet Gynecol. V.209, p. 262.e261–e268, 2013. GUILHERME A, VIRBASIUS JV, PURI V, CZECH MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol V.9, p. 367–377, 2008. GUPTA A, SRINVASAN M, THAMADILOK S, PATEL MS. Hypothalamic alterations in fetuses of high fat diet-fed obese female rats. J Endocrinol. V. 200, p. 293-300, 2009. HALES CN, BARKER DJ. The thrifty phenotype hypothesis. Br Med Bull. V. 60, p. 5-20, 2011. HALES, C. N. AND D. J. BARKER. The thrifty phenotype hypothesis. Br. Med. Bull. V.60, p. 5-20, 2001. HANSON MA, GLUCKMAN PD.Early developmental conditioning of later health and disease: physiology or pathophysiology? Physiol Rev. V. 94, p. 1027–1076, 2014. HARADA K, KOMURO I, SHIOJIMA I, HAYASHI D, KUDOH S, MIZUNO T, KIJIMA K, MATSUBARA H, SUGAYA T, MURAKAMI K, YAZAKI Y.Pressure overload induces cardiac hypertrophy in angiotensin II type 1A receptor knockout mice. Circulation. V.97, p.1952-9, 1998. HASENFUUS G, MEYER M, SCHILLINGER W, PREUS M, PIESKE B, JUST H. CALCIUM HANDLING PROTEINS IN THE FAILING HUMAN HEART. BASIC RES CARDIOL. V.92, P.87-93, 1997. HEINEKE J, MOLKENTIN JD. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol. V.7, p. 589±600, 2006. 70 HENRY WL, CLARK CE, EPSTEIN SE. Asymmetric septal hypertrophy. Echocardiography identification of the pathognomormic anatomic abnormality ofIHSS. Circulation. V. 47, p. 225-33, 1973. HESLEHURST N, SIMPSON H, ELLS LJ, et al. The impact of maternal BMI status on pregnancy outcomes with immediate short-term obstetric resource implications: a meta- analysis. Obes Rev. V.9, p.635–683, 2008. HINGTGEN SD, TIAN X, YANG J, DUNLAY SM, PEEK AS, WU Y, SHARMA RV, ENGELHARDT JF, DAVISSON RL. Nox2-containing NADPH oxidase and Akt activation play a key role in angiotensin II-induced cardiomyocyte hypertrophy. Physiol Genomics. V. 26, p. 180-91, 2006. HOCKMAN JS, BULKLEY BH. Expansion of acute myocardial infarction: anexperimental study. Circulation. V.65, P. 1446-50, 1982. HOFFMAN ML, REED SA, PILLAI SM, JONES AK, MCFADDEN KK, ZINN SA, GOVONI KE. The effects of poor maternal nutrition during gestation on offspring postnatal growth and metabolism. J Anim Sci. V.95, p. 2222-2232, 2017. HORIE T, ONO K, NISHI H, IWANAGA Y, NAGAO K, KINOSHITA M, KUWABARA Y, TAKANABE R, HASEGAWA K, KITA T, KIMURA T. MicroRNA-133 regulates the expression of GLUT4 by targeting KLF15 and is involved in metabolic control in cardiac myocytes. BiochemBiophys Res Commun. V. 389, p. 315–320, 2009. HOTTA K, FUNAHASHI T, BODKIN NL, ORTMEYER HK, ARITA Y, HANSEN BC, MATSUZAWA Y.Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes. V.50, p.1126-33, 2001. HUNTER JJ, CHEIN KR. Signaling pathways for cardiac hypertrophy and failure. N Engl J Med. V.341, p. 1276- 1283, 1999. IDE T, TSUTSUI H, HAYASHIDANI S, KANG D, SUEMATSU N, NAKAMURA K, et al. Mitochondrial DNA damage and dysfunction associated with oxidative stress in failing hearts after myocardial infarction. Circulation research. V. 88, p. 529–535, 2001. 71 ISO T, ARAI M, WADA A, KOGURE K, SUZUKI T, AND NAGAI R. Humoral factor(s) produced by pressure overload enhance cardiac hypertrophy and natriuretic peptide expression. Am J Physiol Heart CircPhysiol V. 273, p. H113–H118, 1997. ITOH H, MUKOYAMA M, PRATT RE, GIBBONS GH, DZAU VJ. Multiple autocrine growth factors modulate vascular smooth muscle cell growth response to angiotensin II. J Clin Invest. V. 91, p. 2268-74, 1993. IZUMO S, NADAL-GINARD B, MAHDAVI V. Protooncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA. V.85, p. 339-43, 1988. JONES BH, STANDRIDGE MK & MOUSTAID N. Angiotensin II increases lipogenesis in 3T3-L1 and human adipose cells. Endocrinology. V.138, p. 1512–1519, 1997. JUGE-AUBRY CE, HENRICHOT E, MEIER CA.Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. V.19, p.547-66, 2005. JUNG UJ, CHOI MS. Obesity and its metabolic complications: the role of adipokines and relationship between obesity inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. V. 15, p. 6184- 6223, 2014. KADOWAKI T, YAMAUCHI T.Adiponectin and adiponectinreceptors. Endocr Rev. V.26, p. 439 –51, 2005. KARAMANLIDIS G, BAUTISTA-HERNANDEZ V, FYNN-THOMPSON F, DEL NIDO P, TIAN R. Impaired mitochondrial biogenesis precedes heart failure in right ventricular hypertrophy in congenital heart disease. Circ Heart Fail. V. 4, p. 707–713, 2011. KAVAZIS, AN. Pathological vs. physiological cardiac hypertrophy. J Physiol V. 593, p 3767, 2015. KEHAT I, MOLKENTIN JD. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. V. 122, p. 2727- 2735, 2010. KHAIRALLAH PA, KANABUS J. Angiotensin and myocardial protein synthesis. Perspect Cardiovasc Res. V.8, p. 337-347, 1983. KIM SY, DIETZ PM, ENGLAND L. Trends in pre-pregnancy obesity in nine states, 1993– 2003. Obesity. V. 15, p. 986-993, 2007. 72 KLEIN I, OJAMAA K. Mechanisms of disease: thyroid hormone and the cardiovascular system. N Engl J Med, V. 344, n. 7, p. 501-509, 2001. KOJIMA M, SHIOJIMA I, YAMAZAKI T, KOMURO I, ZOU Y, WANG Y, MIZUNO T, UEKI K, TOBE K, KADOWAKI T, NAGAI R, AND YAZAKI Y. Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation. V. 89, p. 2204–2211, 1994. KORECKY B, ZAK R, SCHWARTZ K, et al. Role of thyroid hormone in regulation of isomyosin composition, contractility, and size of heterotopically isotransplanted rat heart. Circ Res. V.60, p.824-30, 1987. KOWEY PR, EISENBERG R, ENGEL TR.Sustained arrhythmias in hypertrophic obstructive cardiomyopathy. N Eng J Med. V. 310, p. 1566-69, 1984. KRISHNAVENI GV, VEENA SR, HILL JC, KEHOE S, KARAT SC, FALL CH. Intrauterine exposure to maternal diabetes is associated with higher adiposity and insulin resistance and clustering of cardiovascular risk markers in Indian children. Diabetes Care V.33, p.402–404, 2010. KUBOTA N, TERAUCHI Y, YAMAUCHI T, et al. Disruption ofadiponectin causes insulin resistance and neointimal formation. J Biol Chem. V.277, p. 25863– 6, 2002. KUDEJ RK, IWASE M, UECHI M., VATNER DE, OKA N, ISHIKAWA Y, SHANNON RP, BISHOP SP, VATNER SF. Effects of chronic beta-adrenergic receptor stimulation in mice. J Mol Cell Cardiol. V. 10, p. 2735-46,1997.7 KUMAR R, SINGH VP, BAKER KM. The intracellular renin-angiotensin system in the heart. Curr Hypertens Rep. V.11, p. 104±110, 2009. LANDSBERG L, ARONNE LJ, BEILIN LJ, BURKE V, IGEL LI, LLOYD-JONES D, ET AL. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment–a position paper of the obesity society and The American Society of Hypertension. Obesity (Silver Spring) V.21, p. 8–24, 2013. LEANDRO CG, DA SILVA RIBEIRO W, DOS SANTOS JA, BENTO-SANTOS A, LIMA- COELHO CH, FALCÃO-TEBAS F, et al. Moderate physical training attenuates muscle- 73 specific effects on fibre type composition in adult rats submitted to a perinatal maternal low- protein diet. Eur. J. Nutr. V. 51, p. 807–815, 2012. LEDDY MA, POWER ML, SCHULKIN J. The Impact of Maternal Obesity on Maternal and Fetal Health. Reviews in Obstetrics and Gynecology. V.1, p.170-178, 2008. LEE H, JANG HC, PARK HK, CHO NH. Early manifestation of cardiovascular disease risk factors in offspring of mothers with previous history of gestational diabetes mellitus. Diabetes Res Clin Pract, V.78, p.238–245, 2007. LEOPOLDO AS, SUGIZAKI MM, LIMA-LEOPOLDO AP, DO NASCIMENTO AF, LUVIZOTTO RDE A, CAMPOS DHS, OKOSHI K, DAL PAI-SILVA M, PADOVANI CR, CICOGNA AC. Cardiac remodeling in a rat model of diet-induced obesity. Can J Cardiol, V.26, p.423–429, 2010. LEVY D, KENCHAIAH S, LARSON MG, BENJAMIN EJ, KUPKA MJ, HO KK, et al. Long-term trends in the incidence of and survival with heart failure. N Engl J Med. V.347, p. 1397±402, 2002. LI M, SLOBODA DM, VICKERS MH. Maternal obesity and developmental programming of metabolic disorders in offspring: evidence from animal models. Exp Diabetes Res. V.2011, p. 9, 2011. LIANG C, OEST ME, PRATER MR. Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol. V.86, p. 377–384, 2009. LINDENMAYER GE, SORDAHL LA, HARIGAYA S, ALLEN JC, BESCH HR JR, SCHWARTZ A. Some biochemical studies on subcellular systems isolated from fresh recipient human cardiac tissue obtained during transplantation. The American journal of cardiology. V. 27, p. 277–283, 1971. LINDPAINTNER K, GANTEN D. The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence. Circ Res. V.68, p. 905-921, 1991. LINZ W, SCHOELKENS BA, GANTEN D. Converting enzyme inhibition specifically prevents the development and induces regression of cardiac hypertrophy in rats. Clin Exp Hypertens. V.11, p. 1325-1350, 1989. 74 LO J, PATEL VB, WANG Z, LEVASSEUR J, KAUFMAN S, PENNINGER JM, et al. Angiotensin-converting enzyme 2 antagonizes angiotensin II-induced pressor response and NADPH oxidase activation in Wistar-Kyoto rats and spontaneously hypertensive rats. Exp Physiol. V.98, p. 109±122, 2013. LOUEY S, THORNBURG KL.The prenatal environment and later cardiovascular disease. Early Hum Dev. V.81, p.745-51, 2005. LUCAS A. Programming by early nutrition: an experimental approach. J. Nutr. V.128, p. 401S–406S, 1998. LUCAS A. Role of nutritional programming in determining adult morbidity. Arch Dis Child, v. 71, p. 288-290, 1994. LYNCH CM, SEXTON DJ, HESSION M, MORRISON JJ. Obesity and mode of delivery in primigravid and multigravid women. Am J Perinatol. V. 25, p. 163-167, 2008 MAEDA N, SHIMOMURA I, KISHIDA K, et al
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/1/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/2/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/3/2018%20-%20Nat%c3%a1lia%20D%e2%80%99Assump%c3%a7%c3%a3o%20Lima%20Rangel.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11399/4/license.txt
bitstream.checksum.fl_str_mv 56256b9218ed0f0c027853846d88053a
c00d5bcb0dbee027e4887e2bca8e7da9
eff11506900dd9df65942e523ee62343
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107911560495104