Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada

Detalhes bibliográficos
Autor(a) principal: Macedo, Pietro Menezes Sanchez
Data de Publicação: 2022
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/6048
Resumo: Water erosion is a natural phenomenon of great importance in the global scenario with regard to the conservation and sustainable exploration of soil and water, and the use of rainfall simulators has generated a lot of relevant information for the understanding of this topic. The improvement of these equipments aiming at the application of rains with variation of precipitation intensity and the development of an electronic runoff collector are crucial steps in the study of erosive processes. Assuming that changing the rotation of the rainfall simulator would make it possible to control the precipitation intensities applied during the simulations and that an automatic runoff collector would facilitate the collection of data in the field, we developed the thesis in three chapters in order to approach the entire procedure adopted in the development and evaluation of devices associated with the InfiAsper rainfall simulator. The aim of the first chapter was to evaluate whether the variation in the shutter disc rotation, associated with its aperture, makes it possible to obtain different rainfall patterns in the InfiAsper rainfall simulator. The installation of electronic components in the simulator's control panel allowed the variation of the shutter rotation during its operation according to previous programming, allowing the simulation of rains with different precipitation patterns. Events with peak precipitation intensity (PI) of 110 mm h-1 and duration of 40 min were adequately simulated by the equipment, with application uniformity above 75%. With this device it became possible to simulate other rain patterns, with different PI and duration, changing the settings for the desired test. The second chapter aimed to evaluate the operability of the InfiAsper rainfall simulator with the new control panel that varies the intensity of precipitation during the application of rain and the soil and water losses associated with different rainfall patterns in a Dystrophic Acrisol with texture clay loam. The panel was programmed to simulate rainfall of 40 min duration and a total depth of 30 mm in a terrain with a slope of 0,09 m m-1, graded in the direction of the contour and in an exposed soil condition. Operating with the new control panel, InfiAsper worked satisfactorily, allowing to vary the intensity of the rains, according to the characteristics of the rains expected in natural events. Intermediate and late rainfall patterns produced greater soil and water losses than the advanced pattern. The intermediate inverted and constant rainfall patterns did?t produce significant losses for the application of an average water depth of 30 mm. The third chapter presents the development and field evaluation of a data collector for rainfall simulators, capable of quantifying runoff volume and automatically estimating the rate of soil loss. Using a microcontroller (Arduino Mega? 2560), sensors with capacitive, ultrasonic and pressure principles were tested to compute runoff volume, and a turbidimeter to compute soil loss rates. Sensors were selected for calibration and data uncertainty. The automatic runoff collector equipped with the PSI.420 pressure transducer and the ST100 turbidity sensor proved to be effective in obtaining and storing data on runoff volume and soil loss obtained during a simulated rain test in the field.
id UFRRJ-1_a90c0062bf610f0999e2df7a7ab369f5
oai_identifier_str oai:localhost:jspui/6048
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Carvalho, Daniel Fonseca de627.403.266-53http://lattes.cnpq.br/4871187664578422Shultz, NivaldoPinto, Marinaldo FerreiraCarvalho, Daniel Fonseca dePereira, Marcos GervasioSalvador, Conan AyadePanachuki, El?iOliveira, Paulo Tarso Sanches de112.091.177-03https://orcid.org/0000-0002-2341-7154http://lattes.cnpq.br/1710413394787926Macedo, Pietro Menezes Sanchez2022-10-07T17:05:46Z2022-02-23MACEDO, Pietro Menezes Sanchez. Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada. 2022. 70 f. Tese (Doutorado em Agronomia - Ci?ncias do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2022.https://tede.ufrrj.br/jspui/handle/jspui/6048Water erosion is a natural phenomenon of great importance in the global scenario with regard to the conservation and sustainable exploration of soil and water, and the use of rainfall simulators has generated a lot of relevant information for the understanding of this topic. The improvement of these equipments aiming at the application of rains with variation of precipitation intensity and the development of an electronic runoff collector are crucial steps in the study of erosive processes. Assuming that changing the rotation of the rainfall simulator would make it possible to control the precipitation intensities applied during the simulations and that an automatic runoff collector would facilitate the collection of data in the field, we developed the thesis in three chapters in order to approach the entire procedure adopted in the development and evaluation of devices associated with the InfiAsper rainfall simulator. The aim of the first chapter was to evaluate whether the variation in the shutter disc rotation, associated with its aperture, makes it possible to obtain different rainfall patterns in the InfiAsper rainfall simulator. The installation of electronic components in the simulator's control panel allowed the variation of the shutter rotation during its operation according to previous programming, allowing the simulation of rains with different precipitation patterns. Events with peak precipitation intensity (PI) of 110 mm h-1 and duration of 40 min were adequately simulated by the equipment, with application uniformity above 75%. With this device it became possible to simulate other rain patterns, with different PI and duration, changing the settings for the desired test. The second chapter aimed to evaluate the operability of the InfiAsper rainfall simulator with the new control panel that varies the intensity of precipitation during the application of rain and the soil and water losses associated with different rainfall patterns in a Dystrophic Acrisol with texture clay loam. The panel was programmed to simulate rainfall of 40 min duration and a total depth of 30 mm in a terrain with a slope of 0,09 m m-1, graded in the direction of the contour and in an exposed soil condition. Operating with the new control panel, InfiAsper worked satisfactorily, allowing to vary the intensity of the rains, according to the characteristics of the rains expected in natural events. Intermediate and late rainfall patterns produced greater soil and water losses than the advanced pattern. The intermediate inverted and constant rainfall patterns did?t produce significant losses for the application of an average water depth of 30 mm. The third chapter presents the development and field evaluation of a data collector for rainfall simulators, capable of quantifying runoff volume and automatically estimating the rate of soil loss. Using a microcontroller (Arduino Mega? 2560), sensors with capacitive, ultrasonic and pressure principles were tested to compute runoff volume, and a turbidimeter to compute soil loss rates. Sensors were selected for calibration and data uncertainty. The automatic runoff collector equipped with the PSI.420 pressure transducer and the ST100 turbidity sensor proved to be effective in obtaining and storing data on runoff volume and soil loss obtained during a simulated rain test in the field.A eros?o h?drica ? um fen?meno natural de grande import?ncia no cen?rio global no que diz respeito ? conserva??o e explora??o sustent?vel do solo e da ?gua, e o uso de simuladores de chuvas tem gerado in?meras informa??es relevantes para a compreens?o desse tema. O aprimoramento desses equipamentos visando a aplica??o de chuvas com varia??o de intensidade de precipita??o e o desenvolvimento de um coletor eletr?nico de enxurrada s?o etapas cruciais no estudo dos processos erosivos. Partindo do pressuposto que vairar a rota??o do simulador de chuvas possibilitaria o controle das intensidades de precipita??o aplicadas durante as simula??es e que um coletor autom?tico de enxurrada facilitaria a obten??o de dados em campo desenvolvemos a tese em tr?s cap?tulos de maneira a abordar todo o procedimento adotado no desenvolvimento e avalia??o dos dispositivos associados ao simulador de chuvas InfiAsper. O objetivo do primeiro cap?tulo foi avaliar se a varia??o na rota??o do disco obturador, associada ? sua abertura, possibilita a obten??o de diferentes padr?es de chuva no simulador de chuva InfiAsper. A instala??o de componentes eletr?nicos no painel de controle do simulador permitiu a varia??o da rota??o do obturador durante sua opera??o de acordo com programa??o pr?via, possibilitando a simula??o de chuvas com diferentes padr?es de precipita??o. Eventos com picos de intensidade de precipita??o (IP) de 110 mm h-1 e dura??o de 40 min foram adequadamente simuladas pelo equipamento, com uniformidade de aplica??o acima de 75%. Com esse dispositivo tornou-se poss?vel simular outros padr?es de chuva, com IP e dura??o diferentes, alterando as configura??es para o ensaio desejado. O segundo cap?tulo teve como objetivo avaliar a operacionalidade do simulador de chuva InfiAsper com o novo painel de controle que varia a intensidade de precipita??o durante a aplica??o da chuva e as perdas de solo e ?gua associadas a diferentes padr?es de chuva em um Argissolo Distr?fico com textura franco-argilosa. O painel foi programado para simular chuvas de 40 min de dura??o e l?mina total de 30 mm em um terreno com declividade de 0,09 m m-1, gradeado no sentido da curva de n?vel e em condi??o de solo exposto. Operando com o novo painel de controle, o InfiAsper funcionou satisfatoriamente permitindo variar a intensidade das chuvas, confome as caracter?sticas das chuvas esperadas nos eventos naturais. Padr?es de chuvas intermedi?rio e atrasado produziram maiores perdas de solo e ?gua do que o padr?o avan?ado. Os padr?es de chuva intermedi?rio invertido e constante n?o produziram perdas significativas para a aplica??o de l?mina d'?gua m?dia de 30 mm. No terceiro cap?tulo ? apresentado o desenvolvimento e a avalia??o em campo de um coletor de dados para simuladores de chuva, capaz de quantificar o volume de enxurrada e estimar a taxa de perda de solo automaticamente. Utilizando um microcontrolador (Arduino Mega? 2560), foram testados sensores com princ?pios capacitivo, ultrass?nico e por press?o, para computar o volume de enxurrada, e um turbid?metro, para computar as taxas de perda de solo. Os sensores foram selecionados quanto ? calibra??o e incerteza dos dados. O coletor autom?tico de enxurrada equipado com o transdutor de press?o PSI.420 e o sensor de turbidez ST100 se mostrou eficaz na obten??o e armazenamento de dados de volume de enxurrada e perda de solo obtidos durante ensaio de chuva simulada em campo.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-07T17:05:46Z No. of bitstreams: 1 2022 - Pietro Menezes Sanchez Macedo.pdf: 2335356 bytes, checksum: 0b8b5d7437283d3e0f3e68246fef5e0f (MD5)Made available in DSpace on 2022-10-07T17:05:46Z (GMT). No. of bitstreams: 1 2022 - Pietro Menezes Sanchez Macedo.pdf: 2335356 bytes, checksum: 0b8b5d7437283d3e0f3e68246fef5e0f (MD5) Previous issue date: 2022-02-23CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel SuperiorCNPq - Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gicoapplication/pdfhttps://tede.ufrrj.br/retrieve/70987/2022%20-%20Pietro%20Menezes%20Sanchez%20Macedo.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Agronomia - Ci?ncia do SoloUFRRJBrasilInstituto de AgronomiaAKSOY, H.; UNAL, N. E.; COKGOR, S.; GEDIKLI, A.; YOON, J.; KOCA, K.; INCI, B.; ERIS, E. A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena, v.98, p.63-72, 2012. https://doi.org/10.1016/j.catena.2012.06.009. ALMEIDA, W. S.; CARVALHO, D. F.; PEREIRA, F. A. C.; ROUWS, J. R. C. Sediment production and soil water infiltration under different simulated rainfall characteristics. Revista Brasileira de Engenharia Agr?cola e Ambiental, v.23, n.8, p.572-578, 2019. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n8p572-578. ALMEIDA, W. S.; PANACHUKI, E.; OLIVEIRA, P. T. S.; MENEZES, R. S.; ALVES SOBRINHO, T., CARVALHO, D. F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil & Tillage Research, v.175, p.130-138, 2018. https://doi.org/10.1016/j.still.2017.07.009. ALMEIDA, W. S.; SEITZ, S.; OLIVEIRA, L. F. C.; CARVALHO, D. F.; Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. International Soil and Water Conservation Research. v.9, n.1, p.69-75, 2021. https://doi.org/10.1016/j.iswcr.2020.10.004. ALVES SOBRINHO, T.; GOMEZ-MACPHERSON, H., G?OMEZ, J. A. A portable integrated rainfall and overland flow Simulator. Soil Use and Management, v.24, n.2, p.163?170, 2008. https://doi. org/10.1111/j.1475-2743.2008.00150.x. ANACHE, J. A. A.; BACCHI, C. G.; ALVES SOBRINHO, T. Modeling of (R) USLE Cfactor for pasture as a function of Normalized Difference Vegetation Index. European International Journal of Science and Technology, v.3, n.9, 2014. 2304-9693. ASSIS, K. G. O.; SILVA, Y. J. A. B.; LOPES, J. W. B.; MEDEIROS, J. C.; TEIXEIRA, M. P. R.; RIM?, F. B.; SINGH, V. P.; Soil loss and sediment yield in a perennial catchment in southwest Piau?, Brazil. Environ Monit Assess, v.26, n.193, 2021. https://doi.org/10.1007/s10661-020-08789-y. BAUCKE, A. S.; FERRARI, J. C.; MICHEL, G. P.; GOETTEN, W. J. Descarga s?lida do rio Itaja? do Sul mediante a aplica??o do m?todo simplificado de Colby. Revista Gest?o & Sustentabilidade Ambiental, v. 9, n. 4, p. 297-315, 2020. http://dx.doi.org/10.19177/rgsa.v9e42020297-315. CERD?, A.; ACKERMANN, O.; TEROL, E.; RODRIGO-COMINO, J. Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water, v.11, n.4, 2019. https://doi.org/10.3390/w11040824. CHAN, K.; SCHILLEREFF, D. N.; BAAS, A. C. W.; CHADWICK, M. A.; MAIN, B.; MULLIGAN, M.; O?SHEA, F. T.; PEARCE, R.; SMITH, T. W. L.; SOESBERGEN, A. V.; TEBBS, E.; THOMPSON, J. Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress in Physical Geography, v.45, p.1-34, 2020. https://doi.org/10.1177/0309133320956567. DELETIC, A. Sediment transport in urban runoff over grassed areas. Journal of Hydrology, v.301, p.108-122, 2005. https://doi.org/10.1016/j.jhydrol.2004.06.023. FERRAZ, L. L.; LIMA, F. A.; GUEDES, U. L.; SILVA, F. G. C.; ROCHA, F. A. Estimativa da descarga de sedimentos transportados na bacia hidrogr?fica do rio Verruga. Agarian Academy, v.5, n.9, p.224-233, 2018. https://doi.org/10.18677/Agrarian_Academy_2018a23. GIPPEL, C. J. The use of turbidimeters in suspended sediment research. Hydrobiologia, v.176, n.177, p.465-480, 1989. http://dx.doi.org/10.1007/BF00026582. GRANDO, D. L.; GATIBONI, L. C.; DALL'ORSOLETTA, D. J.; SCHMITT, D. E.; MUMBACH, G. L.; SOUZA JUNIOR, A. A.; BRIGNOLI, F. M. Development and validation of a siphoning prototype for surface runoff evaluation. Journal of Environmental Quality, v.50, n.5, p.1246-1253, 2021. https://doi.org/10.1002/jeq2.20266. ISERLOH, T., RIES, J.B., ARN?EZ, J., BOIX-FAYOS, C., BUTZEN. V., CERD?, A., ECHEVERR?A M.T., FERN?NDEZ-G?LVEZ, J., FISTER, W., GEI?LER, C., G?MEZ, J.A., G?MEZ-MACPHERSON, H., KUHN, N.J., L?ZAROJ, R., LE?N, F.J., MART?NEZMENA, M., MART?NEZ-MURILLO, J.F., MARZEN, M., WIRTZ, S., 2013. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena. v. 110, p. 100-112. https://doi.org/10.1016/j.catena.2013.05.013. KUMAR, G.; SENA, D. R.; PATRA, S.; SINGH, D.; KUROTHE, R. S.; MISHRA, P. K.; NYONAND. Design and Development of a Low-Cost Automatic Runoff Sampler for Time Distributed Sampling. Journal of Hydrology, v.592, 2021. https://doi.org/10.1016/j.jhydrol.2020.125845. LANDERS, M. N.; STURM, T. W. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions. Water Resources Research, v. 49, n. 9, p. 5487-5500, 2013. https://doi.org/10.1002/wrcr.20394. MACEDO, P. M. S., PINTO, M. F., ALVES SOBRINHO, T., SCHULTZ, N., COUTINHO, T. A. R., CARVALHO, D. F. A Modified portable rainfall simulator for soil erosion assessment under different rainfall patterns. Journal of Hydrology, 2021. https://doi.org/10.1016/j.jhydrol.2021.126052. MERTEN, G. H.; CAPEL. P. D.; MINELLA, J. P. G. Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal Soils Sediments, v.14, p.1235-1241, 2014. https://doi.org/10.1007/s11368-013-0813-0. NIELSEN, K. T.; MOLDRUP, P.; THORNDAHL, S.; NIELSEN, J. E.; DUUS, L. B.; RASMUSSEN, S. H.; UGGERBY, M.; RASMUSSEN, M. R. Automated rainfall simulator for variable rainfall on urban green areas. Hydrological Processes, v.33, p.3364-3377, 2019. https://doi.org/10.1002/hyp.13563. MUTTER, G. M. The Use of Portable Turbidity Meters in Developing an Erodibility Classification System for Iraqi Soils. International Journal of Scientific Research in Science, Engineering and Technology, v.4, n.1, p.1107-1117, 2018. PANACHUKI, E.; SANTOS, M. A. N.; PAVEL, D. S.; ALVES SOBRINHO, T.; CAMACHO, M. A.; MONTANARI, R. Soil and water loss in Ultisol of the Cerrado-Pantanal Ecotone under different management systems. African Journal of Agricultural Research, v. 10, n. 0, p. 926-932, 2015. https://doi.org/10.5897/AJAR2014.8908. QUEIROZ, T. M.; LIMA, S. C. R. V.; BOTREL, T. A.; FRIZZONE, J. A. Coletor autom?tico para ensaio de aspersores em laborat?rio (1) ? desenvolvimento do modelo. Revista Brasileira de Agricultura Irrigada v.2, n.1, p.24?28, 2008. https://doi.org/10.7127/rbai.v2n100200. S?, A. B.; PIGOZZO FILHO, V. C.; TADRIST, L. PASSOS, J. C. Experimental study of a linear Fresnel concentrator: A new procedure for optical and heat losses characterization. Energy, v.232, 2021. https://doi.org/10.1016/j.energy.2021.121019. SALEM H. M.; MESELHY, A. A. A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt. Natural Hazards, v. 105, p. 2937?2955, 2020. https://doi.org/10.1007/s11069-020-04432-8. SANTOS, C. A.; FRIGO, E. P.; FRIGO, K. D. A.; ECKERT, C. T.; DIETER, J.; ALVES, H. J.; TOKURA, L. K.; SANTOS, R. F. Impact of pervious pavement in urban areas on catchment basin recovery. Ci?ncias Agr?rias, v.39, n.1, p.39-49, 2018. https://doi.org/10.5433/1679-0359.2018v39n1p39. SCHENATO, L.; L?PEZ, J. P. A.; GALTAROSSA, A.; PASUTO, A.; BOGAARD, T.; PALMIERI, L. Design and field testing of a fiber optic pressure sensor for underground water level monitoring. European Workshop on Optical Fiber Sensors, v.111990J, 2019. https://doi.org/10.1117/12.2540812. SEITZ, S.; GOEBES, P.; PUERTA, V. L.; PEREIRA, E. I. P.; WITTWER, R.; SIX, J.; VAN DER HEIJDEN, M. G. A.; SCHOLTEN, T. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, v.39, n.4, 2019. https://doi.org/10.1007/s13593-018-0545-z. XU, X.; FAN, H.; CHEN, X.; MI, C. Estimating low eroded sediment concentrations by turbidity and spectral characteristics based on a laboratory experiment. Environmental monitoring and assessment, v. 192, n. 2, p. 1-13, 2020. https://doi.org/10.1007/s10661-020-8092-x. ZHAN, X.; ZHAO, J.; ZHU-BARKER, X.; SHUI, J.; LIU, B.; GUO, M.; An instrument with constant volume approach for in situ measurement of surface runoff and suspended sediment concentration. Water Resources Research, v. 57, 2021. https://doi.org/10.1029/2020WR028210.Simulador de chuva.ArduinoPadr?es de precipita??o.Coletor de enxurradaRainfall simulatorPrecipitation patternsFlood collectorAgronomiaEros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurradaWater erosion under simulated rainfall with instantaneous variation of precipitation intensity and automatic runoff assessmentinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2022 - Pietro Menezes Sanchez Macedo.pdf.jpg2022 - Pietro Menezes Sanchez Macedo.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/6048/4/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2022 - Pietro Menezes Sanchez Macedo.pdf.txt2022 - Pietro Menezes Sanchez Macedo.pdf.txttext/plain161252http://localhost:8080/tede/bitstream/jspui/6048/3/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf.txte986e42cbc6686913ae8ea95c7505cedMD53ORIGINAL2022 - Pietro Menezes Sanchez Macedo.pdf2022 - Pietro Menezes Sanchez Macedo.pdfapplication/pdf2335356http://localhost:8080/tede/bitstream/jspui/6048/2/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf0b8b5d7437283d3e0f3e68246fef5e0fMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6048/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/60482022-10-08 01:00:43.576oai:localhost:jspui/6048Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-10-08T04:00:43Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
dc.title.alternative.eng.fl_str_mv Water erosion under simulated rainfall with instantaneous variation of precipitation intensity and automatic runoff assessment
title Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
spellingShingle Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
Macedo, Pietro Menezes Sanchez
Simulador de chuva.
Arduino
Padr?es de precipita??o.
Coletor de enxurrada
Rainfall simulator
Precipitation patterns
Flood collector
Agronomia
title_short Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
title_full Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
title_fullStr Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
title_full_unstemmed Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
title_sort Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada
author Macedo, Pietro Menezes Sanchez
author_facet Macedo, Pietro Menezes Sanchez
author_role author
dc.contributor.advisor1.fl_str_mv Carvalho, Daniel Fonseca de
dc.contributor.advisor1ID.fl_str_mv 627.403.266-53
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4871187664578422
dc.contributor.advisor-co1.fl_str_mv Shultz, Nivaldo
dc.contributor.advisor-co2.fl_str_mv Pinto, Marinaldo Ferreira
dc.contributor.referee1.fl_str_mv Carvalho, Daniel Fonseca de
dc.contributor.referee2.fl_str_mv Pereira, Marcos Gervasio
dc.contributor.referee3.fl_str_mv Salvador, Conan Ayade
dc.contributor.referee4.fl_str_mv Panachuki, El?i
dc.contributor.referee5.fl_str_mv Oliveira, Paulo Tarso Sanches de
dc.contributor.authorID.fl_str_mv 112.091.177-03
https://orcid.org/0000-0002-2341-7154
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1710413394787926
dc.contributor.author.fl_str_mv Macedo, Pietro Menezes Sanchez
contributor_str_mv Carvalho, Daniel Fonseca de
Shultz, Nivaldo
Pinto, Marinaldo Ferreira
Carvalho, Daniel Fonseca de
Pereira, Marcos Gervasio
Salvador, Conan Ayade
Panachuki, El?i
Oliveira, Paulo Tarso Sanches de
dc.subject.por.fl_str_mv Simulador de chuva.
Arduino
Padr?es de precipita??o.
Coletor de enxurrada
Rainfall simulator
Precipitation patterns
Flood collector
topic Simulador de chuva.
Arduino
Padr?es de precipita??o.
Coletor de enxurrada
Rainfall simulator
Precipitation patterns
Flood collector
Agronomia
dc.subject.cnpq.fl_str_mv Agronomia
description Water erosion is a natural phenomenon of great importance in the global scenario with regard to the conservation and sustainable exploration of soil and water, and the use of rainfall simulators has generated a lot of relevant information for the understanding of this topic. The improvement of these equipments aiming at the application of rains with variation of precipitation intensity and the development of an electronic runoff collector are crucial steps in the study of erosive processes. Assuming that changing the rotation of the rainfall simulator would make it possible to control the precipitation intensities applied during the simulations and that an automatic runoff collector would facilitate the collection of data in the field, we developed the thesis in three chapters in order to approach the entire procedure adopted in the development and evaluation of devices associated with the InfiAsper rainfall simulator. The aim of the first chapter was to evaluate whether the variation in the shutter disc rotation, associated with its aperture, makes it possible to obtain different rainfall patterns in the InfiAsper rainfall simulator. The installation of electronic components in the simulator's control panel allowed the variation of the shutter rotation during its operation according to previous programming, allowing the simulation of rains with different precipitation patterns. Events with peak precipitation intensity (PI) of 110 mm h-1 and duration of 40 min were adequately simulated by the equipment, with application uniformity above 75%. With this device it became possible to simulate other rain patterns, with different PI and duration, changing the settings for the desired test. The second chapter aimed to evaluate the operability of the InfiAsper rainfall simulator with the new control panel that varies the intensity of precipitation during the application of rain and the soil and water losses associated with different rainfall patterns in a Dystrophic Acrisol with texture clay loam. The panel was programmed to simulate rainfall of 40 min duration and a total depth of 30 mm in a terrain with a slope of 0,09 m m-1, graded in the direction of the contour and in an exposed soil condition. Operating with the new control panel, InfiAsper worked satisfactorily, allowing to vary the intensity of the rains, according to the characteristics of the rains expected in natural events. Intermediate and late rainfall patterns produced greater soil and water losses than the advanced pattern. The intermediate inverted and constant rainfall patterns did?t produce significant losses for the application of an average water depth of 30 mm. The third chapter presents the development and field evaluation of a data collector for rainfall simulators, capable of quantifying runoff volume and automatically estimating the rate of soil loss. Using a microcontroller (Arduino Mega? 2560), sensors with capacitive, ultrasonic and pressure principles were tested to compute runoff volume, and a turbidimeter to compute soil loss rates. Sensors were selected for calibration and data uncertainty. The automatic runoff collector equipped with the PSI.420 pressure transducer and the ST100 turbidity sensor proved to be effective in obtaining and storing data on runoff volume and soil loss obtained during a simulated rain test in the field.
publishDate 2022
dc.date.accessioned.fl_str_mv 2022-10-07T17:05:46Z
dc.date.issued.fl_str_mv 2022-02-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MACEDO, Pietro Menezes Sanchez. Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada. 2022. 70 f. Tese (Doutorado em Agronomia - Ci?ncias do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2022.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6048
identifier_str_mv MACEDO, Pietro Menezes Sanchez. Eros?o h?drica sob chuva simulada com varia??o instant?nea de intensidade de precipita??o e avalia??o autom?tica da enxurrada. 2022. 70 f. Tese (Doutorado em Agronomia - Ci?ncias do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2022.
url https://tede.ufrrj.br/jspui/handle/jspui/6048
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv AKSOY, H.; UNAL, N. E.; COKGOR, S.; GEDIKLI, A.; YOON, J.; KOCA, K.; INCI, B.; ERIS, E. A rainfall simulator for laboratory-scale assessment of rainfall-runoff-sediment transport processes over a two-dimensional flume. Catena, v.98, p.63-72, 2012. https://doi.org/10.1016/j.catena.2012.06.009. ALMEIDA, W. S.; CARVALHO, D. F.; PEREIRA, F. A. C.; ROUWS, J. R. C. Sediment production and soil water infiltration under different simulated rainfall characteristics. Revista Brasileira de Engenharia Agr?cola e Ambiental, v.23, n.8, p.572-578, 2019. http://dx.doi.org/10.1590/1807-1929/agriambi.v23n8p572-578. ALMEIDA, W. S.; PANACHUKI, E.; OLIVEIRA, P. T. S.; MENEZES, R. S.; ALVES SOBRINHO, T., CARVALHO, D. F. Effect of soil tillage and vegetal cover on soil water infiltration. Soil & Tillage Research, v.175, p.130-138, 2018. https://doi.org/10.1016/j.still.2017.07.009. ALMEIDA, W. S.; SEITZ, S.; OLIVEIRA, L. F. C.; CARVALHO, D. F.; Duration and intensity of rainfall events with the same erosivity change sediment yield and runoff rates. International Soil and Water Conservation Research. v.9, n.1, p.69-75, 2021. https://doi.org/10.1016/j.iswcr.2020.10.004. ALVES SOBRINHO, T.; GOMEZ-MACPHERSON, H., G?OMEZ, J. A. A portable integrated rainfall and overland flow Simulator. Soil Use and Management, v.24, n.2, p.163?170, 2008. https://doi. org/10.1111/j.1475-2743.2008.00150.x. ANACHE, J. A. A.; BACCHI, C. G.; ALVES SOBRINHO, T. Modeling of (R) USLE Cfactor for pasture as a function of Normalized Difference Vegetation Index. European International Journal of Science and Technology, v.3, n.9, 2014. 2304-9693. ASSIS, K. G. O.; SILVA, Y. J. A. B.; LOPES, J. W. B.; MEDEIROS, J. C.; TEIXEIRA, M. P. R.; RIM?, F. B.; SINGH, V. P.; Soil loss and sediment yield in a perennial catchment in southwest Piau?, Brazil. Environ Monit Assess, v.26, n.193, 2021. https://doi.org/10.1007/s10661-020-08789-y. BAUCKE, A. S.; FERRARI, J. C.; MICHEL, G. P.; GOETTEN, W. J. Descarga s?lida do rio Itaja? do Sul mediante a aplica??o do m?todo simplificado de Colby. Revista Gest?o & Sustentabilidade Ambiental, v. 9, n. 4, p. 297-315, 2020. http://dx.doi.org/10.19177/rgsa.v9e42020297-315. CERD?, A.; ACKERMANN, O.; TEROL, E.; RODRIGO-COMINO, J. Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water, v.11, n.4, 2019. https://doi.org/10.3390/w11040824. CHAN, K.; SCHILLEREFF, D. N.; BAAS, A. C. W.; CHADWICK, M. A.; MAIN, B.; MULLIGAN, M.; O?SHEA, F. T.; PEARCE, R.; SMITH, T. W. L.; SOESBERGEN, A. V.; TEBBS, E.; THOMPSON, J. Low-cost electronic sensors for environmental research: Pitfalls and opportunities. Progress in Physical Geography, v.45, p.1-34, 2020. https://doi.org/10.1177/0309133320956567. DELETIC, A. Sediment transport in urban runoff over grassed areas. Journal of Hydrology, v.301, p.108-122, 2005. https://doi.org/10.1016/j.jhydrol.2004.06.023. FERRAZ, L. L.; LIMA, F. A.; GUEDES, U. L.; SILVA, F. G. C.; ROCHA, F. A. Estimativa da descarga de sedimentos transportados na bacia hidrogr?fica do rio Verruga. Agarian Academy, v.5, n.9, p.224-233, 2018. https://doi.org/10.18677/Agrarian_Academy_2018a23. GIPPEL, C. J. The use of turbidimeters in suspended sediment research. Hydrobiologia, v.176, n.177, p.465-480, 1989. http://dx.doi.org/10.1007/BF00026582. GRANDO, D. L.; GATIBONI, L. C.; DALL'ORSOLETTA, D. J.; SCHMITT, D. E.; MUMBACH, G. L.; SOUZA JUNIOR, A. A.; BRIGNOLI, F. M. Development and validation of a siphoning prototype for surface runoff evaluation. Journal of Environmental Quality, v.50, n.5, p.1246-1253, 2021. https://doi.org/10.1002/jeq2.20266. ISERLOH, T., RIES, J.B., ARN?EZ, J., BOIX-FAYOS, C., BUTZEN. V., CERD?, A., ECHEVERR?A M.T., FERN?NDEZ-G?LVEZ, J., FISTER, W., GEI?LER, C., G?MEZ, J.A., G?MEZ-MACPHERSON, H., KUHN, N.J., L?ZAROJ, R., LE?N, F.J., MART?NEZMENA, M., MART?NEZ-MURILLO, J.F., MARZEN, M., WIRTZ, S., 2013. European small portable rainfall simulators: A comparison of rainfall characteristics. Catena. v. 110, p. 100-112. https://doi.org/10.1016/j.catena.2013.05.013. KUMAR, G.; SENA, D. R.; PATRA, S.; SINGH, D.; KUROTHE, R. S.; MISHRA, P. K.; NYONAND. Design and Development of a Low-Cost Automatic Runoff Sampler for Time Distributed Sampling. Journal of Hydrology, v.592, 2021. https://doi.org/10.1016/j.jhydrol.2020.125845. LANDERS, M. N.; STURM, T. W. Hysteresis in suspended sediment to turbidity relations due to changing particle size distributions. Water Resources Research, v. 49, n. 9, p. 5487-5500, 2013. https://doi.org/10.1002/wrcr.20394. MACEDO, P. M. S., PINTO, M. F., ALVES SOBRINHO, T., SCHULTZ, N., COUTINHO, T. A. R., CARVALHO, D. F. A Modified portable rainfall simulator for soil erosion assessment under different rainfall patterns. Journal of Hydrology, 2021. https://doi.org/10.1016/j.jhydrol.2021.126052. MERTEN, G. H.; CAPEL. P. D.; MINELLA, J. P. G. Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal Soils Sediments, v.14, p.1235-1241, 2014. https://doi.org/10.1007/s11368-013-0813-0. NIELSEN, K. T.; MOLDRUP, P.; THORNDAHL, S.; NIELSEN, J. E.; DUUS, L. B.; RASMUSSEN, S. H.; UGGERBY, M.; RASMUSSEN, M. R. Automated rainfall simulator for variable rainfall on urban green areas. Hydrological Processes, v.33, p.3364-3377, 2019. https://doi.org/10.1002/hyp.13563. MUTTER, G. M. The Use of Portable Turbidity Meters in Developing an Erodibility Classification System for Iraqi Soils. International Journal of Scientific Research in Science, Engineering and Technology, v.4, n.1, p.1107-1117, 2018. PANACHUKI, E.; SANTOS, M. A. N.; PAVEL, D. S.; ALVES SOBRINHO, T.; CAMACHO, M. A.; MONTANARI, R. Soil and water loss in Ultisol of the Cerrado-Pantanal Ecotone under different management systems. African Journal of Agricultural Research, v. 10, n. 0, p. 926-932, 2015. https://doi.org/10.5897/AJAR2014.8908. QUEIROZ, T. M.; LIMA, S. C. R. V.; BOTREL, T. A.; FRIZZONE, J. A. Coletor autom?tico para ensaio de aspersores em laborat?rio (1) ? desenvolvimento do modelo. Revista Brasileira de Agricultura Irrigada v.2, n.1, p.24?28, 2008. https://doi.org/10.7127/rbai.v2n100200. S?, A. B.; PIGOZZO FILHO, V. C.; TADRIST, L. PASSOS, J. C. Experimental study of a linear Fresnel concentrator: A new procedure for optical and heat losses characterization. Energy, v.232, 2021. https://doi.org/10.1016/j.energy.2021.121019. SALEM H. M.; MESELHY, A. A. A portable rainfall simulator to evaluate the factors affecting soil erosion in the northwestern coastal zone of Egypt. Natural Hazards, v. 105, p. 2937?2955, 2020. https://doi.org/10.1007/s11069-020-04432-8. SANTOS, C. A.; FRIGO, E. P.; FRIGO, K. D. A.; ECKERT, C. T.; DIETER, J.; ALVES, H. J.; TOKURA, L. K.; SANTOS, R. F. Impact of pervious pavement in urban areas on catchment basin recovery. Ci?ncias Agr?rias, v.39, n.1, p.39-49, 2018. https://doi.org/10.5433/1679-0359.2018v39n1p39. SCHENATO, L.; L?PEZ, J. P. A.; GALTAROSSA, A.; PASUTO, A.; BOGAARD, T.; PALMIERI, L. Design and field testing of a fiber optic pressure sensor for underground water level monitoring. European Workshop on Optical Fiber Sensors, v.111990J, 2019. https://doi.org/10.1117/12.2540812. SEITZ, S.; GOEBES, P.; PUERTA, V. L.; PEREIRA, E. I. P.; WITTWER, R.; SIX, J.; VAN DER HEIJDEN, M. G. A.; SCHOLTEN, T. Conservation tillage and organic farming reduce soil erosion. Agronomy for Sustainable Development, v.39, n.4, 2019. https://doi.org/10.1007/s13593-018-0545-z. XU, X.; FAN, H.; CHEN, X.; MI, C. Estimating low eroded sediment concentrations by turbidity and spectral characteristics based on a laboratory experiment. Environmental monitoring and assessment, v. 192, n. 2, p. 1-13, 2020. https://doi.org/10.1007/s10661-020-8092-x. ZHAN, X.; ZHAO, J.; ZHU-BARKER, X.; SHUI, J.; LIU, B.; GUO, M.; An instrument with constant volume approach for in situ measurement of surface runoff and suspended sediment concentration. Water Resources Research, v. 57, 2021. https://doi.org/10.1029/2020WR028210.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Agronomia - Ci?ncia do Solo
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6048/4/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6048/3/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6048/2/2022+-+Pietro+Menezes+Sanchez+Macedo.pdf
http://localhost:8080/tede/bitstream/jspui/6048/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
e986e42cbc6686913ae8ea95c7505ced
0b8b5d7437283d3e0f3e68246fef5e0f
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313558305603584