Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]

Detalhes bibliográficos
Autor(a) principal: Favero, Vinício Oliosi
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/17617
Resumo: O feijão-mungo é uma leguminosa de origem asiática com grande importância mundial, principalmente em países em desenvolvimento. Seu cultivo comercial no Brasil tem se expandido nos últimos anos, visando atender ao mercado internacional, e isso tem despertado para a necessidade de estudos relacionado ao seu cultivo no país, e dentre estes, os relacionados à fixação biológica de nitrogênio. Nesse sentido, objetivou-se com este estudo, avaliar a nodulação do feijão-mungo com rizóbios nativos de solos brasileiros, isolar os rizóbios associados, caracterizá-los e avaliá-los quanto à capacidade de nodulação e eficiência simbiótica. Para isso, no Capítulo I, foi avaliada a nodulação de dois genótipos de feijão-mungo por rizóbios nativos em dez solos brasileiros, além do isolamento das bactérias presentes nos nódulos, seguido de caracterização morfogenética e avaliação da capacidade de nodulação. De forma geral, as plantas cultivadas em amostras dos solos da região Sudeste apresentaram maior nodulação e crescimento comparadas àquelas cultivadas nas amostras da região Centro-Oeste. A partir dos nódulos, foram obtidas 101 bactérias, as quais foram agrupadas aos seguintes gêneros: Bradyrhizobium (66), Rhizobium (19), Mesorhizobium (4), Ensifer (3), Leifsonia (3), Bacillus (3), Agrobacterium (1), Mycolicibacterium (1) e Kaistia (1). Isolados de Bradyrhizobium foram os únicos capazes de nodular o feijão-mungo, sendo aqueles oriundos de solos da região Sudeste os mais eficientes; já quanto ao grupo filogenético, de forma geral, isolados próximos à espécie de Bradyrhizobium yuanmingense se mostraram mais eficientes. No Capítulo II, foi caracterizado o microbioma dos nódulos de dois genótipos de feijão-mungo cultivados em amostras de dez solos brasileiros, utilizando-se a técnica de sequenciamento do gene 16S rRNA por NGS (Next-Generation Sequencing) Illumina MiSeq. A OTU0001 (Operational Taxonomic Units) pertencente ao gênero Bradyrhizobium representou mais de 99% das sequências recuperadas. Pseudomonas foi o gênero não-rizobiano mais abundante, e esteve presente apenas em nódulos da cultivar MGS Esmeralda, revelando uma diferença de especificidade entre genótipos. No Capítulo III, foi avaliada a inoculação de 31 isolados de Bradyrhizobium em comparação aos rizóbios nativos em feijão-mungo cultivado em vaso com solo, incluindo a avaliação da aplicação de doses de N na semeadura. A inoculação dos isolados resultou em incrementos de até 79% em massa de nódulos, de 66% em massa de parte aérea e de 55% no N acumulado oriundo da fixação biológica de N, comparados ao tratamento sem inoculação; no entanto, as plantas inoculadas tiveram menor crescimento que o tratamento com N fertilizante (160 kg ha-1 de N). Quando sob aplicação de N na semeadura, houve incrementos no desenvolvimento das plantas, mas com redução na nodulação. No Capítulo IV, avaliou-se a inoculação cruzada do feijão-mungo com estirpes elite de Bradyrhizobium usadas em inoculantes comerciais para soja e feijão-caupi no Brasil, além da comparação com isolados obtidos de nódulos de feijão-mungo. A estirpe SEMIA 587 (B. elkanii) recomendada para soja, e as estirpes UFLA 3-84 (B. viridifuturi), BR 3267 (B. yuanmingense) e INPA 3-11B (B. elkanii) recomendadas para feijão-caupi, foram capazes de nodular o feijão-mungo. A SEMIA 587, a UFLA 3-84 e os isolados de feijão-mungo apresentaram maior eficiência em nodulação e crescimento das plantas, e portanto, apresentam potencial para inoculação do feijão-mungo no Brasil.
id UFRRJ-1_99f404eded16100854aa6959ba461095
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/17617
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Favero, Vinício OliosiUrquiaga Caballero, Segundo Sacramentohttps://orcid.org/0000-0002-3601-1233http://lattes.cnpq.br/0525790556695433Rumjanek, Norma GouvêaXavier, Gustavo Ribeirohttp://lattes.cnpq.br/6832519607059036Urquiaga Caballero, Segundo Sacramentohttps://orcid.org/0000-0002-3601-1233http://lattes.cnpq.br/0525790556695433Araújo, Adelson Paulo dehttps://orcid.org/0000-0002-4106-6175http://lattes.cnpq.br/5394022232015318Zilli, Jerri Édsonhttps://orcid.org/0000-0003-2138-3488http://lattes.cnpq.br/4935993716536909Martins, Lindete Míria Vieirahttps://orcid.org/0000-0003-3261-4704http://lattes.cnpq.br/6461742105073846Ferreira, Enderson Petrônio de Britohttps://orcid.org/0000-0002-1964-1516http://lattes.cnpq.br/6292879655540619https://orcid.org/0000-0002-7902-662Xhttp://lattes.cnpq.br/39993463640089522024-07-10T14:35:22Z2024-07-10T14:35:22Z2022-08-12FAVERO, Vinício Oliosi. Caracterização e eficiência simbiótica de bactérias isoladas de nódulos de feijão-mungo [Vigna radiata (L.) Wilczek]. 2022. 118 p. Tese (Doutorado em Agronomia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.https://rima.ufrrj.br/jspui/handle/20.500.14407/17617O feijão-mungo é uma leguminosa de origem asiática com grande importância mundial, principalmente em países em desenvolvimento. Seu cultivo comercial no Brasil tem se expandido nos últimos anos, visando atender ao mercado internacional, e isso tem despertado para a necessidade de estudos relacionado ao seu cultivo no país, e dentre estes, os relacionados à fixação biológica de nitrogênio. Nesse sentido, objetivou-se com este estudo, avaliar a nodulação do feijão-mungo com rizóbios nativos de solos brasileiros, isolar os rizóbios associados, caracterizá-los e avaliá-los quanto à capacidade de nodulação e eficiência simbiótica. Para isso, no Capítulo I, foi avaliada a nodulação de dois genótipos de feijão-mungo por rizóbios nativos em dez solos brasileiros, além do isolamento das bactérias presentes nos nódulos, seguido de caracterização morfogenética e avaliação da capacidade de nodulação. De forma geral, as plantas cultivadas em amostras dos solos da região Sudeste apresentaram maior nodulação e crescimento comparadas àquelas cultivadas nas amostras da região Centro-Oeste. A partir dos nódulos, foram obtidas 101 bactérias, as quais foram agrupadas aos seguintes gêneros: Bradyrhizobium (66), Rhizobium (19), Mesorhizobium (4), Ensifer (3), Leifsonia (3), Bacillus (3), Agrobacterium (1), Mycolicibacterium (1) e Kaistia (1). Isolados de Bradyrhizobium foram os únicos capazes de nodular o feijão-mungo, sendo aqueles oriundos de solos da região Sudeste os mais eficientes; já quanto ao grupo filogenético, de forma geral, isolados próximos à espécie de Bradyrhizobium yuanmingense se mostraram mais eficientes. No Capítulo II, foi caracterizado o microbioma dos nódulos de dois genótipos de feijão-mungo cultivados em amostras de dez solos brasileiros, utilizando-se a técnica de sequenciamento do gene 16S rRNA por NGS (Next-Generation Sequencing) Illumina MiSeq. A OTU0001 (Operational Taxonomic Units) pertencente ao gênero Bradyrhizobium representou mais de 99% das sequências recuperadas. Pseudomonas foi o gênero não-rizobiano mais abundante, e esteve presente apenas em nódulos da cultivar MGS Esmeralda, revelando uma diferença de especificidade entre genótipos. No Capítulo III, foi avaliada a inoculação de 31 isolados de Bradyrhizobium em comparação aos rizóbios nativos em feijão-mungo cultivado em vaso com solo, incluindo a avaliação da aplicação de doses de N na semeadura. A inoculação dos isolados resultou em incrementos de até 79% em massa de nódulos, de 66% em massa de parte aérea e de 55% no N acumulado oriundo da fixação biológica de N, comparados ao tratamento sem inoculação; no entanto, as plantas inoculadas tiveram menor crescimento que o tratamento com N fertilizante (160 kg ha-1 de N). Quando sob aplicação de N na semeadura, houve incrementos no desenvolvimento das plantas, mas com redução na nodulação. No Capítulo IV, avaliou-se a inoculação cruzada do feijão-mungo com estirpes elite de Bradyrhizobium usadas em inoculantes comerciais para soja e feijão-caupi no Brasil, além da comparação com isolados obtidos de nódulos de feijão-mungo. A estirpe SEMIA 587 (B. elkanii) recomendada para soja, e as estirpes UFLA 3-84 (B. viridifuturi), BR 3267 (B. yuanmingense) e INPA 3-11B (B. elkanii) recomendadas para feijão-caupi, foram capazes de nodular o feijão-mungo. A SEMIA 587, a UFLA 3-84 e os isolados de feijão-mungo apresentaram maior eficiência em nodulação e crescimento das plantas, e portanto, apresentam potencial para inoculação do feijão-mungo no Brasil.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFundação de Amparo à Pesquisa do Estado do Rio de Janeiro - FAPERJMung bean is a legume of Asian origin with great worldwide importance, mainly in developing countries. Its commercial cultivation in Brazil has expanded in recent years, aiming to meet the international market, and this has awakened the need for studies related to its cultivation in the country, and among these, those related to biological nitrogen fixation. In this sense, the objective of this study was to evaluate the nodulation of mung bean with rhizobia native to Brazilian soils, isolate the associated rhizobia, characterize them and evaluate them in terms of nodulation capacity and symbiotic efficiency. In Chapter I, the nodulation of two mung bean genotypes by native rhizobia in ten Brazilian soils was evaluated, in addition to the isolation of bacteria present in the nodules, followed by morphogenetic characterization and evaluation of the nodulation capacity. In general, plants grown in soil samples from the Southeast region showed higher nodulation and growth compared to those grown in samples from the Midwest region. From the nodules, 101 bacteria were obtained: Bradyrhizobium (66), Rhizobium (19), Mesorhizobium (4), Ensifer (3), Leifsonia (3), Bacillus (3), Agrobacterium (1), Mycolicibacterium (1) and Kaistia (1). Bradyrhizobium isolates were the only ones capable of nodulating mung bean, and those from soils in the Southeast region were the most efficient; as for the phylogenetic group, in general, isolates close to the Bradyrhizobium yuanmingense specie were more efficient. In Chapter II, the microbiome characterization of the nodules of two mung bean genotypes cultivated in samples of ten Brazilian soils was performed, using the 16S rRNA gene sequencing technique by NGS (Next-Generation Sequencing) Illumina MiSeq. OTU0001 (Operational Taxonomic Units) belonging to the Bradyrhizobium genus represented more than 99% of the recovered sequences. Pseudomonas was the most abundant non-rhizobia genera, and was present only in nodules of the MGS Esmeralda cultivar, revealing a difference in specificity between genotypes. In Chapter III, the inoculation of 31 Bradyrhizobium isolates compared to native rhizobia in mung bean grown in pots with soil was evaluated, including the evaluation of the application of N rates at sowing. The inoculation of the isolates resulted in increments of up to 79% in nodule weight, 66% in shoot dry weight, and of 55% in the accumulated N from the FBN compared to the treatment without inoculation, however, they had less growth than treatment with N fertilizer (160 kg ha-1 of N). When under application of N doses at sowing, there were increases in plant development, but with a reduction in nodulation. In Chapter IV, the inoculation potential of mung bean was verified through cross-inoculation with elite Bradyrhizobium strains used in commercial inoculants for soybean and cowpea in Brazil, in addition to a comparison with isolates obtained from mung bean nodules. The strain SEMIA 587 (B. elkanii) recommended for soybean, and the strains UFLA 3-84 (B. viridifuturi), BR 3267 (B. yuanmingense), and INPA 3-11B (B. elkanii) recommended for cowpea were able to to nodulate the mung bean. SEMIA 587, UFLA 3-84, and mung bean isolates showed greater efficiency in nodulation and plant growth, and therefore, may contribute to mung bean inoculation in Brazil.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaAgronomiaVigna radiataSeleção de rizóbios eficientesFixação biológica de nitrogênioSelection of efficient rhizobiaBiological nitrogen fixationCaracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]Characterization and symbiotic efficiency of bacteria isolated from mung bean [Vigna radiata (L.) Wilczek] nodules.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAKBARI, N.; BARANI, M.; AHMADI, H. Change of grain protein content and correlations with other characteristics under planting pattern and starter N fertilizer of mungbean (Vigna radiata L. Wilczek). American-Eurasian Journal of Agricultural & Environmental Science, v. 4, p. 306–310, 2008. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, v. 25, n. 17, p. 3389–3402, 1997. ANDERSON, J. S.; RITTLE, J.; PETERS, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature, v. 501, n. 7465, p. 84–87, 2013. ANDRADE, D. S.; HAMAKAWA, P. J. Estimativa do número de células de rizóbio no solo e inoculantes por infecção em plantas. In: HUNGRIA, M.; ARAUJO, R. S. (Eds.). Manual de métodos empregados em estudos de microbiologia agrícola. Documentos ed. Brasilia: Embrapa-SPI, 1994. p. 63–94. ANDREW, D. R.; FITAK, R. R.; MUNGUIA-VEGA, A.; RACOLTA, A.; MARTINSON, V. G.; DONTSOVA, K. Abiotic factors shape microbial diversity in Sonoran desert soils. Applied and Environmental Microbiology, v. 78, n. 21, p. 7527–7537, 2012. ANDREWS, M.; ANDREWS, M. E. Specificity in legume-rhizobia symbioses. International Journal of Molecular Sciences, v. 18, n. 4, p. 705, 2017. APPUNU, C.; COBA DE LA PEÑA, T.; STOLL, A.; DE LA PEÑA ROJO, D.; BRAVO, J.; RINCÓN, A.; LUCAS, M. M.; PUEYO, J. J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Annals of Applied Biology, v. 172, n. 3, p. 295–308, 2018. APPUNU, C.; N’ZOUE, A.; MOULIN, L.; DEPRET, G.; LAGUERRE, G. Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical–ecological–climatic regions of India are nodulated by Bradyrhizobium yuanmingense. Systematic and Applied Microbiology, v. 32, n. 7, p. 460–470, 2009. ARAÚJO, W. L.; MACCHERONI, W.; AZEVEDO, J. L. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genetics and Molecular Research, v. 8, n. 4, p. 1408–1422, 2009. ARIF, M. S.; RIAZ, M.; SHAHZAD, S. M.; YASMEEN, T.; ALI, S.; AKHTAR, M. J. Phosphorus-mobilizing rhizobacterial strain Bacillus cereus GS6 improves symbiotic efficiency of soybean on an aridisol amended with phosphorus-enriched compost. Pedosphere, v. 27, n. 6, p. 1049–1061, 2017. ARNOLD, S. L.; SCHEPERS, J. S. A simple roller-mill grinding procedure for plant and soil samples. Communications in Soil Science and Plant Analysis, v. 35, n. 3–4, p. 537–545, 90 2004. ARONE, G.; CALDERÓN, C.; MORENO, S.; BEDMAR, E. J. Identification of Ensifer strains isolated from root nodules of Medicago hispida grown in association with Zea mays in the Quechua region of the Peruvian Andes. Biology and Fertility of Soils, v. 50, n. 1, p. 185–190, 2014. ASERSE, A. A.; RÄSÄNEN, L. A.; ASEFFA, F.; HAILEMARIAM, A.; LINDSTRÖM, K. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Applied Microbiology and Biotechnology, v. 97, n. 23, p. 10117–10134, 2013. BAI, Y.; D’AOUST, F.; SMITH, D. L.; DRISCOLL, B. T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Canadian Journal of Microbiology, v. 48, n. 3, p. 230–238, 2002. BARRADAS, C. A. A.; SAYÃO, F. A. D.; DUQUE, F. F. Feijão mungo - uma alternativa protéica na alimentação. Embrapa Agrobiologia-Comunicado Técnico (INFOTECA-E) Seropédica: EMBRAPA-UAPNPBS, 1989. BARRIO-DUQUE, A. DEL; LEY, J.; SAMAD, A.; ANTONIELLI, L.; SESSITSCH, A.; COMPANT, S. Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, v. 10, p. 2888, 2019. BENJAMINI, Y.; HOCHBERG, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), v. 57, n. 1, p. 289–300, 1995. BERG, G.; KÖBERL, M.; RYBAKOVA, D.; MÜLLER, H.; GROSCH, R.; SMALLA, K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, v. 93, n. 5, 2017. BERG, G.; SMALLA, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, v. 68, n. 1, p. 1–13, 2009. BHUIYAN, M. A. H.; MIAN, M. H. Effect of Bradyrhizobium inoculation on nodulation, biomass production and yield of mungbean. Bangladesh Journal of Microbiology, v. 24, n. 2, p. 95–99, 2007. BHUIYAN, M. A. H.; MIAN, M. H.; ISLAM, M. S. Studies on the effects of Bradyrhizobium inoculation on yield and yield attributes of mungbean. Bangladesh Journal, v. 33, n. 3, p. 449– 457, 2008. BODDEY, R. M.; PEOPLES, M. B.; PALMER, B.; DART, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, v. 57, n. 3, p. 235–270, 2000. BRAKER, G.; SCHWARZ, J.; CONRAD, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiology Ecology, v. 73, n. 1, p. 134- 91 148, 2010. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 13, de 24 de março de 2011, 2011. Disponível em: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/%0Ainsumosagricolas/ fertilizantes/legislacao/in-sda-13-de-24-03-%0A2011-inoculantes.pdf/view. BROCKWELL, J.; ANDREWS, J. A.; GAULT, R. R.; GEMELL, L. G.; GRIFFITH, G. W.; HERRIDGE, D. F.; HOLLAND, J. F.; KARSONO, S.; PEOPLES, M. B.; ROUGHLEY, R. J. Erratic nodulation and nitrogen fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.]. Australian Journal of Experimental Agriculture, v. 31, n. 5, p. 653–661, 1991. BRUINSMA, J. The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In: How to feed the World in 2050. Proceedings of a technical meeting of experts, Rome, Italy, 24-26 June 2009. Food and Agriculture Organization of the United Nations (FAO), 2009. p. 1-33. BRUMBLEY, S. M.; PETRASOVITS, L. A.; HERMANN, S. R.; YOUNG, A. J.; CROFT, B. J. Recent advances in the molecular biology of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease. Australasian Plant Pathology, v. 35, n. 6, p. 681–689, 2006. BULLARD, G. K.; ROUGHLEY, R. J.; PULSFORD, D. J. The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Australian Journal of Experimental Agriculture, v. 45, n. 3, p. 127–140, 2005. CARDOSO, J. D.; HUNGRIA, M.; ANDRADE, D. S. Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N2 with common bean (Phaseolus vulgaris L.). Applied Microbiology and Biotechnology, v. 93, n. 5, p. 2035–2049, 2012. CARDOSO, P.; ALVES, A.; SILVEIRA, P.; SÁ, C.; FIDALGO, C.; FREITAS, R.; FIGUEIRA, E. Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance. Science of the Total Environment, v. 645, p. 1094–1102, 2018. CASSINI, S. T. A.; FRANCO, M. C. Fixação biológica de nitrogênio: microbiologia, fatores ambientais e genéticos. In: VIEIRA, C.; PAULA JÚNIOR, T. J.; BORÉM, A. (Eds.). Feijão. 2. ed. Viçosa: UFV, 2006. p. 143–159. CASTRO, J. L.; SOUZA, M. G.; RUFINI, M.; GUIMARÃES, A. A.; RODRIGUES, T. L.; MOREIRA, F. M. DE S. Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, v. 41, p. 160525, 2017. CHEN, D.; MI, J.; CHU, P.; CHENG, J.; ZHANG, L.; PAN, Q.; XIE, Y.; BAI, Y. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology, v. 30, n. 9, p. 1669–1682, 2015. CHENG, A.; RAAI, M. N.; ZAIN, N. A. M.; MASSAWE, F.; SINGH, A.; WAN-MOHTAR, W. A. A. Q. I. In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Security, v. 11, n. 6, p. 1205–1215, 2019. 92 CHRISTOPHER, M.; MACDONALD, B.; YEATES, S.; ZIEGLER, D.; SEYMOUR, N. Wild bradyrhizobia that occur in the Burdekin region of Queensland are as effective as commercial inoculum for mungbean (Vigna radiata (L.)) and black gram (Vigna mungo (L.)) in fixing nitrogen and dry matter production. Applied Soil Ecology, v. 124, p. 88–94, 2018. COLE, J. R.; WANG, Q.; CARDENAS, E.; FISH, J.; CHAI, B.; FARRIS, R. J.; KULAMSYED- MOHIDEEN, A. S.; MCGARRELL, D. M.; MARSH, T.; GARRITY, G. M.; TIEDJE, J. M. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, v. 37, n. SUPPL. 1, p. D141-D145, 2009. COSTA, E. M.; CARVALHO, T. S.; GUIMARÃES, A. A.; LEÃO, A. C. R.; CRUZ, L. M.; BAURA, V. A.; LEBBE, L.; WILLEMS, A.; MOREIRA, F. M. S. Classification of the inoculant strain of cowpea UFLA 03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian Journal of Microbiology, v. 50, n. 2, p. 335–345, 2019. CREWS, T. E.; PEOPLES, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture, Ecosystems & Environment, v. 102, n. 3, p. 279– 297, 2004. D’ERRICO, G.; ALOJ, V.; VENTORINO, V.; BOTTIGLIERI, A.; COMITE, E.; RITIENI, A.; MARRA, R.; BOLLETTI CENSI, S.; FLEMATTI, G. R.; PEPE, O.; VINALE, F. Methyl tbutyl ether-degrading bacteria for bioremediation and biocontrol purposes. PloS ONE, v. 15, n. 2, p. e0228936, 2020. DABA, S.; HAILE, M. Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean. Journal of Plant Nutrition, v. 23, n. 5, p. 581–591, 2000. DAHMANI, M. A.; DESRUT, A.; MOUMEN, B.; VERDON, J.; MERMOURI, L.; KACEM, M.; COUTOS-THÉVENOT, P.; KAID-HARCHE, M.; BERGÈS, T.; VRIET, C. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma. Frontiers in Plant Science, v. 11, p. 124, 2020. DE MEYER, S. E.; DE BEUF, K.; VEKEMAN, B.; WILLEMS, A. A large diversity of nonrhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology and Biochemistry, v. 83, p. 1–11, 2015. DELAMUTA, J. R. M.; SCHERER, A. J.; RIBEIRO, R. A.; HUNGRIA, M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 70, n. 7, p. 4233–4244, 2020. DELIĆ, D.; STAJKOVIĆ-SRBINOVIĆ, O.; KUZMANOVIĆ, D.; MRVIĆ, V.; KNEŽEVIĆ- VUKČEVIĆ, J. Effect of bradyrhizobial inoculation on growth and seed yield of mungbean in Fluvisol and Humofluvisol. African Journal of Microbiology Research, v. 5, n. 23, p. 3946– 3957, 2011. DIATTA, A. A.; THOMASON, W. E.; ABAYE, O.; THOMPSON, T. L.; BATTAGLIA, M. L.; VAUGHAN, L. J.; LO, M.; FILHO, J. F. D. C. L. Assessment of nitrogen fixation by 93 mungbean genotypes in different soil textures using 15N natural abundance method. Journal of Soil Science and Plant Nutrition, v. 20, n. 4, p. 2230–2240, 2020. DU, M.; XIE, J.; GONG, B.; XU, X.; TANG, W.; LI, X.; LI, C.; XIE, M. Extraction, physicochemical characteristics and functional properties of mung bean protein. Food Hydrocolloids, v. 76, p. 131–140, 2018. DUQUE, F. F.; PESSANHA, G. G. Comportamento de dez cultivares de mungo verde nos períodos das águas e da seca em condições de campo. Pesquisa Agropecuária Brasileira, v. 25, n. 7, p. 963–969, 1990. DUQUE, F. F.; SOUTO, S. M.; ABBOUD, A. C. Mungo, proteína em forma de broto de feijão. A lavoura, v. 90, p. 21–23, 1987. EL-ADAWY, T. A.; RAHMA, E. H.; EL-BEDAWEY, A. A.; EL-BELTAGY, A. E. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition, v. 58, n. 3, p. 1–13, 2003. FARRAND, S. K.; BERKUM, P. B. VAN; OGER, P. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology, v. 53, n. 5, p. 1681–1687, 2003. FAVERO, V. O.; CARVALHO, R. H.; LEITE, A. B. C.; FREITAS, K. M.; ZILLI, J. É.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Characterization and nodulation capacity of native bacteria isolated from mung bean nodules used as a trap plant in Brazilian tropical soils. Applied Soil Ecology, v. 167, p. 104041, 2021a. FAVERO, V. O.; CARVALHO, R. H.; LEITE, A. B. C.; SANTOS, D. M. T.; FREITAS, K. M.; BODDEY, R. M.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Bradyrhizobium strains from Brazilian tropical soils promote increases in nodulation, growth and nitrogen fixation in mung bean. Applied Soil Ecology, v. 175, p. 104461, 2022. FAVERO, V. O.; CARVALHO, R. H.; MOTTA, V. M.; LEITE, A. B. C.; COELHO, M. R. R.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Bradyrhizobium as the only rhizobial inhabitant of mung bean (Vigna radiata) nodules in tropical soils: a strategy based on microbiome for improving biological nitrogen fixation using bio-products. Frontiers in Plant Science, v. 11, p. 2186, 2021b. FERNANDES, M. S. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2006. FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A.; FERREIRA, M. E. B. Package ‘ExpDes. pt’, 2013. FIERER, N.; JACKSON, R. B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, v. 103, n. 3, p. 626–631, 2006. FLORENTINO, L. A.; GUIMARÃES, A. P.; RUFINI, M.; DA SILVA, K.; MOREIRA, F. M. DE S. Sesbania virgata stimulates the occurrence of its microsymbiont in soils but does not inhibit microsymbionts of other species. Scientia Agricola, v. 66, n. 5, p. 667–676, 2009. 94 FRED, E. B.; WAKSMAN, S. A. Yeast extract-mannitol agar for laboratory manual of general microbiology. New York: McGraw, 1928. FUJIWARA, K.; IIDA, Y.; SOMEYA, N.; TAKANO, M.; OHNISHI, J.; TERAMI, F.; SHINOHARA, M. Emergence of antagonism against the pathogenic fungus Fusarium oxysporum by interplay among non‑antagonistic bacteria in a hydroponics using multiple parallel mineralization. Journal of Phytopathology, v. 164, n. 11–12, p. 853–862, 2016. FULLER, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany, v. 100, n. 5, p. 903–924, 2007. FURUSHITA, M.; SHIBA, T.; MAEDA, T.; YAHATA, M.; KANEOKA, A.; TAKAHASHI, Y.; TORII, K.; HASEGAWA, T.; OHTA, M. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, v. 69, n. 9, p. 5336–5342, 2003. GAGE, D. J. Infection thread development in model legumes. In: BRUIJN, F. (Ed.). The model legume Medicago truncatula. Wiley, 2020. p. 579–588. GARCIA-PICHEL, F.; LOZA, V.; MARUSENKO, Y.; MATEO, P.; POTRAFKA, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science, v. 340, n. 6140, p. 1574–1577, 2013. GEBREHANA, Z. G.; DAGNAW, L. A. Response of soybean to rhizobial inoculation and starter N fertilizer on Nitisols of Assosa and Begi areas, Western Ethiopia. Environmental Systems Research, v. 9, n. 1, p. 1–11, 2020. GEPTS, P. Crop domestication as a long-term selection experiment. Plant Breeding Reviews, v. 24, n. 2, p. 1–44, 2004. GOOD, I. J. The population frequencies of species and the estimation of population parameters. Biometrika, v. 40, n. 3–4, p. 237–264, 1953. GROSS, B. L.; OLSEN, K. M. Genetic perspectives on crop domestication. Trends in Plant Science, v. 15, n. 9, p. 529–537, 2010. GUIMARÃES, A. A.; FLORENTINO, L. A.; ALMEIDA, K. A.; LEBBE, L.; BARROSO SILVA, K.; WILLEMS, A.; MOREIRA, F. M. S. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Systematic and Applied Microbiology, v. 38, n. 6, p. 433–441, 2015. GUIMARÃES, A. A.; JARAMILLO, P. M. D.; NÓBREGA, R. S. A.; FLORENTINO, L. A.; SILVA, K. B.; DE SOUZA MOREIRA, F. M. Genetic and symbiotic diversity of nitrogenfixing bacteria isolated from agricultural soils in the western amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, v. 78, n. 18, p. 6726–6733, 2012. GUIMARAES, S. L.; NEVES, L. C. R.; BONFIM-SILVA, E. M.; CAMPOS, D. T. S. Development of pigeon pea inoculated with rhizobium isolated from cowpea trap host plants. Revista Caatinga, v. 29, p. 789–795, 2016. 95 GUPTA, R. S.; LO, B.; SON, J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, v. 9, n. FEB, p. 67, 2018. HAI-JUN, Z.; JIA, D.; YAO, K. Nutritional and health-protective functions of mung bean. Food and Fermentation Technology, v. 1, 2012. HAKIM, S.; IMRAN, A.; MIRZA, M. S. Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Brazilian Journal of Microbiology, v. 52, n. 1, p. 311–324, 2021. HAKIM, S.; MIRZA, B. S.; IMRAN, A.; ZAHEER, A.; YASMIN, S.; MUBEEN, F.; MCLEAN, J. E.; MIRZA, M. S. Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan. Microbiological Research, v. 231, p. 126356, 2020. HAKIM, S.; MIRZA, B. S.; ZAHEER, A.; MCLEAN, J. E.; IMRAN, A.; YASMIN, S.; MIRZA, M. S. Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Applied Microbiology and Biotechnology, v. 102, n. 1, p. 485–497, 2018. HAMEED, S.; YASMIN, S.; MALIK, K. A.; ZAFAR, Y.; HAFEEZ, F. Y. Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biology and Fertility of Soils, v. 39, n. 3, p. 179–185, 2004. HANUMANTHARAO, B.; NAIR, R. M.; NAYYAR, H. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, v. 7, p. 957, 2016. HARTMANN, A.; SCHMID, M.; VAN TUINEN, D.; BERG, G. Plant-driven selection of microbes. Plant and Soil, v. 321, n. 1–2, p. 235–257, 2009. HARTMANN, M.; FREY, B.; MAYER, J.; MÄDER, P.; WIDMER, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, v. 9, n. 5, p. 1177– 1194, 2015. HAYAT, R.; ALI, S.; TARIQ, M.; CHATHA, H. Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pakistan Journal of Botany, v. 40, n. 2, p. 711–722, 2008. HENNESSEE, C. T.; SEO, J. S.; ALVAREZ, A. M.; LI, Q. X. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 59, n. 2, p. 378–387, 2009. HERLEMANN, D. P. R.; LABRENZ, M.; JÜRGENS, K.; BERTILSSON, S.; WANIEK, J. J.; ANDERSSON, A. F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, v. 5, n. 10, p. 1571–1579, 2011. 96 HERRIDGE, D. F.; PEOPLES, M. B.; BODDEY, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, v. 311, n. 1–2, p. 1–18, 2008. HERRIDGE, D. F.; ROBERTSON, M. J.; COCKS, B.; PEOPLES, M. B.; HOLLAND, J. F.; HEUKE, L. Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields. Australian Journal of Experimental Agriculture, v. 45, n. 3, p. 269, 2005. HOQUE, M. S.; BROADHURST, L. M.; THRALL, P. H. Genetic characterization of rootnodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across southeastern Australia. International Journal of Systematic and Evolutionary Microbiology, v. 61, n. 2, p. 299–309, 2011. HOU, D.; YOUSAF, L.; XUE, Y.; HU, J.; WU, J.; HU, X.; FENG, N.; SHEN, Q. Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, v. 11, n. 6, p. 1238, 2019. HUNGRIA, M.; CAMPO, R. J.; MENDES, I. C. A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Embrapa Soja-Documentos (INFOTECA-E), n. 283, p. 80, 2007. HUNGRIA, M.; CHUEIRE, L. M. DE O.; COCA, R. G.; MEGÍAS, M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biology and Biochemistry, v. 33, n. 10, p. 1349–1361, 2001. HUNGRIA, M.; MENDES, I. C. Nitrogen fixation with soybean: the perfect symbiosis? In: BRUIJN, F. J. (Ed.). Biological Nitrogen Fixation. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. v. 2p. 1009–1023. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, v. 49, n. 7, p. 791–801, 2013. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. American Journal of Plant Sciences, v. 6, p. 811–817, 2015. HUNGRIA, M.; O’HARA, G. W.; ZILLI, J. E.; ARAUJO, R. S.; DEAKER, R.; HOWIESON, J. G. Isolation and growth of rhizobia. In: HOWIESON, J. G.; DILWORTH, M. J. (Eds.). Working with rhizobia. Canberra: Australian Centre for International Agricultural Research, 2016. p. 39–60. IM, W. T.; YOKOTA, A.; KIM, M. K.; LEE, S. T. Kaistia adipata gen. nov., sp. nov., a novel α-proteobacterium. The Journal of General and Applied Microbiology, v. 50, n. 5, p. 249– 254, 2004. ISLAM, M. K.; ISLAM, S. M. A.; HARUN-OR-RASHID, M.; HOSSAIN, A. F. M. G. F.; ALOM, M. M. Effect of biofertilizer and plant growth regulators on growth of summer mungbean. International Journal of Botany, v. 2, n. 1, p. 36–41, 2006. JENKINSON, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable 97 agriculture. Plant and Soil, v. 228, n. 1, p. 3–15, 2001. JOHNSTON-MONJE, D.; RAIZADA, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE, v. 6, n. 6, p. e20396, 2011. KANG, S. M.; LATIF KHAN, A.; YOU, Y. H.; KIM, J.-G.; KAMRAN, M.; LEE, I. J. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, v. 24, n. 1, p. 106–112, 2014. KARIMI, B.; TERRAT, S.; DEQUIEDT, S.; SABY, N. P. A.; HORRIGUE, W.; LELIÈVRE, M.; NOWAK, V.; JOLIVET, C.; ARROUAYS, D.; WINCKER, P.; CRUAUD, C.; BISPO, A.; MARON, P. A.; PRÉVOST-BOURÉ, N. C.; RANJARD, L. Biogeography of soil bacteria and archaea across France. Science Advances, v. 4, n. 7, p. eaat1808, 2018. KASSAMBARA, A.; MUNDT, F. factoextra: extract and visualize the results of multivariate data analyses, 2020. Disponível em: <https://cran.rproject. org/package=factoextra> KIM, D. H.; KAASHYAP, M.; RATHORE, A.; DAS, R. R.; PARUPALLI, S.; UPADHYAYA, H. D.; GOPALAKRISHNAN, S.; GAUR, P. M.; SINGH, S.; KAUR, J.; YASIN, M.; VARSHNEY, R. K. Phylogenetic diversity of Mesorhizobium in chickpea. Journal of Biosciences, v. 39, n. 3, p. 513–517, 2014. KIMURA, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, v. 16, n. 2, p. 111–120, 1980. KOBAYASHI, H.; BROUGHTON, W. J. Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: DILWORTH, M. J.; JAMES, E. K.; SPRENT, J. I.; NEWTON, W. E. (Eds.). Nitrogen-fixing Leguminous Symbioses. 7. ed. Dordrecht: Springer, 2008. p. 117–152. KORIR, H.; MUNGAI, N. W.; THUITA, M.; HAMBA, Y.; MASSO, C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, v. 08, p. 141, 2017. KRANZ, C.; WHITMAN, T. Surface charring from prescribed burning has minimal effects on soil bacterial community composition two weeks post-fire in jack pine barrens. Applied Soil Ecology, v. 144, p. 134–138, 2019. KRUAWAN, K.; TONGYONK, L.; KANGSADALAMPAI, K. Antimutagenic and comutagenic activities of some legume seeds and their seed coats. Journal of Medicinal Plants Research, v. 6, n. 22, p. 3845–3851, 2012. KUKLINSKY-SOBRAL, J.; ARAUJO, W. L.; MENDES, R.; GERALDI, I. O.; PIZZIRANIKLEINER, A. A.; AZEVEDO, J. L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, v. 6, n. 12, p. 1244–1251, 2004. 98 KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, v. 33, n. 7, p. 1870–1874, 2016. KUYKENDALL, L. D.; KERR, A.; YOUNG, J. M.; MARTÍNEZ-ROMERO, E.; SAWADA, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 1, p. 89–103, 2001. LACERDA, A. M.; MOREIRA, F. M. D. E. S.; ANDRADE, M. J. B.; SOARES, A. L. D. E. L. Efeito de estirpes de rizóbio sobre a nodulação e produtividade do feijão-caupi. Ceres, v. 51, n. 293, p. 67–82, 2004. LAJUDIE, P. M.; ANDREWS, M.; ARDLEY, J.; EARDLY, B.; JUMAS-BILAK, E.; KUZMANOVIĆ, N.; LASSALLE, F.; LINDSTRÖM, K.; MHAMDI, R.; MARTÍNEZROMERO, E.; MOULIN, L.; MOUSAVI, S. A.; NESME, X.; PEIX, A.; PUŁAWSKA, J.; STEENKAMP, E.; STĘPKOWSKI, T.; TIAN, C.-F.; VINUESA, P.; WEI, G.; WILLEMS, A.; ZILLI, J. E.; YOUNG, P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. International Journal of Systematic and Evolutionary Microbiology, v. 69, n. 7, p. 1852–1863, 2019. LAJUDIE, P. M.; WILLEMS, A.; NICK, G.; MOHAMED, S. H.; TORCK, U.; COOPMAN, R.; FILALI-MALTOUF, A.; KERSTERS, K.; DREYFUS, B.; LINDSTRÖM, K.; GILLIS, M. Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Systematic and Applied Microbiology, v. 22, n. 1, p. 119–132, 1999. LAMBRIDES, C. J.; GODWIN, I. D. Mungbean. In: KOLE, C. (Ed.). Pulses, Sugar and Tuber Crops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 69–90. LARRAINZAR, E.; VILLAR, I.; RUBIO, M. C.; PÉREZ‑RONTOMÉ, C.; HUERTAS, R.; SATO, S.; MUN, J.; BECANA, M. Hemoglobins in the legume–Rhizobium symbiosis. New Phytologist, v. 228, n. 2, p. 472–484, 2020. LAUBER, C. L.; HAMADY, M.; KNIGHT, R.; FIERER, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, v. 75, n. 15, p. 5111–5120, 2009. LEE, C. K.; HERBOLD, C. W.; POLSON, S. W.; WOMMACK, K. E.; WILLIAMSON, S. J.; MCDONALD, I. R.; CARY, S. C. Groundtruthing next-gen sequencing for microbial ecologybiases and errors in community structure estimates from PCR amplicon pyrosequencing. PloS ONE, v. 7, n. 9, 2012. LEITE, J. Simbiose feijão-caupi e rizóbio: diversidade de bactérias associadas aos nódulos. 75p., 2015. Tese de Doutorado apresentada no Programa de Pós-Graduação em Agronomia (Ciência do Solo) – Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ. LEITE, J.; FISCHER, D.; ROUWS, L. F. M.; FERNANDES-JÚNIOR, P. I.; HOFMANN, A.; KUBLIK, S.; SCHLOTER, M.; XAVIER, G. R.; RADL, V. Cowpea nodules harbor non99 rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science, v. 7, 2017. LEITE, J.; PASSOS, S. R.; SIMÕES-ARAÚJO, J. L.; RUMJANEK, N. G.; XAVIER, G. R.; ZILLI, J. É. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, v. 49, n. 4, p. 703–713, 2018. LEITE, J.; SEIDO, S. L.; PASSOS, S. R.; XAVIER, G. R.; RUMJANEK, N. G.; MARTINS, L. M. V. Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, v. 33, n. 5, p. 1215– 1226, 2009. LIAQAT, F.; ELTEM, R. Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech, v. 6, n. 2, p. 120, 2016. LIMA, A. S.; NÓBREGA, R. S. A.; BARBERI, A.; DA SILVA, K.; FERREIRA, D. F.; MOREIRA, F. M. D. S. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant and Soil, v. 319, n. 1–2, p. 127–145, 2009. LIU, C.; ZHUANG, X.; YU, Z.; WANG, Z.; WANG, Y.; GUO, X.; XIANG, W.; HUANG, S. Community structures and antifungal activity of root-associated endophytic Actinobacteria of healthy and diseased soybean. Microorganisms, v. 7, n. 8, p. 243, 2019a. LIU, F.; HEWEZI, T.; LEBEIS, S. L.; PANTALONE, V.; GREWAL, P. S.; STATON, M. E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, v. 19, n. 1, p. 201, 2019b. LIU, J.; WANG, E. T.; REN, D. W.; CHEN, W. X. Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Archives of Microbiology, v. 192, n. 3, p. 229–234, 2010. LORENZO, C.; LUCAS, M. M.; VIVO, A.; FELIPE, M. R. Effect of nitrate on peroxisome ultrastructure and catalase activity in nodules of Lupinus albus L. cv. Multolupa. Journal of Experimental Botany, v. 41, n. 12, p. 1573–1578, 1990. LU, Y. L.; CHEN, W. F.; WANG, E. T.; HAN, L. L.; ZHANG, X. X.; CHEN, W. X.; HAN, S. Z. Mesorhizobium shangrilense sp. nov., isolated from root nodules of Caragana species. International Journal of Systematic and Evolutionary Microbiology, v. 59, n. 12, p. 3012– 3018, 2009. MALAVOLTA, E. Elementos de nutrição mineral de plantas. São Paulo: Agronômica Ceres, 1980. MARQUEZ-SANTACRUZ, H. A.; HERNANDEZ-LEON, R.; OROZCO-MOSQUEDA, M. C.; VELAZQUEZ-SEPULVEDA, I.; SANTOYO, G. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalisixocarpa) and their detection in the rhizosphere. Genetics and Molecular Research, v. 9, n. 4, p. 2372–2380, 2010. MARRA, L. M.; SOUSA SOARES, C. R. F.; DE OLIVEIRA, S. M.; FERREIRA, P. A. A.; 100 SOARES, B. L.; DE CARVALHO, R. F.; DE LIMA, J. M.; DE MOREIRA, F. M. S. Biological nitrogen fixation and phosphate solubilization by bacteria isolated from tropical soils. Plant and Soil, v. 357, n. 1, p. 289–307, 2012. MARTÍNEZ-HIDALGO, P.; HIRSCH, A. M. The nodule microbiome: N2 fixing rhizobia do not live alone. Phytobiomes Journal, v. 1, n. 2, p. 70–82, 2017. MARTINS, L. M. V. Características ecológicas e fisiológicas de rizóbios de caupi (Vigna unguiculata (L.) Walp) isolados a partir de solos da região Nordeste do Brasil. 213p., 1996. Dissertação de Mestrado apresentada no Programa de Pós-Graduação em Agronomia (Ciências do Solo) - Universidade Federal do Rio de Janeiro, Seropédica-RJ. MARTINS, L. M. V; XAVIER, G. R.; RANGEL, F. W.; RIBEIRO, J. R. A.; NEVES, M. C. P.; MORGADO, L. B.; RUMJANEK, N. G. Contribution of biological nitrogen fixation to cowpea: A strategy for improving grain yield in the semi-arid region of Brazil. Biology and Fertility of Soils, v. 38, n. 6, p. 333–339, 2003. MASSON-BOIVIN, C.; SACHS, J. L. Symbiotic nitrogen fixation by rhizobia—the roots of a success story. Current Opinion in Plant Biology, v. 44, p. 7-15, 2018. MATAMOROS, M. A.; BAIRD, L. M.; ESCUREDO, P. R.; DALTON, D. A.; MINCHIN, F. R.; ITURBE-ORMAETXE, I.; RUBIO, M. C.; MORAN, J. F.; GORDON, A. J.; BECANA, M. Stress-induced legume root nodule senescence. physiological, biochemical, and structural alterations. Plant Physiology, v. 121, n. 1, p. 97–112, 1999. MATHU, S.; HERRMANN, L.; PYPERS, P.; MATIRU, V.; MWIRICHIA, R.; LESUEUR, D. Potential of indigenous bradyrhizobia versus commercial inoculants to improve cowpea (Vigna unguiculata L. walp.) and green gram (Vigna radiata L. wilczek.) yields in Kenya. Soil Science and Plant Nutrition, v. 58, n. 6, p. 750–763, 2012. MCMURDIE, P. J.; HOLMES, S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PloS ONE, v. 8, n. 4, p. e61217, 2013. MENDES, I. C.; HUNGRIA, M.; VARGAS, M. A. T. Soybean response to starter nitrogen and Bradyrhizobium inoculation on a Cerrado Oxisol under no-tillage and conventional tillage systems. Revista Brasileira de Ciência do Solo, v. 27, n. 1, p. 81–87, 2003. MENDES, R.; GARBEVA, P.; RAAIJMAKERS, J. M. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, v. 37, n. 5, p. 634–663, 2013. MENNA, P.; HUNGRIA, M. Phylogeny of nodulation and nitrogen-fixation genes in Bradyrhizobium: supporting evidence for the theory of monophyletic origin, and spread and maintenance by both horizontal and vertical transfer. International Journal of Systematic and Evolutionary Microbiology, v. 61, n. 12, p. 3052–3067, 2011. MOHAMMED, M.; JAISWAL, S. K.; DAKORA, F. D. Distribution and correlation between phylogeny and functional traits of cowpea (Vigna unguiculata L. Walp.) nodulating microsymbionts from Ghana and South Africa. Scientific Reports, v. 8, n. 1, p. 18006, 2018. MURESU, R.; POLONE, E.; SULAS, L.; BALDAN, B.; TONDELLO, A.; DELOGU, G.; 101 CAPPUCCINELLI, P.; ALBERGHINI, S.; BENHIZIA, Y.; BENHIZIA, H.; BENGUEDOUAR, A.; MORI, B.; CALAMASSI, R.; DAZZO, F. B.; SQUARTINI, A. Coexistence of predominantly nonculturable rhizobia with diverse, endophytic bacterial taxa within nodules of wild legumes. FEMS Microbiology Ecology, v. 63, n. 3, p. 383–400, 2008. MUTCH, L. A.; YOUNG, J. P. W. Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes. Molecular Ecology, v. 13, n. 8, p. 2435–2444, 2004. NAIR, R. M.; SCHAFLEITNER, R.; KENYON, L.; SRINIVASAN, R.; EASDOWN, W.; EBERT, A. W.; HANSON, P. Genetic improvement of mungbean. Journal of Breeding and Genetics, v. 44, n. 2, p. 177–190, 2012. NALAMPANG, A. Grain legumes in tropics. Bangkok, Deparatamento of Agriculture, p. 98, 1992. NDUNGU, S. M.; MESSMER, M. M.; ZIEGLER, D.; GAMPER, H. A.; MÉSZÁROS, É.; THUITA, M.; VANLAUWE, B.; FROSSARD, E.; THONAR, C. Cowpea (Vigna unguiculata L. Walp) hosts several widespread bradyrhizobial root nodule symbionts across contrasting agro-ecological production areas in Kenya. Agriculture, Ecosystems & Environment, v. 261, p. 161–171, 2018. NEVES, M. C. P.; GUERRA, J. G. M.; CARVALHO, S. R. DE; RIBEIRO, R. DE L. D.; ALMEIDA, D. L. DE. Sistema integrado de produção agroecológica ou fazendinha agroecológica do km 47. In: AQUINO, A.; ASSIS, R. L. (Eds.). Agroecologia: princípios e técnica para uma agricultura orgânica sustentável. Brasília: Embrapa-Informação Tecnológica. Seropédica, RJ: Brasília: Embrapa Informação tecnológica, 2005. p. 147–172. NEVES, M. C. P.; RUMJANEK, N. G. Diversity and adaptability of soybean and cowpea rhizobia in tropical soils. Soil Biology and Biochemistry, v. 29, n. 5–6, p. 889–895, 1997. NGUYEN, H. P.; MIWA, H.; KANEKO, T.; SATO, S.; OKAZAKI, S. Identification of Bradyrhizobium elkanii genes involved in incompatibility with Vigna radiata. Genes, v. 8, n. 12, 2017. NOGUEIRA, A. R. A.; SOUZA, G. B. DE. Manual de laboratórios: solo, água, nutrição vegetal, nutrição animal e alimentos. São Carlos, SP: Embrapa Pecuária Sudeste, 2005. NORRIS, D. O.; DATE, R. A. Legume bacteriology. In: SHAW, N. H.; BRYAN, W. W. (Eds.). Tropical pastures research, principles and methods. Hurley: Commoweath Bureau of Pastures and Field Crops, 1976. p. 134-174 (Bulletin, 51). OFEK, M.; VORONOV-GOLDMAN, M.; HADAR, Y.; MINZ, D. Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs active communities. Environmental Microbiology, v. 16, n. 7, p. 2157–2167, 2014. O’HARA, G. W.; HUNGRIA, M.; WOOMER, P.; HOWIESON, J. G. Counting rhizobia. In: HOWIESON, J. G.; DILWORTH, M. J. (Eds.). Working with rhizobia. Canberra: Australian Centre for International Agricultural Research, 2016. p. 109–124. OKAZAKI, S.; ZEHNER, S.; HEMPEL, J.; LANG, K.; GÖTTFERT, M. Genetic organization 102 and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiology Letters, v. 295, n. 1, p. 88–95, 2009. OKSANEN, J.; BLANCHET, F. G.; FRIENDLY, M.; KINDT, R.; LEGENDRE, P.; MCGLINN, D.; MINCHIN, P. R.; O’HARA, R. B.; SIMPSON, G. L.; SOLYMOS, P. vegan: community ecology package, 2019. Disponível em: <https://cran.r-project.org/>. OLIVEIRA-LONGATTI, S. M.; MARRA, L. M.; LIMA SOARES, B.; BOMFETI, C. A.; SILVA, K.; AVELAR FERREIRA, P. A.; SOUZA MOREIRA, F. M. Bacteria isolated from soils of the western Amazon and from rehabilitated bauxite-mining areas have potential as plant growth promoters. World Journal of Microbiology and Biotechnology, v. 30, n. 4, p. 1239– 1250, 2014. OTT, T.; VAN DONGEN, J. T.; GÜNTHER, C.; KRUSELL, L.; DESBROSSES, G.; VIGEOLAS, H.; BOCK, V.; CZECHOWSKI, T.; GEIGENBERGER, P.; UDVARDI, M. K. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Current Biology, v. 15, n. 6, p. 531–535, 2005. PANDYA, M.; KUMAR, G. N.; RAJKUMAR, S. Invasion of rhizobial infection thread by non-rhizobia for colonization of Vigna radiata root nodules. FEMS Microbiology Letters, v. 348, n. 1, p. 58–65, 2013. PARTIDA-MARTÍNEZ, L. P.; HEIL, M. The microbe-free plant: fact or artifact?. Frontiers in Plant Science, v. 2, p. 100, 2011. PASSARI, A. K.; MISHRA, V. K.; GUPTA, V. K.; YADAV, M. K.; SAIKIA, R.; SINGH, B. P. In vitro and in vivo plant growth promoting activities and DNA fingerprinting of antagonistic endophytic Actinomycetes associates with medicinal plants. PloS ONE, v. 10, n. 9, p. e0139468, 2015. PERES, J. R. R. Seleção de estirpes de Rhizobium japonicum e competitividade por sitios de infeccao nodular em cultivares de soja (Glycine max (L.) Merrill. 1979. Tese de Doutorado. Universidade Federal do Rio Grande do Sul, Porto Alegre-RS. PÉREZ-JARAMILLO, J. E.; MENDES, R.; RAAIJMAKERS, J. M. Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Molecular Biology, v. 90, n. 6, p. 635–644, 2016. PIROMYOU, P.; SONGWATTANA, P.; TEAMTISONG, K.; TITTABUTR, P.; BOONKERD, N.; TANTASAWAT, P. A.; GIRAUD, E.; GÖTTFERT, M.; TEAUMROONG, N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. MicrobiologyOpen, v. 8, n. 7, p. e00781, 2019. QUAST, C.; PRUESSE, E.; YILMAZ, P.; GERKEN, J.; SCHWEER, T.; YARZA, P.; PEPLIES, J.; GLÖCKNER, F. O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Research, v. 41, n. D1, p. D590–D596, 2013. R CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing, 2019. Disponível em: <https://www.r-project.org/>. 103 R CORE TEAM. R: A language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing, 2020. Disponível em: <https://www.r-project.org/>. R CORE TEAM. R: a language and environment for statistical computing. Vienna, Austria. R Foundation for Statistical Computing, 2021. Disponível em: <https://www.r-project.org/>. RAHMAN, N. A.; LARBI, A.; KOTU, B.; TETTEH, F. M.; HOESCHLE-ZELEDON, I. Does nitrogen matter for legumes? Starter nitrogen effects on biological and economic benefits of cowpea (Vigna unguiculata L.) in Guinea and Sudan Savanna of West Africa. Agronomy, v. 8, n. 7, p. 120, 2018. RAMIREZ, K. S.; CRAINE, J. M.; FIERER, N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes. Global Change Biology, v. 18, n. 6, p. 1918–1927, 2012. RAMÍREZ, M. D. A.; ESPAÑA, M.; LEWANDOWSKA, S.; YUAN, K.; OKAZAKI, S.; OHKAMA-OHTSU, N.; YOKOYAMA, T. Phylogenetic analysis of symbiotic bacteria associated with two Vigna Species under different agro-ecological conditions in Venezuela. Microbes and environments, v. 35, n. 1, 2020. RASHID, S.; CHARLES, T. C.; GLICK, B. R. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology, v. 61, p. 217–224, 2012. RAZON, L. F. Is nitrogen fixation (once again) “vital to the progress of civilized humanity”?. Clean Technologies and Environmental Policy, v. 17, n. 2, p. 301–307, 2015. REGUS, J. U.; QUIDES, K. W.; O’NEILL, M. R.; SUZUKI, R.; SAVORY, E. A.; CHANG, J. H.; SACHS, J. L. Cell autonomous sanctions in legumes target ineffective rhizobia in nodules with mixed infections. American Journal of Botany, v. 104, n. 9, p. 1299–1312, 2017. RÍOS-RUIZ, W. F.; VALDEZ-NUÑEZ, R. A.; BEDMAR, E. J.; CASTELLANO-HINOJOSA, A. Utilization of endophytic bacteria isolated from legume root nodules for plant growth promotion. In: Springer, Cham, 2019. p. 145–176. RIPOLL, F.; PASEK, S.; SCHENOWITZ, C.; DOSSAT, C.; BARBE, V.; ROTTMAN, M.; MACHERAS, E.; HEYM, B.; HERMANN, J. L.; DAFFÉ, M.; BROSCH, R.; RISLER, J. L.; GAILLARD, J. L. Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus. PloS ONE, v. 4, n. 6, 2009. RISAL, C. P.; DJEDIDI, S.; DHAKAL, D.; OHKAMA-OHTSU, N.; SEKIMOTO, H.; YOKOYAMA, T. Phylogenetic diversity and symbiotic functioning in mungbean (Vigna radiata L. Wilczek) bradyrhizobia from contrast agro-ecological regions of Nepal. Systematic and Applied Microbiology, v. 35, n. 1, p. 45–53, 2012. RISAL, C. P.; YOKOYAMA, T.; OHKAMA-OHTSU, N.; DJEDIDI, S.; SEKIMOTO, H. Genetic diversity of native soybean bradyrhizobia from different topographical regions along the southern slopes of the Himalayan Mountains in Nepal. Systematic and Applied Microbiology, v. 33, n. 7, p. 416–425, 2010. ROCHA, S. M. B.; MENDES, L. W.; DE SOUZA OLIVEIRA, L. M.; MELO, V. M. M.; ANTUNES, J. E. L.; ARAUJO, F. F.; HUNGRIA, M.; ARAUJO, A. S. F. Nodule microbiome 104 from cowpea and lima bean grown in composted tannery sludge-treated soil. Applied Soil Ecology, v. 151, p. 103542, 2020. ROGNES, T.; FLOURI, T.; NICHOLS, B.; QUINCE, C.; MAHÉ, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ, v. 2016, n. 10, 2016. ROUSK, J.; BÅÅTH, E.; BROOKES, P. C.; LAUBER, C. L.; LOZUPONE, C.; CAPORASO, J. G.; KNIGHT, R.; FIERER, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal, v. 4, n. 10, p. 1340–1351, 2010. SACHS, J. L.; QUIDES, K. W.; WENDLANDT, C. E. Legumes versus rhizobia: a model for ongoing conflict in symbiosis. New Phytologist, v. 219, n. 4, p. 1199–1206, 2018. SAKIA, R. M. The Box-Cox transformation technique: a review. Journal of the Royal Statistical Society: Series D (The Statistician), v. 41, n. 2, p. 169–178, 1992. SALAZAR, G. EcolUtils: utilities for community ecology analysis. R package version 0.1, 2018. Disponível em: <https://github.com/GuillemSalazar/EcolUtils>. SANTOS, D. M. T. DOS. Inoculação de feijão-mungo (Vigna radiata (L.) Wilczek) com estirpes comerciais de Bradyrhizobium: avaliação da produtividade no município de Campos dos Goytacazes – RJ. 48p., 2020. Dissertação de Mestrado apresentada no Porgrama de Pós-Graduação em Agronomia (Ciência do Solo) - Universidade Federal Rural do Rio de Janeiro. SANTOYO, G.; PACHECO, C. H.; SALMERÓN, J. H.; LEÓN, R. H. The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Spanish Journal of Agricultural Research, v. 15, n. 1, p. 13, 2017. SAYÃO, F. A. D.; BRIOSO, P. S. T.; DUQUE, F. F. Comportamento de linhagens de mungo verde em condições de campo em Itaguaí, RJ. Pesquisa Agropecuária Brasileira, v. 26, n. 5, p. 659–664, 1991. SCHAFLEITNER, R.; NAIR, R. M.; RATHORE, A.; WANG, Y.; LIN, C.; CHU, S.; LIN, P.; CHANG, J. C.; EBERT, A. W. The AVRDC – The World Vegetable Center mungbean (Vigna radiata) core and mini core collections. BMC Genomics, v. 16, n. 1, p. 344, 2015. SCHLOSS, P. D.; WESTCOTT, S. L.; RYABIN, T.; HALL, J. R.; HARTMANN, M.; HOLLISTER, E. B.; LESNIEWSKI, R. A.; OAKLEY, B. B.; PARKS, D. H.; ROBINSON, C. J.; SAHL, J. W.; STRES, B.; THALLINGER, G. G.; VAN HORN, D. J.; WEBER, C. F. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Applied and Environmental Microbiology, v. 75, n. 23, p. 7537–41, 2009. SCHÖLLHORN, R.; BURRIS, R. H. Acetylene as a competitive inhibitor of N-2 fixation. Proceedings of the National Academy of Sciences of the United States of America, v. 58, n. 1, p. 213–6, 1967. SHAHAROONA, B.; ARSHAD, M.; ZAHIR, Z. A. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Letters in Applied 105 Microbiology, v. 42, n. 2, p. 155–159, 2006. SHARAF, H.; RODRIGUES, R. R.; MOON, J.; ZHANG, B.; MILLS, K.; WILLIAMS, M. A. Unprecedented bacterial community richness in soybean nodules vary with cultivar and water status. Microbiome, v. 7, n. 1, p. 1–18, 2019. SHARMA, L.; PRIYA, M.; BINDUMADHAVA, H.; NAIR, R. M.; NAYYAR, H. Influence of high temperature stress on growth, phenology and yield performance of mungbean [Vigna radiata (L.) Wilczek] under managed growth conditions. Scientia Horticulturae, v. 213, p. 379–391, 2016. SHEARER, G.; KOHL, D. H. N2-fixation in field settings: estimations based on natural 15N abundance. Australian Journal of Plant Physiology, v. 13, n. 6, p. 699–756, 1986. SILVA JÚNIOR, E. B.; FAVERO, V. O.; XAVIER, G. R.; BODDEY, R. M.; ZILLI, J. E. Rhizobium inoculation of cowpea in Brazilian cerrado increases yields and nitrogen fixation. Agronomy Journal, v. 110, n. 2, p. 722–727, 2018. SILVA, V. B.; BOMFIM, C. S. G.; SENA, P. T. S.; SANTOS, J. C. S.; MATTOS, W. S.; GAVA, C. A. T.; SOUZA, A. P.; FERNANDES-JÚNIOR, P. I. Vigna spp. root-nodules harbor potentially pathogenic fungi controlled by co-habiting bacteria. Current Microbiology, v. 1, p. 3, 2021. SILVA, F. V.; SIMÕES-ARAÚJO, J. L.; SILVA JÚNIOR, J. P.; XAVIER, G. R.; RUMJANEK, N. G. Genetic diversity of rhizobia isolates from Amazon soils using cowpea (Vigna unguiculata) as trap plant. Brazilian Journal of Microbiology, v. 43, n. 2, p. 682–691, 2012. SINGH, S.; VARMA, A. Structure, function, and estimation of leghemoglobin. In: Springer, Cham, 2017. p. 309–330. SINGLETON, P. W.; TAVARES, J. W. Inoculation response of legumes in relation to the number and effectiveness of indigenous Rhizobium populations. Applied and Environmental Microbiology, v. 51, n. 5, p. 1013–1018, 1986. SIQUEIRA, A. F.; ORMEÑO-ORRILLO, E.; SOUZA, R. C.; RODRIGUES, E. P.; ALMEIDA, L. G. P.; BARCELLOS, F. G.; BATISTA, J. S. S.; NAKATANI, A. S.; MARTÍNEZ-ROMERO, E.; VASCONCELOS, A. T. R.; HUNGRIA, M. Comparative genomics of Bradyrhizobium japonicum CPAC 15 and Bradyrhizobium diazoefficiens CPAC 7: elite model strains for understanding symbiotic performance with soybean. BMC Genomics, v. 15, n. 1, p. 1–21, 2014. SMALLA, K.; WIELAND, G.; BUCHNER, A.; ZOCK, A.; PARZY, J.; KAISER, S.; ROSKOT, N.; HEUER, H.; BERG, G. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Applied and Environmental Microbiology, v. 67, n. 10, p. 4742–4751, 2001. SMIL, V. Enriching the earth: Fritz Haber, Carl Bosch, and the transformation of world food production. MIT press, 2004. SONGWATTANA, P.; NOISANGIAM, R.; TEAMTISONG, K.; PRAKAMHANG, J.; 106 TEULET, A.; TITTABUTR, P.; PIROMYOU, P.; BOONKERD, N.; GIRAUD, E.; TEAUMROONG, N. Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Frontiers in Microbiology, v. 8, p. 1810, 2017. SOUZA, J. A. M.; TIEPPO, E.; MAGNANI, G. S.; ALVES, L. M. C.; CARDOSO, R. L.; CRUZ, L. M.; OLIVEIRA, L. F.; RAITTZ, R. T.; SOUZA, E. M.; OLIVEIRA PEDROSA, F.; LEMOS, E. M. G. Draft genome sequence of the nitrogen-fixing symbiotic bacterium Bradyrhizobium elkanii 587. Journal of Bacteriology, v. 194, n. 13, p. 3547–3548, 2012. SOUZA, R. A.; HUNGRIA, M.; FRANCHINI, J. C.; MACIEL, C. D.; CAMPO, R. J.; ZAIA, D. A. M. Conjunto mínimo de parâmetros para avaliação da microbiota do solo e da fixação biológica do nitrogênio pela soja. Pesquisa Agropecuária Brasileira, v. 43, n. 1, p. 83–91, 2008. SPRENT, J. I. Evolution and diversity of legume symbiosis. In: Nitrogen-fixing Leguminous Symbioses. Springer Netherlands, 2008. p. 1–21. STELIGA, T.; WOJTOWICZ, K.; KAPUSTA, P.; BRZESZCZ, J. Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules, v. 25, n. 3, p. 709, 2020. STEVENSON, F. J.; COLE, M. A. Cycles of soils: carbon, nitrogen, phosphorus, sulfur, micronutrients. John Wiley & Sons, 1999. TAIZ, L.; ZEIGER, E. Fisiologia Vegetal. 3. ed. Porto Alegre: ARTMED, 2004. TAMPAKAKI, A. P.; FOTIADIS, C. T.; NTATSI, G.; SAVVAS, D. Phylogenetic multilocus sequence analysis of indigenous slow-growing rhizobia nodulating cowpea (Vigna unguiculata L.) in Greece. Systematic and Applied Microbiology, v. 40, n. 3, p. 179–189, 2017. TAMURA, K. Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, v. 9, n. 4, p. 678–687, 1992. TANG, D.; DONG, Y.; REN, H.; LI, L.; HE, C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chemistry Central Journal, v. 8, n. 1, p. 1–9, 2014. TARIQ, M.; HAMEED, S.; YASMEEN, T.; ALI, A. Non-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vigna radiata (L.) Wilczek]. African Journal of Biotechnology, v. 11, n. 84, p. 15012–15019, 2012. TARIQ, M.; HAMEED, S.; YASMEEN, T.; ZAHID, M.; ZAFAR, M. Molecular characterization and identification of plant growth promoting endophytic bacteria isolated from the root nodules of pea (Pisum sativum L.). World Journal of Microbiology and Biotechnology, v. 30, n. 2, p. 719–725, 2014. THIES, J. E.; SINGLETON, P. W.; BOHLOOL, B. BEN. Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on 107 field-grown legumes. Applied and Environmental Microbiology, v. 57, n. 1, p. 19-28, 1991. TRABELSI, D.; CHIHAOUI, S. A.; MHAMDI, R. Nodules and roots of Vicia faba are inhabited by quite different populations of associated bacteria. Applied Soil Ecology, v. 119, p. 72–79, 2017. TULU, D.; ENDALKACHEW, W.; ZIKIE, A.; ASNAKE, F.; TILAHUN, A.; CHRIS, O. Groundnut (Arachis hypogaea L.) and cowpea (Vigna unguiculata L. Walp) growing in Ethiopia are nodulated by diverse rhizobia. African Journal of Microbiology Research, v. 12, n. 9, p. 200–217, 2018. UNKOVICH, M.; HERRIDGE, D.; PEOPLES, M.; CADISCH, G.; BODDEY, B.; GILLER, K.; ALVES, B.; CHALK, P. Measuring plant-associated nitrogen fixation in agricultural systems. Australian Centre for International Agricultural Research (ACIAR), 2008. VAN DER PUTTEN, W. H.; KLIRONOMOS, J. N.; WARDLE, D. A. Microbial ecology of biological invasions. ISME Journal, 2007. VAN DIJK, E. L.; JASZCZYSZYN, Y.; THERMES, C. Library preparation methods for nextgeneration sequencing: tone down the bias. Experimental Cell Research, v. 322, n. 1, p. 12- 20, 2014. VARGAS, M. A. T.; MENDES, I. DE C.; SUHET, A. R.; PERES, J. R. R. Duas novas estirpes de rizobio para a inoculacao da soja. Embrapa Cerrados-Comunicado Técnico (INFOTECAE), 1992. VENABLES, W. N.; RIPLEY, B. D. Modern applied statistics with S. Fourth Edi ed. New York: Springer, 2002. VERMA, M.; MISHRA, J.; ARORA, N. K. Plant growth-promoting rhizobacteria: diversity and applications. In: Environmental Biotechnology: For Sustainable Future. Springer Singapore, 2019. p. 129–173. VIEIRA, R. F.; CARNEIRO, J. E. S.; JÚNIOR, P.; ARAÚJO, R. F. MGS Esmeralda: new large seed mungbean cultivar. Pesquisa Agropecuária Brasileira, v. 43, n. 6, p. 781–782, 2008. VIEIRA, R. F.; JOSÉ, T.; JÚNIOR, P.; JACOB, L. L.; LEHNER, S.; SANTOS, J. Desempenho de genótipos de feijão-mungo-verde semeados no inverno na Zona da Mata de Minas Gerais. Revista Ceres, v. 58, p. 402–405, 2011. VIEIRA, R. F.; NISHIHARA, M. K. Comportamento de cultivares de mungo-verde (Vigna radiata) em Viçosa, Minas Gerais. Ceres, v. 39, n. 221, 1992. VIEIRA, R. F.; OLIVEIRA, V. R.; VIEIRA, C. Cultivo do feijão-mungo-verde no verão em Viçosa e em Prudente de Morais. Horticultura Brasileira, v. 21, n. 1, p. 37–43, 2003. VIEIRA, R. F.; OLIVEIRA, V. R.; VIEIRA, C.; PINTO, C. M. F. Ouro Verde MG2: nova cultivar de mungo-verde para Minas Gerais. Horticultura Brasileira, v. 20, n. 1, p. 119–120, 2002. VIEIRA, R. F.; PINTO, C. M. F.; VIANA, L. F. Comportamento de linhagens de mungo-verde no verão-outono na Zona da Mata de Minas Gerais. Ceres, v. 52, n. 299, p. 153–164, 2005. 108 VIEIRA, R. F.; VIEIRA, C.; ANDRADE, G. A. Comparações agronômicas de feijões dos gêneros Vigna e Phaseolus com o feijão-comum (Phaseolus vulgaris L.). Pesquisa Agropecuária Brasileira, v. 27, n. 6, p. 841–850, 1992. VIEIRA, R. F.; VIEIRA, C.; VIEIRA, R. F. Leguminosas graníferas. Viçosa: UFV, 2001. VINCENT, J. M. A manual for the practical study of the root-nodule bacteria. Oxford, United Kingdom: Blackwell Scientific Publications, 1970. VYAS, P. Endophytic microorganisms as bio-inoculants for sustainable agriculture. In: Microbial Bioprospecting for Sustainable Development. Springer Singapore, 2018. p. 41–60. WAGNER, M. R.; LUNDBERG, D. S.; DEL RIO, T. G.; TRINGE, S. G.; DANGL, J. L.; MITCHELL-OLDS, T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, v. 7, n. 1, p. 1–15, 2016. WANG, D.; YANG, S.; TANG, F.; ZHU, H. Symbiosis specificity in the legume - rhizobial mutualism. Cellular Microbiology, v. 14, n. 3, p. 334–342, 2012. WANG, L. L.; WANG, E. T.; LIU, J.; LI, Y.; CHEN, W. X. Endophytic occupation of root nodules and roots of Melilotus dentatus by Agrobacterium tumefaciens. Microbial Ecology, v. 52, n. 3, p. 436–443, 2006. WANG, Q.; LIU, J.; ZHU, H. Genetic and molecular mechanisms underlying symbiotic specificity in legume-rhizobium interactions. Frontiers in Plant Science, v. 9, p. 313, 2018. WANG, W.; WANG, H.; FENG, Y.; WANG, L.; XIAO, X.; XI, Y.; LUO, X.; SUN, R.; YE, X.; HUANG, Y.; ZHANG, Z.; CUI, Z. Consistent responses of the microbial community structure to organic farming along the middle and lower reaches of the Yangtze River. Scientific Reports, v. 6, 2016. WANG, Y.; LI, C.; TU, C.; HOYT, G. D.; DEFOREST, J. L.; HU, S. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Science of the Total Environment, v. 609, p. 341–347, 2017. WEESE, D. J.; HEATH, K. D.; DENTINGER, B. T. M.; LAU, J. A. Long-term nitrogen addition causes the evolution of less-cooperative mutualists. Evolution, v. 69, n. 3, p. 631–642, 2015. WEINBERGER, K. Impact analysis of mungbean research in South and Southeast Asia. Final report of GTZ Project. The World Vegetable Center (AVRDC), Shanhua, Taiwan, 2003. WESTHOEK, A.; FIELD, E.; REHLING, F.; MULLEY, G.; WEBB, I.; POOLE, P. S.; TURNBULL, L. A. Policing the legume-Rhizobium symbiosis: a critical test of partner choice. Scientific Reports, v. 7, n. 1, p. 1–10, 2017. WICKHAM, H. ggplot2: elegant graphics for data analysis. New York, NY: Springer- Verlag, 2016. WILKE, C. O. Cowplot: streamlined plot theme and plot annotations for ‘ggplot2’, 2016. Disponível em: <https://cran.r-project.org/web/packages/cowplot/index.html>. 109 WILLIAMS, L. E.; MILLER, A. J. Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annual review of plant biology, v. 52, n. 1, p. 659–688, 2001. WU, Y.; LI, Y. H.; SHANG, J. Y.; WANG, E. T.; CHEN, L.; HUO, B.; SUI, X. H.; TIAN, C. F.; CHEN, W. F.; CHEN, W. X. Multiple genes of symbiotic plasmid and chromosome in type II peanut Bradyrhizobium strains corresponding to the incompatible symbiosis with Vigna radiata. Frontiers in Microbiology, v. 11, 2020. XAVIER, G. R.; MARTINS, L. M. V; RIBEIRO, J. R. A.; RUMJANEK, N. G. Especificidade simbiótica entre rizóbios e acessos de feijão caupi de diferentes nacionalidades. Revista Caatinga, v. 19, n. 1, p. 25–33, 2006. XIA, Y.; DEBOLT, S.; DREYER, J.; SCOTT, D.; WILLIAMS, M. A. Characterization of culturable bacterial endophytes and their capacity to promote plant growth from plants grown using organic or conventional practices. Frontiers in Plant Science, v. 6, p. 490, 2015. YAN, L.; ZHU, J.; ZHAO, X.; SHI, J.; JIANG, C.; SHAO, D. Beneficial effects of endophytic fungi colonization on plants. Applied Microbiology and Biotechnology. Springer Verlag, 2019. YANDULOV, D. V; SCHROCK, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science, v. 301, n. 5629, p. 76–78, 2003. YANG, J. K.; YUAN, T. Y.; ZHANG, W. T.; ZHOU, J. C.; LI, Y. G. Polyphasic characterization of mung bean (Vigna radiata L.) rhizobia from different geographical regions of China. Soil Biology and Biochemistry, v. 40, n. 7, p. 1681–1688, 2008. YATES, R. J.; HOWIESON, J. G.; HUNGRIA, M.; BALA, A.; O’HARA, G. W.; TERPOLILLI, J. J. Authentication of rhizobia and assessment of the legume symbiosis in controlled plant growth systems. In: HOWIESON, J. G.; DILWORTH, M. J. (Eds.). Working with rhizobia. Canberra: Australian Centre for International Agricultural Research, 2016. p. 73– 108. YI-SHEN, Z.; SHUAI, S.; FITZGERALD, R. Mung bean proteins and peptides: nutritional, functional and bioactive properties. Food and Nutrition Research, v. 62, 2018. ZGADZAJ, R.; JAMES, E. K.; KELLY, S.; KAWAHARADA, Y.; DE JONGE, N.; JENSEN, D. B.; MADSEN, L. H.; RADUTOIU, S. A legume genetic framework controls infection of nodules by symbiotic and endophytic bacteria. PLoS Genetics, v. 11, n. 6, p. e1005280, 2015. ZHANG, B.; DU, N.; LI, Y.; SHI, P.; WEI, G. Distinct biogeographic patterns of rhizobia and non-rhizobial endophytes associated with soybean nodules across China. Science of The Total Environment, v. 643, p. 569–578, 2018. ZHANG, F.; MAÁCE, F.; SMITH, D. L. Mineral nitrogen availability and isoflavonoid accumulation in the root systems of soybean (Glycine max (L.) Merr.). Journal of Agronomy and Crop Science, v. 184, n. 3, p. 197–204, 2000. ZHANG, W. T.; YANG, J. K.; YUAN, T. Y.; ZHOU, J. C. Genetic diversity and phylogeny of indigenous rhizobia from cowpea [Vigna unguiculata (L.) Walp.]. Biology and Fertility of Soils, v. 44, n. 1, p. 201–210, 2007. 110 ZHANG, Y. F.; WANG, E. T.; TIAN, C. F.; WANG, F. Q.; HAN, L. L.; CHEN, W. F.; CHEN, W. X. Bradyrhizobium elkanii, Bradyrhizobium yuanmingense and Bradyrhizobium japonicum are the main rhizobia associated with Vigna unguiculata and Vigna radiata in the subtropical region of China. FEMS Microbiology Letters, v. 285, n. 2, p. 146–154, 2008. ZHENG, Y.; LIANG, J.; ZHAO, D. L.; MENG, C.; XU, Z. C.; XIE, Z. H.; ZHANG, C. S. The root nodule microbiome of cultivated and wild halophytic legumes showed similar diversity but distinct community structure in yellow river delta saline soils. Microorganisms, v. 8, n. 2, p. 207, 2020. ZHOU, J.; DENG, Y.; SHEN, L.; WEN, C.; YAN, Q.; NING, D.; QIN, Y.; XUE, K.; WU, L.; HE, Z.; VOORDECKERS, J. W.; VAN NOSTRAND, J. D.; BUZZARD, V.; MICHALETZ, S. T.; ENQUIST, B. J.; WEISER, M. D.; KASPARI, M.; WAIDE, R.; YANG, Y.; BROWN, J. H. Temperature mediates continental-scale diversity of microbes in forest soils. Nature Communications, v. 7, 2016. ZILLI, J. E.; FERREIRA, E. P. B.; NEVES, M. C. P.; RUMJANEK, N. G. Efficiency of fastgrowing rhizobia capable of nodulating cowpea. Anais da Academia Brasileira de Ciências, v. 71, n. 3, p. 553–560, 1999. ZILLI, J. É.; PACHECO, R. S.; GIANLUPPI, V.; SMIDERLE, O. J.; URQUIAGA, S.; HUNGRIA, M. Biological N2 fixation and yield performance of soybean inoculated with Bradyrhizobium. Nutrient Cycling in Agroecosystems, v. 119, n. 3, p. 323–336, 2021. ZILLI, J. É.; SILVA NETO, M. L. DA; FRANÇA JÚNIOR, I.; PERIN, L.; MELO, A. R. DE. Resposta do feijão-caupi à inoculação com estirpes de Bradyrhizobium recomendadas para a soja. Revista Brasileira de Ciência do Solo, v. 35, p. 739–742, 2011. ZILLI, J. E.; VALICHESKI, R. R.; RUMJANEK, N. G.; SIMÕES-ARAÚJO, J. L.; FREIRE FILHO, F. R.; NEVES, M. C. P. Eficiência simbiótica de estirpes de Bradyrhizobium isoladas de solo do Cerrado em caupi. Pesquisa Agropecuária Brasileira, v. 41, n. 5, p. 811–818, 2006. ZILLI, J. E.; XAVIER, G. R.; RUMJANEK, N. G. BR 3262: nova estirpe de Bradyrhizobium para a inoculação de feijão-caupi em Roraima. Embrapa Roraima, 2008. ZUKOVSKIJ, P. M. Cultivated plants and their wild relatives. Famham Royal, 1962.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINAL2022 - Vinício Oliosi Favero.Pdf2022 - Vinício Oliosi Favero.Pdfapplication/pdf5001988https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/1/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdfe675b463a957d61c767d4129ad754dc5MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXT2022 - Vinício Oliosi Favero.Pdf.txt2022 - Vinício Oliosi Favero.Pdf.txtExtracted texttext/plain332074https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/3/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdf.txt5f28a4be44d8c5fdb056c7fbe9c79e7bMD53THUMBNAIL2022 - Vinício Oliosi Favero.Pdf.jpg2022 - Vinício Oliosi Favero.Pdf.jpgGenerated Thumbnailimage/jpeg1348https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/4/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdf.jpg4b5bc589f9e1c218a86763a61775b6bdMD5420.500.14407/176172024-08-06 02:52:02.666oai:rima.ufrrj.br:20.500.14407/17617Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2024-08-06T05:52:02Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.pt_BR.fl_str_mv Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
dc.title.alternative.en.fl_str_mv Characterization and symbiotic efficiency of bacteria isolated from mung bean [Vigna radiata (L.) Wilczek] nodules.
title Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
spellingShingle Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
Favero, Vinício Oliosi
Agronomia
Vigna radiata
Seleção de rizóbios eficientes
Fixação biológica de nitrogênio
Selection of efficient rhizobia
Biological nitrogen fixation
title_short Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
title_full Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
title_fullStr Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
title_full_unstemmed Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
title_sort Caracterização e Eficiência Simbiótica de Bactérias Isoladas de Nódulos de Feijão-mungo [Vigna radiata (L.) Wilczek]
author Favero, Vinício Oliosi
author_facet Favero, Vinício Oliosi
author_role author
dc.contributor.author.fl_str_mv Favero, Vinício Oliosi
dc.contributor.advisor1.fl_str_mv Urquiaga Caballero, Segundo Sacramento
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0002-3601-1233
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0525790556695433
dc.contributor.advisor-co1.fl_str_mv Rumjanek, Norma Gouvêa
dc.contributor.advisor-co2.fl_str_mv Xavier, Gustavo Ribeiro
dc.contributor.advisor-co2Lattes.fl_str_mv http://lattes.cnpq.br/6832519607059036
dc.contributor.referee1.fl_str_mv Urquiaga Caballero, Segundo Sacramento
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0002-3601-1233
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/0525790556695433
dc.contributor.referee2.fl_str_mv Araújo, Adelson Paulo de
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-4106-6175
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/5394022232015318
dc.contributor.referee3.fl_str_mv Zilli, Jerri Édson
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0003-2138-3488
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/4935993716536909
dc.contributor.referee4.fl_str_mv Martins, Lindete Míria Vieira
dc.contributor.referee4ID.fl_str_mv https://orcid.org/0000-0003-3261-4704
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/6461742105073846
dc.contributor.referee5.fl_str_mv Ferreira, Enderson Petrônio de Brito
dc.contributor.referee5ID.fl_str_mv https://orcid.org/0000-0002-1964-1516
dc.contributor.referee5Lattes.fl_str_mv http://lattes.cnpq.br/6292879655540619
dc.contributor.authorID.fl_str_mv https://orcid.org/0000-0002-7902-662X
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3999346364008952
contributor_str_mv Urquiaga Caballero, Segundo Sacramento
Rumjanek, Norma Gouvêa
Xavier, Gustavo Ribeiro
Urquiaga Caballero, Segundo Sacramento
Araújo, Adelson Paulo de
Zilli, Jerri Édson
Martins, Lindete Míria Vieira
Ferreira, Enderson Petrônio de Brito
dc.subject.cnpq.fl_str_mv Agronomia
topic Agronomia
Vigna radiata
Seleção de rizóbios eficientes
Fixação biológica de nitrogênio
Selection of efficient rhizobia
Biological nitrogen fixation
dc.subject.por.fl_str_mv Vigna radiata
Seleção de rizóbios eficientes
Fixação biológica de nitrogênio
Selection of efficient rhizobia
Biological nitrogen fixation
description O feijão-mungo é uma leguminosa de origem asiática com grande importância mundial, principalmente em países em desenvolvimento. Seu cultivo comercial no Brasil tem se expandido nos últimos anos, visando atender ao mercado internacional, e isso tem despertado para a necessidade de estudos relacionado ao seu cultivo no país, e dentre estes, os relacionados à fixação biológica de nitrogênio. Nesse sentido, objetivou-se com este estudo, avaliar a nodulação do feijão-mungo com rizóbios nativos de solos brasileiros, isolar os rizóbios associados, caracterizá-los e avaliá-los quanto à capacidade de nodulação e eficiência simbiótica. Para isso, no Capítulo I, foi avaliada a nodulação de dois genótipos de feijão-mungo por rizóbios nativos em dez solos brasileiros, além do isolamento das bactérias presentes nos nódulos, seguido de caracterização morfogenética e avaliação da capacidade de nodulação. De forma geral, as plantas cultivadas em amostras dos solos da região Sudeste apresentaram maior nodulação e crescimento comparadas àquelas cultivadas nas amostras da região Centro-Oeste. A partir dos nódulos, foram obtidas 101 bactérias, as quais foram agrupadas aos seguintes gêneros: Bradyrhizobium (66), Rhizobium (19), Mesorhizobium (4), Ensifer (3), Leifsonia (3), Bacillus (3), Agrobacterium (1), Mycolicibacterium (1) e Kaistia (1). Isolados de Bradyrhizobium foram os únicos capazes de nodular o feijão-mungo, sendo aqueles oriundos de solos da região Sudeste os mais eficientes; já quanto ao grupo filogenético, de forma geral, isolados próximos à espécie de Bradyrhizobium yuanmingense se mostraram mais eficientes. No Capítulo II, foi caracterizado o microbioma dos nódulos de dois genótipos de feijão-mungo cultivados em amostras de dez solos brasileiros, utilizando-se a técnica de sequenciamento do gene 16S rRNA por NGS (Next-Generation Sequencing) Illumina MiSeq. A OTU0001 (Operational Taxonomic Units) pertencente ao gênero Bradyrhizobium representou mais de 99% das sequências recuperadas. Pseudomonas foi o gênero não-rizobiano mais abundante, e esteve presente apenas em nódulos da cultivar MGS Esmeralda, revelando uma diferença de especificidade entre genótipos. No Capítulo III, foi avaliada a inoculação de 31 isolados de Bradyrhizobium em comparação aos rizóbios nativos em feijão-mungo cultivado em vaso com solo, incluindo a avaliação da aplicação de doses de N na semeadura. A inoculação dos isolados resultou em incrementos de até 79% em massa de nódulos, de 66% em massa de parte aérea e de 55% no N acumulado oriundo da fixação biológica de N, comparados ao tratamento sem inoculação; no entanto, as plantas inoculadas tiveram menor crescimento que o tratamento com N fertilizante (160 kg ha-1 de N). Quando sob aplicação de N na semeadura, houve incrementos no desenvolvimento das plantas, mas com redução na nodulação. No Capítulo IV, avaliou-se a inoculação cruzada do feijão-mungo com estirpes elite de Bradyrhizobium usadas em inoculantes comerciais para soja e feijão-caupi no Brasil, além da comparação com isolados obtidos de nódulos de feijão-mungo. A estirpe SEMIA 587 (B. elkanii) recomendada para soja, e as estirpes UFLA 3-84 (B. viridifuturi), BR 3267 (B. yuanmingense) e INPA 3-11B (B. elkanii) recomendadas para feijão-caupi, foram capazes de nodular o feijão-mungo. A SEMIA 587, a UFLA 3-84 e os isolados de feijão-mungo apresentaram maior eficiência em nodulação e crescimento das plantas, e portanto, apresentam potencial para inoculação do feijão-mungo no Brasil.
publishDate 2022
dc.date.issued.fl_str_mv 2022-08-12
dc.date.accessioned.fl_str_mv 2024-07-10T14:35:22Z
dc.date.available.fl_str_mv 2024-07-10T14:35:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FAVERO, Vinício Oliosi. Caracterização e eficiência simbiótica de bactérias isoladas de nódulos de feijão-mungo [Vigna radiata (L.) Wilczek]. 2022. 118 p. Tese (Doutorado em Agronomia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/17617
identifier_str_mv FAVERO, Vinício Oliosi. Caracterização e eficiência simbiótica de bactérias isoladas de nódulos de feijão-mungo [Vigna radiata (L.) Wilczek]. 2022. 118 p. Tese (Doutorado em Agronomia) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/17617
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv AKBARI, N.; BARANI, M.; AHMADI, H. Change of grain protein content and correlations with other characteristics under planting pattern and starter N fertilizer of mungbean (Vigna radiata L. Wilczek). American-Eurasian Journal of Agricultural & Environmental Science, v. 4, p. 306–310, 2008. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, v. 25, n. 17, p. 3389–3402, 1997. ANDERSON, J. S.; RITTLE, J.; PETERS, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature, v. 501, n. 7465, p. 84–87, 2013. ANDRADE, D. S.; HAMAKAWA, P. J. Estimativa do número de células de rizóbio no solo e inoculantes por infecção em plantas. In: HUNGRIA, M.; ARAUJO, R. S. (Eds.). Manual de métodos empregados em estudos de microbiologia agrícola. Documentos ed. Brasilia: Embrapa-SPI, 1994. p. 63–94. ANDREW, D. R.; FITAK, R. R.; MUNGUIA-VEGA, A.; RACOLTA, A.; MARTINSON, V. G.; DONTSOVA, K. Abiotic factors shape microbial diversity in Sonoran desert soils. Applied and Environmental Microbiology, v. 78, n. 21, p. 7527–7537, 2012. ANDREWS, M.; ANDREWS, M. E. Specificity in legume-rhizobia symbioses. International Journal of Molecular Sciences, v. 18, n. 4, p. 705, 2017. APPUNU, C.; COBA DE LA PEÑA, T.; STOLL, A.; DE LA PEÑA ROJO, D.; BRAVO, J.; RINCÓN, A.; LUCAS, M. M.; PUEYO, J. J. A nodule endophytic Bacillus megaterium strain isolated from Medicago polymorpha enhances growth, promotes nodulation by Ensifer medicae and alleviates salt stress in alfalfa plants. Annals of Applied Biology, v. 172, n. 3, p. 295–308, 2018. APPUNU, C.; N’ZOUE, A.; MOULIN, L.; DEPRET, G.; LAGUERRE, G. Vigna mungo, V. radiata and V. unguiculata plants sampled in different agronomical–ecological–climatic regions of India are nodulated by Bradyrhizobium yuanmingense. Systematic and Applied Microbiology, v. 32, n. 7, p. 460–470, 2009. ARAÚJO, W. L.; MACCHERONI, W.; AZEVEDO, J. L. Characterization of an endophytic bacterial community associated with Eucalyptus spp. Genetics and Molecular Research, v. 8, n. 4, p. 1408–1422, 2009. ARIF, M. S.; RIAZ, M.; SHAHZAD, S. M.; YASMEEN, T.; ALI, S.; AKHTAR, M. J. Phosphorus-mobilizing rhizobacterial strain Bacillus cereus GS6 improves symbiotic efficiency of soybean on an aridisol amended with phosphorus-enriched compost. Pedosphere, v. 27, n. 6, p. 1049–1061, 2017. ARNOLD, S. L.; SCHEPERS, J. S. A simple roller-mill grinding procedure for plant and soil samples. Communications in Soil Science and Plant Analysis, v. 35, n. 3–4, p. 537–545, 90 2004. ARONE, G.; CALDERÓN, C.; MORENO, S.; BEDMAR, E. J. Identification of Ensifer strains isolated from root nodules of Medicago hispida grown in association with Zea mays in the Quechua region of the Peruvian Andes. Biology and Fertility of Soils, v. 50, n. 1, p. 185–190, 2014. ASERSE, A. A.; RÄSÄNEN, L. A.; ASEFFA, F.; HAILEMARIAM, A.; LINDSTRÖM, K. Diversity of sporadic symbionts and nonsymbiotic endophytic bacteria isolated from nodules of woody, shrub, and food legumes in Ethiopia. Applied Microbiology and Biotechnology, v. 97, n. 23, p. 10117–10134, 2013. BAI, Y.; D’AOUST, F.; SMITH, D. L.; DRISCOLL, B. T. Isolation of plant-growth-promoting Bacillus strains from soybean root nodules. Canadian Journal of Microbiology, v. 48, n. 3, p. 230–238, 2002. BARRADAS, C. A. A.; SAYÃO, F. A. D.; DUQUE, F. F. Feijão mungo - uma alternativa protéica na alimentação. Embrapa Agrobiologia-Comunicado Técnico (INFOTECA-E) Seropédica: EMBRAPA-UAPNPBS, 1989. BARRIO-DUQUE, A. DEL; LEY, J.; SAMAD, A.; ANTONIELLI, L.; SESSITSCH, A.; COMPANT, S. Beneficial endophytic bacteria-Serendipita indica interaction for crop enhancement and resistance to phytopathogens. Frontiers in Microbiology, v. 10, p. 2888, 2019. BENJAMINI, Y.; HOCHBERG, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), v. 57, n. 1, p. 289–300, 1995. BERG, G.; KÖBERL, M.; RYBAKOVA, D.; MÜLLER, H.; GROSCH, R.; SMALLA, K. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiology Ecology, v. 93, n. 5, 2017. BERG, G.; SMALLA, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, v. 68, n. 1, p. 1–13, 2009. BHUIYAN, M. A. H.; MIAN, M. H. Effect of Bradyrhizobium inoculation on nodulation, biomass production and yield of mungbean. Bangladesh Journal of Microbiology, v. 24, n. 2, p. 95–99, 2007. BHUIYAN, M. A. H.; MIAN, M. H.; ISLAM, M. S. Studies on the effects of Bradyrhizobium inoculation on yield and yield attributes of mungbean. Bangladesh Journal, v. 33, n. 3, p. 449– 457, 2008. BODDEY, R. M.; PEOPLES, M. B.; PALMER, B.; DART, P. J. Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutrient Cycling in Agroecosystems, v. 57, n. 3, p. 235–270, 2000. BRAKER, G.; SCHWARZ, J.; CONRAD, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiology Ecology, v. 73, n. 1, p. 134- 91 148, 2010. BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Instrução normativa nº 13, de 24 de março de 2011, 2011. Disponível em: http://www.agricultura.gov.br/assuntos/insumos-agropecuarios/%0Ainsumosagricolas/ fertilizantes/legislacao/in-sda-13-de-24-03-%0A2011-inoculantes.pdf/view. BROCKWELL, J.; ANDREWS, J. A.; GAULT, R. R.; GEMELL, L. G.; GRIFFITH, G. W.; HERRIDGE, D. F.; HOLLAND, J. F.; KARSONO, S.; PEOPLES, M. B.; ROUGHLEY, R. J. Erratic nodulation and nitrogen fixation in field-grown pigeonpea [Cajanus cajan (L.) Millsp.]. Australian Journal of Experimental Agriculture, v. 31, n. 5, p. 653–661, 1991. BRUINSMA, J. The resource outlook to 2050: by how much do land, water and crop yields need to increase by 2050. In: How to feed the World in 2050. Proceedings of a technical meeting of experts, Rome, Italy, 24-26 June 2009. Food and Agriculture Organization of the United Nations (FAO), 2009. p. 1-33. BRUMBLEY, S. M.; PETRASOVITS, L. A.; HERMANN, S. R.; YOUNG, A. J.; CROFT, B. J. Recent advances in the molecular biology of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease. Australasian Plant Pathology, v. 35, n. 6, p. 681–689, 2006. BULLARD, G. K.; ROUGHLEY, R. J.; PULSFORD, D. J. The legume inoculant industry and inoculant quality control in Australia: 1953–2003. Australian Journal of Experimental Agriculture, v. 45, n. 3, p. 127–140, 2005. CARDOSO, J. D.; HUNGRIA, M.; ANDRADE, D. S. Polyphasic approach for the characterization of rhizobial symbionts effective in fixing N2 with common bean (Phaseolus vulgaris L.). Applied Microbiology and Biotechnology, v. 93, n. 5, p. 2035–2049, 2012. CARDOSO, P.; ALVES, A.; SILVEIRA, P.; SÁ, C.; FIDALGO, C.; FREITAS, R.; FIGUEIRA, E. Bacteria from nodules of wild legume species: phylogenetic diversity, plant growth promotion abilities and osmotolerance. Science of the Total Environment, v. 645, p. 1094–1102, 2018. CASSINI, S. T. A.; FRANCO, M. C. Fixação biológica de nitrogênio: microbiologia, fatores ambientais e genéticos. In: VIEIRA, C.; PAULA JÚNIOR, T. J.; BORÉM, A. (Eds.). Feijão. 2. ed. Viçosa: UFV, 2006. p. 143–159. CASTRO, J. L.; SOUZA, M. G.; RUFINI, M.; GUIMARÃES, A. A.; RODRIGUES, T. L.; MOREIRA, F. M. DE S. Diversity and efficiency of rhizobia communities from iron mining areas using cowpea as a trap plant. Revista Brasileira de Ciência do Solo, v. 41, p. 160525, 2017. CHEN, D.; MI, J.; CHU, P.; CHENG, J.; ZHANG, L.; PAN, Q.; XIE, Y.; BAI, Y. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau. Landscape Ecology, v. 30, n. 9, p. 1669–1682, 2015. CHENG, A.; RAAI, M. N.; ZAIN, N. A. M.; MASSAWE, F.; SINGH, A.; WAN-MOHTAR, W. A. A. Q. I. In search of alternative proteins: unlocking the potential of underutilized tropical legumes. Food Security, v. 11, n. 6, p. 1205–1215, 2019. 92 CHRISTOPHER, M.; MACDONALD, B.; YEATES, S.; ZIEGLER, D.; SEYMOUR, N. Wild bradyrhizobia that occur in the Burdekin region of Queensland are as effective as commercial inoculum for mungbean (Vigna radiata (L.)) and black gram (Vigna mungo (L.)) in fixing nitrogen and dry matter production. Applied Soil Ecology, v. 124, p. 88–94, 2018. COLE, J. R.; WANG, Q.; CARDENAS, E.; FISH, J.; CHAI, B.; FARRIS, R. J.; KULAMSYED- MOHIDEEN, A. S.; MCGARRELL, D. M.; MARSH, T.; GARRITY, G. M.; TIEDJE, J. M. The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research, v. 37, n. SUPPL. 1, p. D141-D145, 2009. COSTA, E. M.; CARVALHO, T. S.; GUIMARÃES, A. A.; LEÃO, A. C. R.; CRUZ, L. M.; BAURA, V. A.; LEBBE, L.; WILLEMS, A.; MOREIRA, F. M. S. Classification of the inoculant strain of cowpea UFLA 03-84 and of other strains from soils of the Amazon region as Bradyrhizobium viridifuturi (symbiovar tropici). Brazilian Journal of Microbiology, v. 50, n. 2, p. 335–345, 2019. CREWS, T. E.; PEOPLES, M. B. Legume versus fertilizer sources of nitrogen: ecological tradeoffs and human needs. Agriculture, Ecosystems & Environment, v. 102, n. 3, p. 279– 297, 2004. D’ERRICO, G.; ALOJ, V.; VENTORINO, V.; BOTTIGLIERI, A.; COMITE, E.; RITIENI, A.; MARRA, R.; BOLLETTI CENSI, S.; FLEMATTI, G. R.; PEPE, O.; VINALE, F. Methyl tbutyl ether-degrading bacteria for bioremediation and biocontrol purposes. PloS ONE, v. 15, n. 2, p. e0228936, 2020. DABA, S.; HAILE, M. Effects of rhizobial inoculant and nitrogen fertilizer on yield and nodulation of common bean. Journal of Plant Nutrition, v. 23, n. 5, p. 581–591, 2000. DAHMANI, M. A.; DESRUT, A.; MOUMEN, B.; VERDON, J.; MERMOURI, L.; KACEM, M.; COUTOS-THÉVENOT, P.; KAID-HARCHE, M.; BERGÈS, T.; VRIET, C. Unearthing the plant growth-promoting traits of Bacillus megaterium RmBm31, an endophytic bacterium isolated from root nodules of Retama monosperma. Frontiers in Plant Science, v. 11, p. 124, 2020. DE MEYER, S. E.; DE BEUF, K.; VEKEMAN, B.; WILLEMS, A. A large diversity of nonrhizobial endophytes found in legume root nodules in Flanders (Belgium). Soil Biology and Biochemistry, v. 83, p. 1–11, 2015. DELAMUTA, J. R. M.; SCHERER, A. J.; RIBEIRO, R. A.; HUNGRIA, M. Genetic diversity of Agrobacterium species isolated from nodules of common bean and soybean in Brazil, Mexico, Ecuador and Mozambique, and description of the new species Agrobacterium fabacearum sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 70, n. 7, p. 4233–4244, 2020. DELIĆ, D.; STAJKOVIĆ-SRBINOVIĆ, O.; KUZMANOVIĆ, D.; MRVIĆ, V.; KNEŽEVIĆ- VUKČEVIĆ, J. Effect of bradyrhizobial inoculation on growth and seed yield of mungbean in Fluvisol and Humofluvisol. African Journal of Microbiology Research, v. 5, n. 23, p. 3946– 3957, 2011. DIATTA, A. A.; THOMASON, W. E.; ABAYE, O.; THOMPSON, T. L.; BATTAGLIA, M. L.; VAUGHAN, L. J.; LO, M.; FILHO, J. F. D. C. L. Assessment of nitrogen fixation by 93 mungbean genotypes in different soil textures using 15N natural abundance method. Journal of Soil Science and Plant Nutrition, v. 20, n. 4, p. 2230–2240, 2020. DU, M.; XIE, J.; GONG, B.; XU, X.; TANG, W.; LI, X.; LI, C.; XIE, M. Extraction, physicochemical characteristics and functional properties of mung bean protein. Food Hydrocolloids, v. 76, p. 131–140, 2018. DUQUE, F. F.; PESSANHA, G. G. Comportamento de dez cultivares de mungo verde nos períodos das águas e da seca em condições de campo. Pesquisa Agropecuária Brasileira, v. 25, n. 7, p. 963–969, 1990. DUQUE, F. F.; SOUTO, S. M.; ABBOUD, A. C. Mungo, proteína em forma de broto de feijão. A lavoura, v. 90, p. 21–23, 1987. EL-ADAWY, T. A.; RAHMA, E. H.; EL-BEDAWEY, A. A.; EL-BELTAGY, A. E. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Foods for Human Nutrition, v. 58, n. 3, p. 1–13, 2003. FARRAND, S. K.; BERKUM, P. B. VAN; OGER, P. Agrobacterium is a definable genus of the family Rhizobiaceae. International Journal of Systematic and Evolutionary Microbiology, v. 53, n. 5, p. 1681–1687, 2003. FAVERO, V. O.; CARVALHO, R. H.; LEITE, A. B. C.; FREITAS, K. M.; ZILLI, J. É.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Characterization and nodulation capacity of native bacteria isolated from mung bean nodules used as a trap plant in Brazilian tropical soils. Applied Soil Ecology, v. 167, p. 104041, 2021a. FAVERO, V. O.; CARVALHO, R. H.; LEITE, A. B. C.; SANTOS, D. M. T.; FREITAS, K. M.; BODDEY, R. M.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Bradyrhizobium strains from Brazilian tropical soils promote increases in nodulation, growth and nitrogen fixation in mung bean. Applied Soil Ecology, v. 175, p. 104461, 2022. FAVERO, V. O.; CARVALHO, R. H.; MOTTA, V. M.; LEITE, A. B. C.; COELHO, M. R. R.; XAVIER, G. R.; RUMJANEK, N. G.; URQUIAGA, S. Bradyrhizobium as the only rhizobial inhabitant of mung bean (Vigna radiata) nodules in tropical soils: a strategy based on microbiome for improving biological nitrogen fixation using bio-products. Frontiers in Plant Science, v. 11, p. 2186, 2021b. FERNANDES, M. S. Nutrição mineral de plantas. Viçosa, MG: Sociedade Brasileira de Ciência do Solo, 2006. FERREIRA, E. B.; CAVALCANTI, P. P.; NOGUEIRA, D. A.; FERREIRA, M. E. B. Package ‘ExpDes. pt’, 2013. FIERER, N.; JACKSON, R. B. The diversity and biogeography of soil bacterial communities. Proceedings of the National Academy of Sciences of the United States of America, v. 103, n. 3, p. 626–631, 2006. FLORENTINO, L. A.; GUIMARÃES, A. P.; RUFINI, M.; DA SILVA, K.; MOREIRA, F. M. DE S. Sesbania virgata stimulates the occurrence of its microsymbiont in soils but does not inhibit microsymbionts of other species. Scientia Agricola, v. 66, n. 5, p. 667–676, 2009. 94 FRED, E. B.; WAKSMAN, S. A. Yeast extract-mannitol agar for laboratory manual of general microbiology. New York: McGraw, 1928. FUJIWARA, K.; IIDA, Y.; SOMEYA, N.; TAKANO, M.; OHNISHI, J.; TERAMI, F.; SHINOHARA, M. Emergence of antagonism against the pathogenic fungus Fusarium oxysporum by interplay among non‑antagonistic bacteria in a hydroponics using multiple parallel mineralization. Journal of Phytopathology, v. 164, n. 11–12, p. 853–862, 2016. FULLER, D. Q. Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Annals of Botany, v. 100, n. 5, p. 903–924, 2007. FURUSHITA, M.; SHIBA, T.; MAEDA, T.; YAHATA, M.; KANEOKA, A.; TAKAHASHI, Y.; TORII, K.; HASEGAWA, T.; OHTA, M. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Applied and Environmental Microbiology, v. 69, n. 9, p. 5336–5342, 2003. GAGE, D. J. Infection thread development in model legumes. In: BRUIJN, F. (Ed.). The model legume Medicago truncatula. Wiley, 2020. p. 579–588. GARCIA-PICHEL, F.; LOZA, V.; MARUSENKO, Y.; MATEO, P.; POTRAFKA, R. M. Temperature drives the continental-scale distribution of key microbes in topsoil communities. Science, v. 340, n. 6140, p. 1574–1577, 2013. GEBREHANA, Z. G.; DAGNAW, L. A. Response of soybean to rhizobial inoculation and starter N fertilizer on Nitisols of Assosa and Begi areas, Western Ethiopia. Environmental Systems Research, v. 9, n. 1, p. 1–11, 2020. GEPTS, P. Crop domestication as a long-term selection experiment. Plant Breeding Reviews, v. 24, n. 2, p. 1–44, 2004. GOOD, I. J. The population frequencies of species and the estimation of population parameters. Biometrika, v. 40, n. 3–4, p. 237–264, 1953. GROSS, B. L.; OLSEN, K. M. Genetic perspectives on crop domestication. Trends in Plant Science, v. 15, n. 9, p. 529–537, 2010. GUIMARÃES, A. A.; FLORENTINO, L. A.; ALMEIDA, K. A.; LEBBE, L.; BARROSO SILVA, K.; WILLEMS, A.; MOREIRA, F. M. S. High diversity of Bradyrhizobium strains isolated from several legume species and land uses in Brazilian tropical ecosystems. Systematic and Applied Microbiology, v. 38, n. 6, p. 433–441, 2015. GUIMARÃES, A. A.; JARAMILLO, P. M. D.; NÓBREGA, R. S. A.; FLORENTINO, L. A.; SILVA, K. B.; DE SOUZA MOREIRA, F. M. Genetic and symbiotic diversity of nitrogenfixing bacteria isolated from agricultural soils in the western amazon by using cowpea as the trap plant. Applied and Environmental Microbiology, v. 78, n. 18, p. 6726–6733, 2012. GUIMARAES, S. L.; NEVES, L. C. R.; BONFIM-SILVA, E. M.; CAMPOS, D. T. S. Development of pigeon pea inoculated with rhizobium isolated from cowpea trap host plants. Revista Caatinga, v. 29, p. 789–795, 2016. 95 GUPTA, R. S.; LO, B.; SON, J. Phylogenomics and comparative genomic studies robustly support division of the genus Mycobacterium into an emended genus Mycobacterium and four novel genera. Frontiers in Microbiology, v. 9, n. FEB, p. 67, 2018. HAI-JUN, Z.; JIA, D.; YAO, K. Nutritional and health-protective functions of mung bean. Food and Fermentation Technology, v. 1, 2012. HAKIM, S.; IMRAN, A.; MIRZA, M. S. Phylogenetic diversity analysis reveals Bradyrhizobium yuanmingense and Ensifer aridi as major symbionts of mung bean (Vigna radiata L.) in Pakistan. Brazilian Journal of Microbiology, v. 52, n. 1, p. 311–324, 2021. HAKIM, S.; MIRZA, B. S.; IMRAN, A.; ZAHEER, A.; YASMIN, S.; MUBEEN, F.; MCLEAN, J. E.; MIRZA, M. S. Illumina sequencing of 16S rRNA tag shows disparity in rhizobial and non-rhizobial diversity associated with root nodules of mung bean (Vigna radiata L.) growing in different habitats in Pakistan. Microbiological Research, v. 231, p. 126356, 2020. HAKIM, S.; MIRZA, B. S.; ZAHEER, A.; MCLEAN, J. E.; IMRAN, A.; YASMIN, S.; MIRZA, M. S. Retrieved 16S rRNA and nifH sequences reveal co-dominance of Bradyrhizobium and Ensifer (Sinorhizobium) strains in field-collected root nodules of the promiscuous host Vigna radiata (L.) R. Wilczek. Applied Microbiology and Biotechnology, v. 102, n. 1, p. 485–497, 2018. HAMEED, S.; YASMIN, S.; MALIK, K. A.; ZAFAR, Y.; HAFEEZ, F. Y. Rhizobium, Bradyrhizobium and Agrobacterium strains isolated from cultivated legumes. Biology and Fertility of Soils, v. 39, n. 3, p. 179–185, 2004. HANUMANTHARAO, B.; NAIR, R. M.; NAYYAR, H. Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, v. 7, p. 957, 2016. HARTMANN, A.; SCHMID, M.; VAN TUINEN, D.; BERG, G. Plant-driven selection of microbes. Plant and Soil, v. 321, n. 1–2, p. 235–257, 2009. HARTMANN, M.; FREY, B.; MAYER, J.; MÄDER, P.; WIDMER, F. Distinct soil microbial diversity under long-term organic and conventional farming. ISME Journal, v. 9, n. 5, p. 1177– 1194, 2015. HAYAT, R.; ALI, S.; TARIQ, M.; CHATHA, H. Biological nitrogen fixation of summer legumes and their residual effects on subsequent rainfed wheat yield. Pakistan Journal of Botany, v. 40, n. 2, p. 711–722, 2008. HENNESSEE, C. T.; SEO, J. S.; ALVAREZ, A. M.; LI, Q. X. Polycyclic aromatic hydrocarbon-degrading species isolated from Hawaiian soils: Mycobacterium crocinum sp. nov., Mycobacterium pallens sp. nov., Mycobacterium rutilum sp. nov., Mycobacterium rufum sp. nov. and Mycobacterium aromaticivorans sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 59, n. 2, p. 378–387, 2009. HERLEMANN, D. P. R.; LABRENZ, M.; JÜRGENS, K.; BERTILSSON, S.; WANIEK, J. J.; ANDERSSON, A. F. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME Journal, v. 5, n. 10, p. 1571–1579, 2011. 96 HERRIDGE, D. F.; PEOPLES, M. B.; BODDEY, R. M. Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, v. 311, n. 1–2, p. 1–18, 2008. HERRIDGE, D. F.; ROBERTSON, M. J.; COCKS, B.; PEOPLES, M. B.; HOLLAND, J. F.; HEUKE, L. Low nodulation and nitrogen fixation of mungbean reduce biomass and grain yields. Australian Journal of Experimental Agriculture, v. 45, n. 3, p. 269, 2005. HOQUE, M. S.; BROADHURST, L. M.; THRALL, P. H. Genetic characterization of rootnodule bacteria associated with Acacia salicina and A. stenophylla (Mimosaceae) across southeastern Australia. International Journal of Systematic and Evolutionary Microbiology, v. 61, n. 2, p. 299–309, 2011. HOU, D.; YOUSAF, L.; XUE, Y.; HU, J.; WU, J.; HU, X.; FENG, N.; SHEN, Q. Mung bean (Vigna radiata L.): bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients, v. 11, n. 6, p. 1238, 2019. HUNGRIA, M.; CAMPO, R. J.; MENDES, I. C. A importância do processo de fixação biológica do nitrogênio para a cultura da soja: componente essencial para a competitividade do produto brasileiro. Embrapa Soja-Documentos (INFOTECA-E), n. 283, p. 80, 2007. HUNGRIA, M.; CHUEIRE, L. M. DE O.; COCA, R. G.; MEGÍAS, M. Preliminary characterization of fast growing rhizobial strains isolated from soyabean nodules in Brazil. Soil Biology and Biochemistry, v. 33, n. 10, p. 1349–1361, 2001. HUNGRIA, M.; MENDES, I. C. Nitrogen fixation with soybean: the perfect symbiosis? In: BRUIJN, F. J. (Ed.). Biological Nitrogen Fixation. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2015. v. 2p. 1009–1023. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biology and Fertility of Soils, v. 49, n. 7, p. 791–801, 2013. HUNGRIA, M.; NOGUEIRA, M. A.; ARAUJO, R. S. Soybean seed co-inoculation with Bradyrhizobium spp. and Azospirillum brasilense: a new biotechnological tool to improve yield and sustainability. American Journal of Plant Sciences, v. 6, p. 811–817, 2015. HUNGRIA, M.; O’HARA, G. W.; ZILLI, J. E.; ARAUJO, R. S.; DEAKER, R.; HOWIESON, J. G. Isolation and growth of rhizobia. In: HOWIESON, J. G.; DILWORTH, M. J. (Eds.). Working with rhizobia. Canberra: Australian Centre for International Agricultural Research, 2016. p. 39–60. IM, W. T.; YOKOTA, A.; KIM, M. K.; LEE, S. T. Kaistia adipata gen. nov., sp. nov., a novel α-proteobacterium. The Journal of General and Applied Microbiology, v. 50, n. 5, p. 249– 254, 2004. ISLAM, M. K.; ISLAM, S. M. A.; HARUN-OR-RASHID, M.; HOSSAIN, A. F. M. G. F.; ALOM, M. M. Effect of biofertilizer and plant growth regulators on growth of summer mungbean. International Journal of Botany, v. 2, n. 1, p. 36–41, 2006. JENKINSON, D. S. The impact of humans on the nitrogen cycle, with focus on temperate arable 97 agriculture. Plant and Soil, v. 228, n. 1, p. 3–15, 2001. JOHNSTON-MONJE, D.; RAIZADA, M. N. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS ONE, v. 6, n. 6, p. e20396, 2011. KANG, S. M.; LATIF KHAN, A.; YOU, Y. H.; KIM, J.-G.; KAMRAN, M.; LEE, I. J. Gibberellin production by newly isolated strain Leifsonia soli SE134 and its potential to promote plant growth. Journal of Microbiology and Biotechnology, v. 24, n. 1, p. 106–112, 2014. KARIMI, B.; TERRAT, S.; DEQUIEDT, S.; SABY, N. P. A.; HORRIGUE, W.; LELIÈVRE, M.; NOWAK, V.; JOLIVET, C.; ARROUAYS, D.; WINCKER, P.; CRUAUD, C.; BISPO, A.; MARON, P. A.; PRÉVOST-BOURÉ, N. C.; RANJARD, L. Biogeography of soil bacteria and archaea across France. Science Advances, v. 4, n. 7, p. eaat1808, 2018. KASSAMBARA, A.; MUNDT, F. factoextra: extract and visualize the results of multivariate data analyses, 2020. Disponível em: <https://cran.rproject. org/package=factoextra> KIM, D. H.; KAASHYAP, M.; RATHORE, A.; DAS, R. R.; PARUPALLI, S.; UPADHYAYA, H. D.; GOPALAKRISHNAN, S.; GAUR, P. M.; SINGH, S.; KAUR, J.; YASIN, M.; VARSHNEY, R. K. Phylogenetic diversity of Mesorhizobium in chickpea. Journal of Biosciences, v. 39, n. 3, p. 513–517, 2014. KIMURA, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, v. 16, n. 2, p. 111–120, 1980. KOBAYASHI, H.; BROUGHTON, W. J. Fine-tuning of symbiotic genes in rhizobia: flavonoid signal transduction cascade. In: DILWORTH, M. J.; JAMES, E. K.; SPRENT, J. I.; NEWTON, W. E. (Eds.). Nitrogen-fixing Leguminous Symbioses. 7. ed. Dordrecht: Springer, 2008. p. 117–152. KORIR, H.; MUNGAI, N. W.; THUITA, M.; HAMBA, Y.; MASSO, C. Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Frontiers in Plant Science, v. 08, p. 141, 2017. KRANZ, C.; WHITMAN, T. Surface charring from prescribed burning has minimal effects on soil bacterial community composition two weeks post-fire in jack pine barrens. Applied Soil Ecology, v. 144, p. 134–138, 2019. KRUAWAN, K.; TONGYONK, L.; KANGSADALAMPAI, K. Antimutagenic and comutagenic activities of some legume seeds and their seed coats. Journal of Medicinal Plants Research, v. 6, n. 22, p. 3845–3851, 2012. KUKLINSKY-SOBRAL, J.; ARAUJO, W. L.; MENDES, R.; GERALDI, I. O.; PIZZIRANIKLEINER, A. A.; AZEVEDO, J. L. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology, v. 6, n. 12, p. 1244–1251, 2004. 98 KUMAR, S.; STECHER, G.; TAMURA, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, v. 33, n. 7, p. 1870–1874, 2016. KUYKENDALL, L. D.; KERR, A.; YOUNG, J. M.; MARTÍNEZ-ROMERO, E.; SAWADA, H. A revision of Rhizobium Frank 1889, with an emended description of the genus, and the inclusion of all species of Agrobacterium Conn 1942 and Allorhizobium undicola de Lajudie et al. 1998 as new combinations: Rhizobium radiobacter, R. rhizogenes, R. rubi, R. undicola and R. vitis. International Journal of Systematic and Evolutionary Microbiology, v. 51, n. 1, p. 89–103, 2001. LACERDA, A. M.; MOREIRA, F. M. D. E. S.; ANDRADE, M. J. B.; SOARES, A. L. D. E. L. Efeito de estirpes de rizóbio sobre a nodulação e produtividade do feijão-caupi. Ceres, v. 51, n. 293, p. 67–82, 2004. LAJUDIE, P. M.; ANDREWS, M.; ARDLEY, J.; EARDLY, B.; JUMAS-BILAK, E.; KUZMANOVIĆ, N.; LASSALLE, F.; LINDSTRÖM, K.; MHAMDI, R.; MARTÍNEZROMERO, E.; MOULIN, L.; MOUSAVI, S. A.; NESME, X.; PEIX, A.; PUŁAWSKA, J.; STEENKAMP, E.; STĘPKOWSKI, T.; TIAN, C.-F.; VINUESA, P.; WEI, G.; WILLEMS, A.; ZILLI, J. E.; YOUNG, P. Minimal standards for the description of new genera and species of rhizobia and agrobacteria. International Journal of Systematic and Evolutionary Microbiology, v. 69, n. 7, p. 1852–1863, 2019. LAJUDIE, P. M.; WILLEMS, A.; NICK, G.; MOHAMED, S. H.; TORCK, U.; COOPMAN, R.; FILALI-MALTOUF, A.; KERSTERS, K.; DREYFUS, B.; LINDSTRÖM, K.; GILLIS, M. Agrobacterium bv. 1 strains isolated from nodules of tropical legumes. Systematic and Applied Microbiology, v. 22, n. 1, p. 119–132, 1999. LAMBRIDES, C. J.; GODWIN, I. D. Mungbean. In: KOLE, C. (Ed.). Pulses, Sugar and Tuber Crops. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. p. 69–90. LARRAINZAR, E.; VILLAR, I.; RUBIO, M. C.; PÉREZ‑RONTOMÉ, C.; HUERTAS, R.; SATO, S.; MUN, J.; BECANA, M. Hemoglobins in the legume–Rhizobium symbiosis. New Phytologist, v. 228, n. 2, p. 472–484, 2020. LAUBER, C. L.; HAMADY, M.; KNIGHT, R.; FIERER, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Applied and Environmental Microbiology, v. 75, n. 15, p. 5111–5120, 2009. LEE, C. K.; HERBOLD, C. W.; POLSON, S. W.; WOMMACK, K. E.; WILLIAMSON, S. J.; MCDONALD, I. R.; CARY, S. C. Groundtruthing next-gen sequencing for microbial ecologybiases and errors in community structure estimates from PCR amplicon pyrosequencing. PloS ONE, v. 7, n. 9, 2012. LEITE, J. Simbiose feijão-caupi e rizóbio: diversidade de bactérias associadas aos nódulos. 75p., 2015. Tese de Doutorado apresentada no Programa de Pós-Graduação em Agronomia (Ciência do Solo) – Universidade Federal Rural do Rio de Janeiro, Seropédica-RJ. LEITE, J.; FISCHER, D.; ROUWS, L. F. M.; FERNANDES-JÚNIOR, P. I.; HOFMANN, A.; KUBLIK, S.; SCHLOTER, M.; XAVIER, G. R.; RADL, V. Cowpea nodules harbor non99 rhizobial bacterial communities that are shaped by soil type rather than plant genotype. Frontiers in Plant Science, v. 7, 2017. LEITE, J.; PASSOS, S. R.; SIMÕES-ARAÚJO, J. L.; RUMJANEK, N. G.; XAVIER, G. R.; ZILLI, J. É. Genomic identification and characterization of the elite strains Bradyrhizobium yuanmingense BR 3267 and Bradyrhizobium pachyrhizi BR 3262 recommended for cowpea inoculation in Brazil. Brazilian Journal of Microbiology, v. 49, n. 4, p. 703–713, 2018. LEITE, J.; SEIDO, S. L.; PASSOS, S. R.; XAVIER, G. R.; RUMJANEK, N. G.; MARTINS, L. M. V. Biodiversity of rhizobia associated with cowpea cultivars in soils of the lower half of the São Francisco River Valley. Revista Brasileira de Ciência do Solo, v. 33, n. 5, p. 1215– 1226, 2009. LIAQAT, F.; ELTEM, R. Identification and characterization of endophytic bacteria isolated from in vitro cultures of peach and pear rootstocks. 3 Biotech, v. 6, n. 2, p. 120, 2016. LIMA, A. S.; NÓBREGA, R. S. A.; BARBERI, A.; DA SILVA, K.; FERREIRA, D. F.; MOREIRA, F. M. D. S. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant and Soil, v. 319, n. 1–2, p. 127–145, 2009. LIU, C.; ZHUANG, X.; YU, Z.; WANG, Z.; WANG, Y.; GUO, X.; XIANG, W.; HUANG, S. Community structures and antifungal activity of root-associated endophytic Actinobacteria of healthy and diseased soybean. Microorganisms, v. 7, n. 8, p. 243, 2019a. LIU, F.; HEWEZI, T.; LEBEIS, S. L.; PANTALONE, V.; GREWAL, P. S.; STATON, M. E. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiology, v. 19, n. 1, p. 201, 2019b. LIU, J.; WANG, E. T.; REN, D. W.; CHEN, W. X. Mixture of endophytic Agrobacterium and Sinorhizobium meliloti strains could induce nonspecific nodulation on some woody legumes. Archives of Microbiology, v. 192, n. 3, p. 229–234,
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia - Ciência do Solo
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Repositório Institucional da UFRRJ
collection Repositório Institucional da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/1/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/2/license.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/3/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/17617/4/2022%20-%20Vin%c3%adcio%20Oliosi%20Favero.Pdf.jpg
bitstream.checksum.fl_str_mv e675b463a957d61c767d4129ad754dc5
8a4605be74aa9ea9d79846c1fba20a33
5f28a4be44d8c5fdb056c7fbe9c79e7b
4b5bc589f9e1c218a86763a61775b6bd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br
_version_ 1810107772169093120