Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/11809 |
Resumo: | A pulga Ctenocephalides felis é ectoparasita de cães e gatos em todo o mundo, atuando como vetor de patógenos zoonóticos, incluindo Rickettsia felis e Bartonella sp. A diversidade de micróbios associados ao hospedeiro e suas interações dentro de seus hospedeiros, incluindo artrópodes, são fundamentais para as funções ecológicas nessas comunidades e podem contribuir para sua evolução. Além disso, as interações simbióticas podem influenciar as transmissões de patógenos zoonóticos, através de efeitos sobre a competência vetorial. O conhecimento da microbiota de vetores tem sido utilizado para desenvolver novas abordagens de controle com base no conceito de manipulação da microbiota. Um componente chave nesta estratégia é a presença de uma microbiota estável/ “core”. O presente estudo caracterizou a estabilidade, durante oito anos, da microbiota cultivável de uma colônia de laboratório de C. felis. As bactérias associadas aos diferentes estágios da vida foram isoladas por cultura em placas de ágar nutriente. As bactérias foram identificadas, em nível de gênero ou espécie, por amplificação por reação em cadeia da polimerase (PCR) de um fragmento de 500 pares de bases (pb) do gene que codifica o RNA ribossômico 16S procariótico, seguido de sequenciamento de nucleotídeos. As culturas foram caracterizadas quanto à suscetibilidade a sete compostos antimicrobianos (ampicilina, cloranfenicol, cloreto de mercúrio, nitrofurantoína, tetraciclina, rifampicina e estreptomicina), utilizando um método de microdiluição. Cada uma das diferentes etapas da vida apresentou uma microbiota única, no entanto, um componente central de todas as amostras era membro do gênero Staphylococcus, com alguns demonstrando fenótipos resistentes a múltiplos antimicrobianos. As espécies mais prevalentes foram S. saprophyticus, S. nepalensis, S. lentus e S. cohnii, as quais foram relatadas previamente como patógenos oportunistas com potencial zoonótico. A presença constante da mesma espécie de Staphylococcus, em múltiplos estágios da vida, sugere que estas bactérias são componentes essenciais da microbiota. Pesquisas futuras examinaram os efeitos da manipulação do microbioma “core” como o primeiro passo no desenvolvimento de novas estratégias para o controle de infestações, como por exemplo realizando a indução de bacteriófagos específicos de bactérias presentes no microbioma. |
id |
UFRRJ-1_a98dcbce32a31e272e83fecbaa74d336 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/11809 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Franco, Tatiana WerneckMcIntosh, Douglas054.046.627-19https://orcid.org/0000-0003-3652-7835http://lattes.cnpq.br/5166697605343047McIntosh, Douglas054.046.627-19https://orcid.org/0000-0003-3652-7835http://lattes.cnpq.br/5166697605343047Coelho, Irene da Silvahttps://orcid.org/0000-0003-1357-2529http://lattes.cnpq.br/2191695584157582Ogrzewalska, Maria Halina--Schwab, Stefanhttps://orcid.org/0000-0001-9058-0632http://lattes.cnpq.br/1256663530917190Azevedo, Thaís Ribeiro Correiahttps://orcid.org/0000-0003-3045-8787http://lattes.cnpq.br/6049103053269712148.795.097-79http://lattes.cnpq.br/88769039229059142023-12-22T01:57:10Z2023-12-22T01:57:10Z2020-02-19FRANCO, Tatiana Werneck. Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae). 2020.83 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020.https://rima.ufrrj.br/jspui/handle/20.500.14407/11809A pulga Ctenocephalides felis é ectoparasita de cães e gatos em todo o mundo, atuando como vetor de patógenos zoonóticos, incluindo Rickettsia felis e Bartonella sp. A diversidade de micróbios associados ao hospedeiro e suas interações dentro de seus hospedeiros, incluindo artrópodes, são fundamentais para as funções ecológicas nessas comunidades e podem contribuir para sua evolução. Além disso, as interações simbióticas podem influenciar as transmissões de patógenos zoonóticos, através de efeitos sobre a competência vetorial. O conhecimento da microbiota de vetores tem sido utilizado para desenvolver novas abordagens de controle com base no conceito de manipulação da microbiota. Um componente chave nesta estratégia é a presença de uma microbiota estável/ “core”. O presente estudo caracterizou a estabilidade, durante oito anos, da microbiota cultivável de uma colônia de laboratório de C. felis. As bactérias associadas aos diferentes estágios da vida foram isoladas por cultura em placas de ágar nutriente. As bactérias foram identificadas, em nível de gênero ou espécie, por amplificação por reação em cadeia da polimerase (PCR) de um fragmento de 500 pares de bases (pb) do gene que codifica o RNA ribossômico 16S procariótico, seguido de sequenciamento de nucleotídeos. As culturas foram caracterizadas quanto à suscetibilidade a sete compostos antimicrobianos (ampicilina, cloranfenicol, cloreto de mercúrio, nitrofurantoína, tetraciclina, rifampicina e estreptomicina), utilizando um método de microdiluição. Cada uma das diferentes etapas da vida apresentou uma microbiota única, no entanto, um componente central de todas as amostras era membro do gênero Staphylococcus, com alguns demonstrando fenótipos resistentes a múltiplos antimicrobianos. As espécies mais prevalentes foram S. saprophyticus, S. nepalensis, S. lentus e S. cohnii, as quais foram relatadas previamente como patógenos oportunistas com potencial zoonótico. A presença constante da mesma espécie de Staphylococcus, em múltiplos estágios da vida, sugere que estas bactérias são componentes essenciais da microbiota. Pesquisas futuras examinaram os efeitos da manipulação do microbioma “core” como o primeiro passo no desenvolvimento de novas estratégias para o controle de infestações, como por exemplo realizando a indução de bacteriófagos específicos de bactérias presentes no microbioma.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe flea Ctenocephalides felis is the principal ectoparasite of dogs and cats worldwide acting as a vector of zoonotic pathogens including Rickettsia felis and Bartonella. The diversity of host associated microbes and their interactions within their hosts, including arthropods, are fundamental to the ecological functions within those communities and may contribute to host evolution. Moreover, symbiotic interactions may influence the transmissions of zoonotic pathogens, via effects upon vectorial competence. Knowledge of the microbiota of vectors has been used to develop novel approaches for control based on the concept of microbiota manipulation. A key component in this strategy is the presence of a stable/core microbiota. The present study characterized the stability, over seven years, of the cultivable microbiota of a laboratory colony of C. felis. Bacteria associated with different life stages were isolated by culture on plates of nutrient agar. Bacteria were identified, to the genus or species level, by polymerase chain reaction (PCR) amplification of a 500 base pair (bp) fragment of the gene encoding prokaryotic 16S ribosomal RNA, followed by nucleotide sequencing. Cultures were characterized for susceptibility to seven antimicrobial compounds (ampicillin, chloramphenicol, mercury chloride, nitrofurantoin, oxytetracycline, rifampicin and streptomycin), using a microdilution method. Each of the different life stages presented a unique microbiota, however a core component of all samples were members of the genus Staphylococcus, with some demonstrating multiple-drug resistant phenotypes. The most prevalent species were S. saprophyticus, S. nepalensis, S. lentus and S. cohnii all of which have been reported as opportunistic pathogens with zoonotic potential. The constant presence of the same species of Staphylococcus, in multiple life stages, suggests they are essential components of the microbiota and by implication of the biology of the fleas. Future research will examine the effects of manipulating the core microbiome as the first step in the development of novel strategies for infestation controlapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de VeterináriaEctoparasitasComunidades microbianasPCRResistência a antibióticosEctoparasitesMicrobial communitiesPCRAntibiotic resistanceMedicina VeterináriaAnálise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae)Analysis of the cultivable microbiota associated with a laboratory colony of Ctenocephalides felis felis (Siphonaptera, Pulicidae).info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAIVELO, T.; TSCHIRREN, B. Bacterial microbiota composition of a common ectoparasite of cavity‐breeding birds, the Hen Flea Ceratophyllus gallinae. Ibis, p. 1-15, 2019. ALBINO, Luiz Augusto Aguiar et al. Isolamento, caracterização e uso de bacteriófagos no biocontrole de Salmonella typhimurium. 2011. ALFANO, N.; TAGLIAPIETRA, V.; ROSSO, F.; MANICA, M.; ARNOLDI, D.; PINDO, M.; RIZZOLI, A. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies. Frontiers in Microbiology, v.10, p.1-15, 2019. ALONSO, A.; SANCHEZ, P; MARTINEZ, J.L. Environmental selection of antibiotic resistance genes. Environmental Microbiology, v. 3, p. 1-9, 2001. AMÉRICO, J. H. P.; DE OLIVEIRA MANOEL, L.; TORRES, N. H.; FERREIRA, L. F. R. O uso de agrotóxicos e os impactos nos ecossistemas aquáticos. Revista Científica, ANAP Brasil, v. 8, n. 13, p. 1-15, 2015. AMPICILINA-VETERIN-ORAL. vetnil.com.br, 2019. Disponível em: < http://www.vetnil.com.br/produtos/ampicilina-veterin-oral/ >. Acesso em: 15/01/2019. ANDRADE, A. C. S.; DOS SANTOS, I. C.; BARBOSA, L. N.; DA SILVA CAETANO, I. C.; ZANIOLO, M. M.; FONSECA, B. D.; GONÇALVES, D. D. Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Production in Enterobacteriaceae Isolates from Household Cats (Felis silvestris catus). Acta Scientiae Veterinariae, v. 47, p. 1-9, 2019. ANDRADE, S. F. Quimioterápicos, antimicrobianos e quimioterápicos. In: ANDRADE, S. F. Manual de terapêutica Veterinária, 3 ed. São Paulo: Editora Roca, 2008. ANGLERÓ-RODRÍGUEZ, Y. I.; BLUMBERG, B. J.; DONG, Y.; SANDIFORD, S. L.; PIKE, A.; CLAYTON, AM.; DIMOPOULOS, G. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Scientific reports, v. 6, n. 34084, p. 1-10, 2016. BAE, T.; BABA, T.; HIRAMATSU, K.; SCHNEEWIND, O Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol, v. 62, n. 4, p. 1035-1047, 2006. 51 BAHRNDORFF, S.; DE JONGE, N.; SKOVGÅRD, H., NIELSEN, J. L. (2017). Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS One, v.12, n. 1, 2017. BAKER, G. C.; SMITH, J. J.; COWAN, D. A. Review and re-analysis of domain-specific 16S primers. Jounal of Microbiol Methods, v. 55(3), p. 541–55, 2003. BAKER, G. C.; SMITH, J. J.; COWAN, D. A. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods, by culturomics. Nat Microbiol, v.55(3), p.541-55, 2003. BALDRIDGE, G. D.; BURKHARDT, N. Y.; SIMSER, J. A.; KURTTI, T. J.; MUNDERLOH, U. GSequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl. Environ. Microbiol, v. 70, n. 11, p. 6628-6636, 2004. BARRANGOU, R.; MARRAFFINI, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular cell, v. 54, n. 2, p. 234-244, 2014. BAUER, A. W.; KIRBY, W.M.M.; SHERRIS, J.C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, v. 45, n. 4 ts, p. 493-496, 1966. BEARD, C. B.; BUTLER, J. F.; HALL, D. W. Prevalence and biology of endosymbionts of fleas (Siphonaptera: Pulicidae) from dogs and cats in Alachua County, Florida. Journal of medical entomology, v. 27, n. 6, p. 1050-1061, 1990. BEARD, C.B.; CORDON-ROSALES, C.; DURVASULA, R.V. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annual Review of Entomology, v. 47, p.123-141, 2002. BECKER, K.; HEILMANN, C.; PETERS, G. Coagulase-negative staphylococci. Clinical microbiology reviews, v. 27, n. 4, p. 870-926, 2014. BEN, Y.; FU, C.; H. U, M.; LIU, L.; WONG, M. H.; Z HENG, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environmental research, v. 169, p. 483-493, 2019. BENNETT, K. L.; ALMANZA, A, MCMILLAN, W.; O, SALTONSTALL, K.; VDOVENKO E. L.; VINDA, J. S.; MEJIA L.; DRIESSE, K.; DE LEÓN, L. F.; LOAIZA, J.R. Habitat disturbance and the organization of bacterial communities in. Neotropical hematophagous arthropods. PloS One, v.14 p. 9, 2019. 52 BERNHEIM, A.; BIKARD, D.; TOUCHON, M.; ROCHA, E.P. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philosophical Transactions of the Royal Society B. v. 374, n. 1772, p. 20180088, 2019. BI, J.; WANG, Y.F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect science, p. 1-32, 2019. BIAN, G.; XU, Y.; LU, P.; XIE, Y.; XI, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathology, v. 6 n.4, p. 1-32, 2010. BINETRUY, F.; DUPRAZ, M.; BUYSSE, M.; DURON, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & vectors, v. 12, n. 1, p. 268, 2019. BITAM, I.; DITTMAR, K.; PAROLA, P.; WHITING, M. F.; RAOULT, D.L. Fleas and flea-borne diseases. International journal of infectious diseases, v. 14, n. 8, p. e667-e676, 2010. BLANTON L. S.; WALKER D. H. Flea-borne rickettsioses and rickettsiae. The American journal of tropical medicine and hygiene, v. 96, n. 1, p. 53-56, 2017. BOIOCCHI, F.; DAVIES, M. P.; HILTON, A. C. AN Examination of Flying Insects in Seven Hospitals in the United Kingdom and Carriage of Bacteria by True Flies (Diptera: Calliphoridae, Dolichopodidae, Fanniidae, Muscidae, Phoridae, Psychodidae, Sphaeroceridae). Journal of Medical Entomology, v. 56, p. 1684-1697, 2019. BORDENSTEIN, S. R.; THEIS, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS biology, v. 13, p. 8: e1002226, 2015. BOUYER, D. H.; STENOS, J.; CROCQUET-VALDES, P.; MORON, C. G.; POPOV, V. L.; ZAVALA-VELAZQUEZ, J. E.; WALKER, D. H. Rickettsia felis: molecular characterization of a new member of the spotted fever group. International journal of systematic and evolutionary microbiology, v. 51, n. 2, p. 339-347, 2001. BRINKER, P.; FONTAINE, M.C.; BEUKEBOOM, L. W.; SALLES, J.F. Host, symbionts, and the microbiome: the missing tripartite interaction. Trends in microbiology, v.27, p. 480-488, 2019. BROUNS, S. J.; JORE, M. M.; LUNDGREN, M.; WESTRA, E. R.; SLIJKHUIS, R. J.; SNIJDERS, A. P.; VAN DER OOST, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, v.321, n.5891, p. 960-964, 2008. 53 BUARQUE, D. S.; GOMES, C. M.; ARAÚJO, R. N.; PEREIRA, M. H.; FERREIRA, R. C.; GUARNERI, A. A.; TANAKA, A. S. A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie, v. 123, p. 138-143, 2016. BURSTEIN, D.; SUN, C. L.; BROWN, C.T.; SHARON, I.; ANANTHARAMAN, K.; PROBST, A.J., …& BANFIELD, J.F. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nature communications, feb, 2016, v.7, n.10613, 2016. CABELLO, R.R.; RUIZ, A.C.; FEREGRINO, R.R.; ROMERO, L.C.; FEREGRINO, R.R.; ZAVALA, J.T. Dipylidium caninum infection. BMJ case reports, bcr0720114510. 2011. CAO, Y.; FANNING, S.; PROOS, S.; JORDAN, K.; SRIKUMAR, S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in Microbiology, v.8, p. 1-16, 2017. CARAGATA, E. P, TIKHE, C. V, DIMOPOULOS, G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Current opinion in virology. Aug 2019 v.1, n.37, p.26-36, 2019. CARAGATA, E. P.; DUTRA, H. L.; MOREIRA, L. A. Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends in parasitology, v. 32, n. 3, p. 207-218, 2016. CARTHEY, A. J.; BLUMSTEIN, D. T.; GALLAGHER, R. V.; TETU, S. G.; GILLINGS, M. R. Conserving the holobiont. Functional Ecology, p. 1-31, 2020. CARTHEY, A.J.; BLUMSTEIN, D.T.; GALLAGHER, R.V.; TETU, S.G.; GILLINGS, M.R. Conserving the holobiont. Functional Ecology, p. 1-31, 2020. CARVALHO, V. M.; SPINOLA, T.; TAVOLARI, F.; IRINO, K.; OLIVEIRA, R. M.; RAMOS, M. C. C. Infecções do trato urinário (ITU) de cães e gatos: etiologia e resistência aos antimicrobianos. Pesquisa Veterinária Brasileira, v. 34, n. 1, p. 62-70, 2014. CAUMO, K. S.; DUARTE, M.; CARGNIN, S. T.; RIBEIRO, V. B.; TASCA, T.; MACEDO, A. J. Resistência bacteriana no meio ambiente e implicações na clínica hospitalar. Revista Liberato: revista de divulgação de educação, ciência e tecnologia. Novo Hamburgo, RS. v. 11, n.16, p.89-188, 2010. CHAKRABORTY, S.; SNIJDERS, A. P.; CHAKRAVORTY, R.; AHMED, M.; TAREK A. M. Comparative network clustering of direct repeats (DRs) and cas genes confirms the 54 possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol, v.56, n.3, p. 878-887, 2010. CHANDEL, K.; MENDKI, M. J.; PARIKH, R. Y.; KULKARNI, G.; TIKAR, S. N., SUKUMARAN, D.; VEER, V. Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PloS one, v.8, n.11, 2013. CHUN-HONG, L.; JIE, C.; YONG-ZHI, Z.; HOU-SHUANG, Z. H. A. N. G.; HAI-YAN, G. O. N. G.; JIN-LIN, Z. The Midgut Bacterial Flora of Laboratory-Reared Hard Ticks, Haemaphysalis longicornis, Hyalomma asiaticum, and Rhipicephalus haemaphysaloides. Journal of Integrative Agriculture, 2014. CLARK, N. J.; SEDDON, J. M.; ŠLAPETA, J.; WELLS, K. Parasite spread at the domestic animal-wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals. Parasites & vectors, v. 11, n. 1, p. 8, 2018. CLIFTON, S.M.; KIM, T.; CHANDRASHEKHAR, J.H.; O’TOOLE, G.A.; RAPTI, Z.; WHITAKER, R. J. Lying in Wait: Modeling the Control of Bacterial Infections via Antibiotic-Induced Proviruses. MSystems, v. 4, n. 5, p. e00221-19, 2019. COLES, T.B.; DRYDEN, M. W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & vectors, v. 7, n. 1, p. 8, 2014. CRKVENCIC, N.; ŠLAPETA, J. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia. Parasites & vectors, v. 12, n. 1, p. 137, 2019. CZEKAJ, T.; CISZEWSKI, M.; SZEWCZYK, E.M. Staphylococcus haemolyticus–an emerging threat in the twilight of the antibiotics age. Microbiology, v. 161, n. 11, p. 2061-2068, 2015. D. HUBÁLEK, Z. Identificação baseada no gene 16S rRNA da flora bacteriana cultivada dos carrapatos Ixodes ricinus, Dermacentor reticulatus e Haemaphysalis concinna, vetores de patógenos vertebrados. Folia Microbiol, v.54, n.419, 2009. DANCER, S. J.; SHEARS, P.; PLATT, D. J. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic. Journal of applied microbiology, v. 82, n. 5, p. 597-609, 1997. DASZAK, P.; CUNNINGHAM, A. A.; HYATT, A. D. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science, v. 287, n. 5452, p. 443- 449, 2000. 55 DE AVELAR, D. M. Endossimbiontes de Ctenocephalides felis felis (Siphonaptera: Pulicidae) de cães vadios de Belo Horizonte, MG–Brasil. 2006. 114f. Dissertação de mestrado – Universidade Federal de Minas Gerais, 2006. DE PAEPE, M.; LECLERC, M.; TINSLEY, C. R.; PETIT, M. A. Bacteriophages: an underestimated role in human and animal health? Frontiers in cellular and infection microbiology, v. 4, n.39, 2014. DÍAZ-SÁNCHEZ S.; ESTRADA-PEÑA A.; CABEZAS-CRUZ A.; DE LA FUENTE J. Evolutionary insights into the tick hologenome. Trends in parasitology. 2019 Jul 19. DICKINSON A.W.; POWER A.; HANSEN M. G.; BRANDT K. K.; PILIPOSIAN G, APPLEBY P, O'NEILL P. A.; JONES R. T.; SIEROCINSKI P.; KOSKELLA B.; VOS M. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environment international, v. 1, n. 132, p. 105-117, 2019. DIEP, B. A.; GILL, S. R.; CHANG, R. F.; PHAN, T. H.; CHEN, J. H.; DAVIDSON, M. G.; SENSABAUGH, G. F. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet v. 367, p. 731–739. 2006. DISSANAYAKE, A. J.; PURAHONG, W.; WUBET, T.; HYDE, K. D.; ZHANG, W.; XU, H.; ZHANG, G.; FU, C.; LIU, M.; XING, Q.; LI X. Direct comparison of culture-dependent and culture-independent molecular approach reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Diversity, v. 90(1), p. 85-107, 2018. DOTTO, G.; BERLANDA, M.; PASOTTO, D.; MONDIN, A.; ZAMBOTTO, G, MENANDRO, M. L. Pets as potential carriers of multidrug-resistant Enterococcus faecium of significance to public health. The new microbiologica. 2018 Apr v.1;41(2), p. 168-72, 2018. DRYDEN, M. W.; RUST, M. K. The cat flea: biology, ecology and control. Veterinary Parasitology, v. 52, n. 1-2, p. 1-19, 1994. DUGUMA, D.; HALL, M. W, SMARTT, C. T, DEBBOUN, M.; NEUFELD, J. D. Variações de microbiota no mosquito vetor da doença de Culex nigripalpus do vírus do Nilo Ocidental e da encefalite de Saint Louis de diferentes origens geográficas. PeerJ, v.6, e6168, 2019. DURAND, G. A.; RAOULT, D.; DUBOURG, G. Antibiotic discovery: History, methods and perspectives. International journal of antimicrobial agents, v. 53.4, p. 371-382, 2019. DURDEN, L.A.; HINKLE, N.C. Fleas (Siphonaptera). In: Medical and Veterinary Entomology. Academic Press, p. 145-169, 2009. 56 DURON, O.; BINETRUY, F.; NOËL, V.; CREMASCHI, J.; MCCOY, K.D.; ARNATHAU, C.; PLANTARD, O.; GOOLSBY, J.; PÉREZ DE LEÓN, A.A.; HEYLEN, D.J.; VAN, OOSTEN, A.R. Evolutionary changes in symbiont community structure in ticks. Molecular ecology, v. 26(11), p. 2905-2921, 2017. DURON, O.; MOREL, O.; NOËL, V.; BUYSSE, M.; BINETRUY, F.; LANCELOT, R.; VIAL, L. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Current Biology, v. 28, n. 12, p. 1896-1902. e5, 2018. EGYED, L.; MAKRAI, L. Cultivable internal bacterial flora of ticks isolated in Hungary. Experimental and Applied Acarology, v. 63, n. 1, p. 107-122, 2014. ELBEDIWI, M.; LI, Y.; PAUDYAL, N.; PAN, H.; LI, X.; XIE, S.; YUE, M. (2019). Carga Global de Bactérias Resistentes a Colistina: Estudo Mobilizado de Genes de Resistência à Colistina (1980-2018). Microrganismos, v. 7 (10), p. 461, 2019. ERICKSON, D.L.; ANDERSON, N.E.; CROMAR, L.M.; JOLLEY, A. Bacterial Communities Associated With Flea Vectors of Plague. Journal of Medical Entomology, v. 46, n. 6, p.1532-1536, 2009. FIŠAROVÁ, L.; PANTŮČEK, R.; BOTKA, T.; DOŠKAŘ, J. Variabilidade dos plasmídeos de resistência em estafilococos coagulase-negativos e sua importância como reservatório de resistência antimicrobiana. Pesquisa em microbiologia, v. 170, n. 2, p. 105-111, 2019. FONTANA, C.; FAVARO, M.; PELLICCIONI, M.; PISTOIA, E, S.; FAVALLI, C. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. Journal of clinical microbiology, v. 43(2), p.615-619, 2005. FONTANA, R.; WETLER, R. M. D. C.; AQUINO, R. S.; ANDRIOLI, J. L.; QUEIROZ, G. R.; FERREIRA, S. L.; DELABIE, J. H. Pathogenic bacteria dissemination by ants (Hymenoptera: Formicidae) in two hospitals in northeast Brazil. Neotropical entomology, v.39(4), p. 655-663, 2010. FREDENSBORG, B.L.; FOSSDAL, Í.; KÁLVALÍÐ, I.; JOHANNESEN, T.B.; STENSVOLD, C.R.; NIELSEN, H.V.; KAPEL, C.M. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PloS one, v.15(1), e0227561, p 1-18, 2020. FURUYA, E.Y, LOWY FD.; FRANKLIN D. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol v.4, n. 36, p.45, 2006. 57 GAO, H.; CUI, C.; WANG L.; JACOBS-LORENA, M.; WANG, S. Mosquito Microbiota and Implications for Disease Control. Trends in Parasitology, v. 36, p. 98-111, 2019. GARDINER, B.J.; STEWARDSON, A.J.; ABBOTT, I.J.; PELEG, A.Y. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Australian prescriber, v. 42, n. 1, p. 14, 2019. GARG, Staphylococcus cohnii: Not so innocuous. Journal of Acute Disease, v.5, p. 239, 2019. GIGUÈRE, S., PRESCOTT, J. F., BAGGOT, J. D., WALKER, R. D., & DOWLING, P. M. TERAPIA antimicrobiana em medicina veterinária. Roca, São Paulo. P. 683, 2010. GÓMEZ-SANZ, E.; CEBALLOS, S.; RUIZ-RIPA, L.; ZARAZAGA, M., TORRES, C. (2019). Clonally Diverse Methicillin and Multidrug Resistant Coagulase Negative Staphylococci Are Ubiquitous and Pose Transfer Ability Between Pets and Their Owners. Frontiers in Microbiology, v.10, p. 485, 2019. GORHAM, C. H.; FANG, Q. Q.; DURDEN, L. A. Wolbachia endosymbionts in fleas (Siphonaptera). Journal of Parasitology, v.89.2, p. 283-289, 2003. GREAY, T.L, GOFTON AW, PAPARINI A, RYAN UM, OSKAM CL, IRWIN PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites & vectors, v. 11(1), p.12, 2018. GRENNI, P.; ANCONA, V.; CARACCIOLO, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, v. 136, p. 25-39, 2018. GUARDABASSI, L.; KRUSE, H. Princípios da utilização prudente e racional de antimicrobianos em animais. Guia de antimicrobianos em veterinária, p. 17-30, 2010. GURUNG, K.; WERTHEIM, B.; FALCAO S.J. The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, v. 167, n. 3, p. 156-170, 2019. HADRICH, D. Microbiome research is becoming the key to better understanding health and nutrition. Frontiers in genetics, v. 9, p. 212, 2018. HALOS, LÉNAÏG.; BEUGNET, F.; CARDOSO, L.; FARKAS, R., FRANC, M., GUILLOT, J.; WALL, R. Flea control failure? Myths and realities. Trends in Parasitology, v. 30, n. 5, p. 228-233, 2014. 58 HARTANTYO, S.H.; CHAU, M.L.; FILLON, L.; ARIFF, A.Z.; KANG, J.S.; AUNG, K.T.; GUTIÉRREZ, R.A. Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore. Antimicrobial Resistance & Infection Control, v.7, n.1, p.106, 2018. HEADLEY, S. A.; SCORPIO, D. G.; VIDOTTO, O.; DUMLER, J. S. NEORICKETTSIA helminthoeca and salmon poisoning disease: a review. The Veterinary Journal, v. 187, n. 2, p. 165-173, 2011. HEALY, S. P.; BROWN, L.D.; HAGSTROM, M. R.; FOIL, L. D.; MACALUSO, K. R. Effect of Rickettsia felis strain variation on infection, transmission, and fitness in the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology, v. 54(4), p. 1037-1043, 2017. HESSE, S.; ADHYA, S. Phage Therapy in the Twenty-First Century: Facing the Decline of The Antibiotic Era; Is it Finally Time for The Age of the Phage? Annual review of microbiology, v. 73, 2019. HIGGINS, J.A.; SACCI Jr, J.B.; SCHIEFER, M.E.; ENDRIS, R.G.; AZAD, A.F. Molecular identification of rickettsia-like microorganisms associated with colonized cat fleas (Ctenocephalides felis). Insect Molecular Biology, v. 3, n.1, p.27–33, 1994. HIRUNKANOKPUN, S.; THEPPARIT, C.; FOIL, L. D.; MACALUSO, K. R. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Molecular ecology, v. 20, n. 21, p. 4577-4586, 2011. HORTA, M. C.; SCOTT, F. B.; CORREIA, T. R.; FERNANDES, J. I.; RICHTZENHAIN, L. J.; LABRUNA, M. B. Rickettsia felis infection in cat fleas Ctenocephalides felis felis. Brazilian Journal of Microbiology, v.41(3), p. 813-818, 2010. HUNTER, D. J., TORKELSON, J. L., BODNAR, J., MORTAZAVI, B., LAURENT, T., DEASON, J.; ZHONG, J. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PloS one, v. 10, n. 12, 2015. HYDE, J.; GORHAM, C.; BRACKNEY, D.E.; STEVEN, B. Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome. PloS one, 2019, v.14, p.8, 2019. IGNASIAK, K.; MAXWELL, A. Antibiotic-resistant bacteria in the guts of insects feeding on plants: prospects for discovering plant-derived antibiotics. BMC microbiology, 17(1), 223, 2017. JIANG, W.; MANIV, I..; ARAIN, F.; WANG, Y.; LEVIN, B.R.; MARRAFFINI, L.A. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS genetics, v.9(9), e1003844, 2013. 59 JOHNSON, K. The impact of Wolbachia on virus infection in mosquitoes. Viruses, v. 7, n. 11, p. 5705-5717, 2015. JONES, R.T.; KNIGHT, R.; MARTIN, A.P. Bacterial communities of disease vectors sampled across time, space, and species. The ISME Journal, v. 4, n. 2, p. 223, 2009. KAKASIS, A.; PANITSA, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International journal of antimicrobial agents, v. 53, n. 1, p. 16-21, 2019. KHAN, H. A. A.; AKRAM, W.; FATIMA, A. Resistance to pyrethroid insecticides in house flies, Musca domestica L., (Diptera: Muscidae) collected from urban areas in Punjab, Pakistan. Parasitology research, v.116, n.12, p. 3381-3385, 2017. KARIMI, Z.; AHMADI A.; NAJAFI, A.; RANJBAR, R. Bacterial CRISPR regions: general features and their potential for epidemiological molecular typing studies. The open microbiology jornal, v.12, p.59, 2018. KAUR, P.; PETERSON, E. Mecanismos de resistência a antibióticos em bactérias: relações entre determinantes de resistência de produtores de antibióticos, bactérias ambientais e patógenos clínicos. Frontiers in Microbiology, v. 9: 2928, 20 p.1-21,2018. KELLY, P. H.; BAHR, S. M.; SERAFIM, T. D.; AJAMI, N. J.; PETROSINO, J. F.; MENESES, C.; WILSON, M. E. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio, v. 8, n. 1, p. e01121-16, 2017. KOHL, T.; PONTAROLO, G.H.; PEDRASSANI, D. Resistência antimicrobiana de bactérias isoladas de amostras de animais atendidos em hospital veterinário. Saúde e meio ambiente: revista interdisciplinar, v. 5, n. 2, p. 115-127, 2016. KOYLE, M. L.; VELOZ, M.; JUDD, A. M.; WONG, A. C.; NEWELL, P. D.; DOUGLAS, A. E.; CHASTON, J. M. Rearing the fruit fly Drosophila melanogaster under axenic and gnotobiotic conditions. Journal of visualized experiments: JoVE, n. 113, 2016. KUMBHARE, M. R.; SURANA A. R.; ABHALE, A. U.; BHOIR, A. A.; AGRAWAL S. P. An Updates on Antibiotic Resistance. Drug Designing & Intellectual Properties International Journal India, 01.03.2019. v.2 p. 1-5, 2019. LAGIER, J. C.; ARMOUGOM, F.; MILLION, M.; HUGON, P.; PAGNIER, I.; ROBERT, C.; TRAPE, J. F. Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, v. 18, n. 12, p. 1185-1193, 2012. 60 LAGIER, J. C.; KHELAIFIA, S.; ALOU, M. T.; NDONGO, S.; DIONE, N.; HUGON, P.; DURAND, G. Culture of previously uncultured members of the human gut microbiota culturomics. Nature microbiology, v. 1, n. 12, p. 1-8, 2016. LALZAR, I.; HARRUS, S.; MUMCUOGLU, K. Y.; GOTTLIEB, Y. Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl. Environ. Microbiol, v.78, n.12, p.4110-4116, 2012. LANE, D. J.; PACE, B.; OLSEN, G. J.; STAHL, D. A.; SOGIN, M. L.; PACE, N. R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A, v. 82, n.20, p. 6955–6959, 1985. LAU, C. H. F.; VAN E. K.; GORDON, S.; RENAUD, J.; TOPP, E. N. Antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming. Appl. Environ. Microbiol, v. 83, p.16, 2017. LAUDADIO, I.; FULCI, V.; STRONATI L.; CARISSIMI, C. Next-generation metagenomics: Methodological challenges and opportunities. Omics: a journal of integrative biology, v.23, n.7, p.327-33, 2019. LAWRENCE, A. L.; HII, S. F.; CHONG R.; WEBB, C. E.; TRAUB, R.; BROWN, G.; ŠLAPETA, J. Evaluation of the bacterial microbiome of two flea species using different DNA-isolation techniques provides insights into flea host ecology. FEMS microbiology ecology, vol. 91.12, 2015. LAWRENCE, A.; WEBB, C. E.; CLARK, N. J.; HALAJIAN, A.; MIHALCA, A. D.; MIRET, J.; ŠLAPETA, J. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: the hitchhiker’s guide to world domination. International journal for parasitology, v. 49, n. 5, p. 321-336, 2019. LEDERBERG, J.; MCCRAY, A.T. Ome SweetOmics--A genealogical treasury of words. The Scientist, v.15.7, p 8-8, 2001. LEVISON, M. E.; KAYE, D. Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Current infectious disease reports, v15, n.2, p.109-115, 2013. LFANO, N.; TAGLIAPIETRA, V.; ROSSO, F.; MANICA, M.; ARNOLDI, D.; PINDO, M.; RIZZOLI, A. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-based Control Strategies. Frontiers in Microbiology. v.10, n.2832, p. 1-15, 2019. 61 LINARDI, P. M. SANTOS J. L. C. Ctenocephalides felis felis vs Ctenocephalides canis (Siphonaptera: Pulicidae): algumas questões identificam corretamente estas espécies. Rev Bras Parasitol Vet. v.21, n.4, p.345-54, 2012. LINARDI, P.M. Checklist of Siphonaptera (Insecta) from Mato Grosso State, Brazil. Iheringia. Série Zoologia, p.107, 2017. LINARDI, P.M. Checklist de Siphonaptera (Insecta) from São Paulo State, Brazil. Biota Neotrópical, vol. 11, p. 607-617, 2011. LIU, Y. Y.; WANG, Y.; WALSH, T. R.; YI, L. X.; ZHANG, R.; SPENCER, J.; YU, L. F. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases, v. 16, n. 2, p. 161-168, 2016. LONCARIC, I.; KÜBBER-HEISS, A.; POSAUTZ, A.; STALDER, G. L.; HOFFMANN, D.; ROSENGARTEN, R.; WALZER, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. Journal of Antimicrobial Chemotherapy, v. 68, n. 10, p. 2222-2225, 2013. LOPEZ-ORDONEZ, T.; FLORES-LÓPEZ, C. A.; MONTEJO-LOPEZ, R.; CRUZ-HERNANDEZ, A.; CONNERS, E. E. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Frontiers in Ecology and Evolution, v.5, p. 174, 2018. LUCERO-VELASCO, E. A.; MOLINA-GARZA, Z. J.; GALAVIZ-SILVA, L. First survey of cultivable bacteria from Rhipicephalus sanguineus sensu lato and assessment of the antagonism against five microorganisms of clinical importance. International Journal of Acarology, v. 44, n. 4-5, p. 204-209, 2018. MA, G. C. WORTHING, K. A.; WARD, M. P.; NORRIS, J. M. Estafilococos Comensais Incluindo Staphylococcus aureus Resistente à Meticilina de Cães e Gatos em Remote New South Wales, Austrália. Microb Ecol, p. 1-11, 2019. MALEKI-RAVASAN, N.; OSHAGHI, M. A.; AFSHAR, D.; ARANDIAN, M. H.; HAJIKHANI, S.; AKHAVAN, A. A.; AMINIAN, K. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasites & vectors, v.8(1), p. 63, 2015. MAGNET, S; BLANCHARD, J, S. Molecular insights into aminoglycoside action and resistance. Chemical reviews, v.9 n.105(2), p.477-98, 2005. 62 MAKAROVA, K.S.; HAFT, D. H.; BARRANGOU, R., BROUNS, S. J., CHARPENTIER, E., HORVATH, P.; VAN DER OOST, J. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, v. 9, n. 6, p. 467, 2011. MARIA, C. K.; KIPPER M.; ANDRETTA, I.; MACHADO L. R. A. Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poultry science, v. 98(12), p. 6659-67, 2019. MARKO, M. Science is a war zone: some comments on Brazil, Tapuya: Latin American Science, Technology and Society, v. 3, n.1, p. 4-8, 2020. MARRAFFINI L.A.; SONTHEIMER EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, v.322, n.5909, p.1843-5, 2008. MARTINEZ, J.; LONGDON, B.; BAUER, S.; CHAN, Y.S.; MILLER, W. J.; BOURTZIS, K.; JIGGINS, F.M. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS pathogens, v.10(9), e1004369, 2014. MCINTOSH, D.; CUNNINGHAM, M.; JI, B.; FEKETE, F.A.; PARRY, E.M.; CLARK, S.E.; ZALINGER, Z. B.; GILG, I.C.; DANNER, G.R.; JOHNSON, K. A.; BEATTIE, M. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. Journal of Antimicrobial Chemotherapy, v. 61(6), p. 1221-8, 2008. MENEGUZZI, M.; PISSETTI, C.; REBELATTO, R.; KUCHIISHI, S. S.; COSTA, A. T. R.; GUEDES, R. M. C.; KICH, J. D. Resistência à colistina em isolados de salmonella de casos clínicos de suínos no Brasil. In: Embrapa Suínos e Aves-Artigo em anais de congresso (ALICE). In: CONGRESSO DA ABRAVES, Goiânia. Suinocultura brasileira na era da tecnologia e da sustentabilidade: anais. Concórdia: Embrapa Suínos e Aves, v. 1, p. 27-28, 2017. MERRIL, C. R.; BISWAS, B.; CARLTON, R.; JENSEN, N. C.; CREED, G.J.; ZULLO, S.; ADHYA, S. Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences, v. 93, n. 8, p. 3188-3192, 1996. MIRZAEI, M. K.; MAURICE, C. F. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, v.15(7), p. 397, 2017. 63 MOHANTY, I.; RATH A.; SWAIN S.P.; PRADHAN, N.; HAZRA, R.K. Wolbachia Population in Vectors and Non-vectors: A Sustainable Approach Towards Dengue Control. Current microbiology, v.76(2), p. 133-43, 2019. MONTEIRO, M. Science is a war zone: some comments on Brazil, Tapuya: Latin American Science, Technology and Society, v. 3, p. 4-8, 2020. MURRELL, A.; DOBSON, S. J.; YANG, X.; LACEY, E.; BARKER, S. C. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitology Research, v. 89, n. 4, p. 326-334, 2003. NARASIMHANE, S.; FIKRIG, E. Tick microbiome: the force within. Trends in parasitology, v. 31, n. 7, p. 315-323, 2015. NISBET, A. J.; HUNTLEY, J. F. Progress and opportunities in the development of vaccines against mites, fleas and myiasis‐causing flies of veterinary importance. Parasite immunology, v.28(4), p. 165-172, 2006. NOVÁKOVÁ, D.; SEDLÁČEK, I.; PANTŮČEK, R.; ŠTĚTINA, V.; ŠVEC, P.; PETRÁŠ, P. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. Journal of medical microbiology, v.55, n.5, p. 523-528, 2006. OSEI SEKYERE, J. Mcr colistin resistance gene: a systematic review of current diagnostics and detection methods. MicrobiologyOpen, v. 8.4, p. 1-21, 2019. OSTRIA-HERNÁNDEZ, M.L.; SÁNCHEZ-VALLEJO, C.J.; IBARRA, J.A.; CASTRO-SCARPELLI, G. Survey of clustered regularly interspaced short palindromic repeats and their associated Cas proteins (CRISPR/Cas) systems in multiple sequenced strains of Klebsiella pneumoniae. BMC research notes, v.8(1), p. 332, 2015. OVERMANN, J.; GARCIA-PICHEL, F. The Phototrophic Way of Life. The Prokaryotes. Springer, Heidelberg, p 203–257, 2013. PANDYA, S.; RAVI, K.; SRINIVAS, V.; JADHAV, S.; KHAN, A.; ARUN, A.; RILEY, L. W.; MADHIVANAN, P. Comparison of culture-dependent and culture-independent molecular methods for characterization of vaginal microflora. Journal of medical microbiology, v. 66, n.2, p.149-153, 2017. PEREIRA-MAIA, E. C.; SILVA, P. P.; ALMEIDA, W. B. D.; SANTOS, H. F. D.; MARCIAL, B. L.; RUGGIERO, R.; GUERRA, W. Tetraciclinas e glicilciclinas: uma visão geral. Química Nova, v. 33, n. 3, p. 700-706, 2010. 64 PERUZY, M. F.; MURRU, N.; YU, Z.; CNOCKAERT, M.; JOOSSENS, M.; PROROGA Y. T.; HOUF, K. Determination of the microbiological contamination in minced pork by culture dependent and 16S amplicon sequencing analysis. International journal of food microbiology, v. 290, p. 27-35, 2019. PIOVEZAN, G. O argumento analógico de Darwin: a função da retórica entre o artificial e o natural. Bakhtiniana. Revista de Estudos do Discurso, v.14(2), p.88-111, 2019. POLLET, T.; SPRONG, H.; LEJAL, E.; KRAWCZYK, A. I.; MOUTAILLER, S.; COSSON J. F.; VAYSSIER-TAUSSAT, M, Estrada-Peña A. The scale affects our view on the identification and distribution of microbial communities in ticks. Parasites & Vectors. v. 13, n.1, p.36, 2020. POO-MUÑOZ, D. A.; ELIZONDO-PATRONE, C.; ESCOBAR, L. E., ASTORGA, F., BERMÚDEZ, S. E., MARTÍNEZ-VALDEBENITO, C.; MEDINA-VOGEL, G. Fleas and Ticks in Carnivores From a Domestic–Wildlife Interface: Implications for Public Health and Wildlife. Journal of medical entomology, v. 53, n. 6, p. 1433-1443, 2016. POMBA, C.; COUTO, N.; MOODLEY, A. Treatment of a lower urinary tract infection in a cat caused by a multi-drug methicillin-resistant Staphylococcus pseudintermedius and Enterococcus faecalis. Journal of feline medicine and surgery, v.12, n.10, p. 802-806, 2010. PORNWIROON, W.; KEARNEY, M.T.; HUSSENEDER, C.; FOIL, L.D.; MACALUSO, K.R. Comparative microbiota of Rickettsia felis-uninfected and -infected colonized cat fleas, Ctenocephalides felis. The ISME Journal, v.1, n.5, p. 394- 402, 2007. PORNWIROON, W.; POURCIAU, S.S.; FOIL, L.D.; MACALUSO, K.R. Rickettsia felis from cat fleas: isolation and culture in a tick-derived cell line. Applied and Environmental Microbiology, v. 72, n.12: 5589–5595, 2006. RADTKE, A.L.; O'RIORDAN, M.X.D. Intracellular innate resistance to bacterial pathogens. Cellular microbiology, v. 8, n. 11, p. 1720-1729, 2006. REESE, A.T.; DUNN, R. Drivers of microbiome biodiversity: a review of general rules, feces, and ignorance. Mbio, 9.4: e01294-18.2018. REGITANO, J. B.; LEAL, R. P. Comportamento e impacto ambiental de antibióticos usados na produção animal brasileira. Revista Brasileira de Ciência do Solo, v. 34, n. 3, p. 601-616, 2010. RIGATTI, F.; TIZOTTI, M. K.; HÖRNER, R.; DOMINGUES, V.O.; MARTINI, R.; MAYER, L. E.; COSTA, M.M.D. Oxacillin-resistant coagulase-negative Staphylococci 65 bacteremia at a teaching hospital in Santa Maria, State of Rio Grande do Sul, Brazil. Revista da Sociedade Brasileira de Medicina Tropical, v. 43, n. 6, p. 686-690, 2010. ROBERTS, M. C. Update on acquired tetracycline resistance genes. FEMS microbiology letters, v. 245, n. 2, p. 195-203, 2005. ROLAIN, J.M, M. FRANC, B. DAVOUST E D. RAOULT. Detecção molecular de Bartonella quintana, B. koehlerae, B. henselae, B. clarridgeiae, Rickettsia felis e Wolbachia pipientis em pulgas de gatos, França. Emerg. Infectar. Dis. V.9 p.338 - 342. 2003 ROSSI, C.C.; DA SILVA D. I.; MUNIZ, I. M.; LILENBAUM, W.; GIAMBIAGI-DEMARVAL, M. The oral microbiota of domestic cats harbors a wide variety of Staphylococcus species with zoonotic potential. Veterinary microbiology, v.201, p.136-140, 2017. ROSSI, C. C.; FERREIRA, N.C.; COELHO, M.L.; SCHUENCK, R.P.; BASTOS, M.D. C.D.F.; GIAMBIAGI-DEMARVAL, M. Transfer of mupirocin resistance from Staphylococcus haemolyticus clinical strains to Staphylococcus aureus through conjugative and mobilizable plasmids. FEMS microbiology letters, v.14, p.363, 2016. ROSSI, C. C.; SOUZA-SILVA T.; ARAÚJO-ALVES A.V.; GIAMBIAGI-DEMARVAL M. CRISPR-cas systems features and the gene-reservoir role of coagulase-negative Staphylococci. Frontiers in microbiology, v.15; n.8 p.1545, 2017. RUDOLF, I.; MENDEL, J.; ŠIKUTOVÁ, S.; ŠVEC, P.; MASAŘÍKOVÁ, J.; NOVÁKOVÁ, RUST, M. The biology and ecology of cat fleas and advancements in their pest management: a review. Insects, v.8(4), p.118, 2017. RUST, M.K.; DRYDEN, M.W. The biology, ecology, and management of the cat flea. Annual review of entomology, v. 42, n. 1, p. 451-473, 1997. SAIMA, S., FIAZ, M., ZAFAR, R., AHMED, I., & ARSHAD, M. Dissemination of antibiotic resistance in the environment. In Antibiotics and Antimicrobial Resistance Genes in the Environment. Elsevier, p.99-116, 2020. SALDAÑA, MA.; HEGDE, S.; HUGHES, GL.; Controle microbiano de doenças transmitidas por artrópodes. Memórias do Instituto Oswaldo Cruz, v. 112, n. 2, p. 81-93, 2017. SANKAR, S. A.; LAGIER, J. C.; PONTAROTTI, P.; RAOULT, D.; FOURNIER, P. E. The human gut microbiome, a taxonomic conundrum. Systematic and applied microbiology, v. 38, n. 4, p. 276-286, 2015. 66 SARIDAKI, A.; BOURTZIS, K. Wolbachia: more than just a bug in insect genitals. Current opinion in microbiology, v. 13, n. 1, p. 67-72, 2010. SCHOENFELDER, S. M.; LANGE, C.; ECKART, M.; HENNIG, S.; KOZYTSKA, S.; ZIEBUHR, W. Success through diversity–how Staphylococcus epidermidis establishes as a nosocomial pathogen. International Journal of medical microbiology, v. 300, n. 6, p. 380-386, 2010. SCOLARI, F, CASIRAGHI M, BONIZZONI M. Aedes spp. and their microbiota: a review. Frontiers in microbiology, v.10, n.2036, 2019. SELVA, L.; VIANA, D.; REGEV-YOCHAY, G.; TRZCINSKI, K.; CORPA, J. M.; NOVICK, R.P.; PENADÉS, J.R. Killing niche competitors by remote-control bacteriophage induction. Proceedings of the National Academy of Sciences, v. 106, n. 4, p. 1234-1238, 2009. SERIO, A.W.; MAGALHÃES, M.L.; BLANCHARD, J.S.; CONNOLLY, L.E. Aminoglycosides: Mechanisms of action and resistance. In: Antimicrobial Drug Resistance p.213-229, 2017. SHEN, Z.; WANG, Y.; SHEN, Y.; SHEN, J.; WU, C. Early emergence of mcr-1 in Escherichia coli from food-producing animals. The Lancet infectious diseases, v.16(3), p. 293, 2016. SILVA, H. V. V. A.; CASTAGNOLLI, K. C.; PRETTE, N.; BORGES, F. D. A.; MIYASAKA, D. D. S.; COSTA, A. J. D. Implantação de colônia de Ctenocephalides felis felis (Bouché, 1835) e determinação do período de desenvolvimento dos estágios imaturos sob condições controladas. Ambiência - Revista do Setor de Ciências Agrárias e Ambientais v. 4, n. 3, 2008. SILVERMAN, J.; RUST, M. K. Extended longevity of the pre-emerged adult cat flea (Siphonaptera: Pulicidae) and factors stimulating emergence from the pupal cocoon. Annals of the Entomological Society of America, v. 78, n. 6, p. 763-768, 1985. SIQUEIRA, S. R. R. Otimização e validação de metodo analitico para a determinação de cloranfenicol em alimentos de origem animal utilizando a técnica LC-ESI-MS-MS, Dissertação em Ciência de Alimentos, Campinas – SP, 2007. SKURNIK, D, RUIMY, R, READY, D, RUPPE E, BERNÈDE-BAUDUIN C, DJOSSOU F, GUILLEMOT D, PIER GB, ANDREMONT A. Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? Journal of medical microbiology, v.59(7), p.804-7, 2010. 67 SOLDERA, J.; NEDEL, W. L.; CARDOSO, P. R. C.; D'AZEVEDO, P. A. Bacteremia due to Staphylococcus cohnii ssp. urealyticus caused by infected pressure ulcer: case report and review of the literature. Sao Paulo Medical Journal, v.131, n.1, p. 59-61, 2013. SONG, S.J.; LAUBER, C.; COSTELLO, K.E.; LOZUPONE, C.A; B, GREGORY HUMPHREY, B.G. et al. Os membros da família que coabitam compartilham microbiota entre si e com seus cães. Elife, v. 2, p. e00458, 2013. SOUZA-NETO, J. A.; POWELL, J. R.; BONIZZONI, M. Aedes aegypti vector competence studies: A review. Infection, Genetics and Evolution. Infection, Genetics and Evolution, v. 67, p. 191-209, 2019. SUPANEE, H.; CHUTIMA T.; LANE D. F.; KEVIN R. M. Transmissão horizontal de Rickettsia felis entre pulgas de gatos, Ctenocephalides felis, Molecular Ecology, v.20, n. 21 4577-4586, 2011. TAMAMES, J.; COBO-SIMÓN, M.; PUENTE-SÁNCHEZ, F. Assessing the performance of different approaches for functional and taxonomic annotation of metagenomes. BMC genomics, v. 20, n. 1, p. 1-16, 2019. TANG, K.L, C. N. P.; NÓBREGA, D. B.; CORK, S. C.; RONKSLEY, P. E.; BARKEMA H.W.; POLACHEK, A. J.; GANSHORN, H.; SHARMA, N.; KELLNER, J. D.; CHECKLEY S. L. Comparison of different approaches to antibiotic restriction in food-producing animals: stratified results from a systematic review and meta-analysis. BMJ global health. v.4(4) e001710, 2019. TAYLOR, M. MEDIANNIKOV, O.; RAOULT, D.; GREUB, G. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunology & Medical Microbiology, v. 64, n. 1, p. 21-31, 2012. TAYLOR, M.J.; VORONIN, D., JOHNSTON, K.L.; FORD, L. Wolbachia filarial interactions. Cellular microbiology, v. 15, n. 4, p. 520-526, 2013. TEIXEIRA, C. F. Estafilococos coagulase-negativa: um risco real para a saúde pública. 2009. 93 f. Tese Doutorado em Vigilância Sanitária- Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, 2009. TIPTON, L.; DARCY, J. L.; HYNSON, N. A. A developing symbiosis: enabling cross-talk between ecologists and microbiome scientists. Frontiers in microbiology, v. 10, p. 292, 2019. TORTORA, G. J.; CASE, C. L.; FUNKE, Berdell R. Microbiologia-12ª Edição. Artmed Editora, p.190, 2016. 68 TRINGE, S. G.; HUGENHOLTZ, P. A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol, v. 11, n. 5, p. 442-446, 2008. VALIENTE, M. C.; THIOULOUSE, J.; CHAUVE, C.; NORMAND, P.; ZENNER, L. Táxons bacterianos associados ao ácaro hematófago Dermanyssus gallinae detectados por amplificação por PCR 16S rRNA e impressão digital TTGE. Res. Microbiol. V. 160, p. 63-70. VAN BELLEGHEM, J.; DĄBROWSKA, K., VANEECHOUTTE, M., BARR, J.; BOLLYKY, P Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses, v. 11, n. 1, p. 10, 2019. VASCONCELLOS, E. J.; BILLETER, S. A.; JETT, L. A.; MEINRSMANN, R. J.; BARR, M. C.; DINIZ, P. P.; OAKLEY, B. B. Assessing Cat Flea Microbiomes in Northern and Southern California by 16S rRNA Next-Generation Sequencing. Vector-Borne and Zoonotic Diseases, v.18(9), p.491-499, 2018. VAZ‐MOREIRA, I.; FERREIRA, C.; NUNES, O. C.; MANAIA, C. M. Sources of Antibiotic Resistance: Zoonotic, Human, Environment. Antibiotic Drug Resistance, p.211-238, 2019. VETSMART. Disponível em: < https://www.vetsmart.com.br/>. Acesso em: 12/10/2019. WANG, Y.; QIAN, P-Y. Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One, v. 4, n. 10, 2009. WATERFIELD, N.R.; WREN, B.W. Invertebrates as a source of emerging human pathogens. Nature Reviews in Microbiology, v.2, n. 6, p.833-841, 2004. WEAVER, SC.; COSTA, F.; GARCIA-BLANCO, MA.; KO AI, RIBEIRO GS.; SAADE G. Zika vírus: história, emergência, biologia e perspectivas de controle. Pesquisa antiviral. V.130, p. 69-80. 2016. WEESE, WILLIAM, C.; SMITH, IAN M.A study of 57 cases of actinomycosis over a 36-year period: A diagnostic failure with good prognosis after treatment. Archives of internal medicine, v.135, n.12, p.1562-1568, 1975. WEDINCAMP, J.; FOIL, L. D. Rickettsia felis infection in the cat flea (Siphonaptera: Pulicidae). Journal of Entomological Science, v. 38, n. 2, p.234–239, 2003. WEISS, S.; KADLEC, K.; FESSLER, A. T.; SCHWARZ, S. Identification and characterization of methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus and Staphylococcus pettenkoferi from a small animal clinic. Veterinary microbiology, v. 167, n. 3-4, p. 680-685, 2013. 69 WEISS, B.; AKSOY, S. Microbiome influences on insect host vector competence. Trends in Parasitology, p. 514–522, 2011. WESTRA, E. R., VAN HOUTE, S., GANDON, S.; WHITAKER, R. The ecology and evolution of microbial CRISPR-Cas adaptive immune systems, the Royal Society, p 1-8, 2019. YANG, B.; WANG, Y.; QIAN, P. Y. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC bioinformatics, v. 17, n. 1, p. 135, 2016. YEHUALAESHET, T.; WIGGINS G. E.; JONES, C.; GRAHAM, M.; Kaylyn DILLARD, k.; AOI, N.; SAMUEL, T. Microbioma bacteriano de zaragatoas nasais de cães saudáveis e seus donos: diversidade bacteriana, interface intra e interespécies. Int J Vet Anim Med, v. 2, n. 2, p. 120, 2019. ZILBER-ROSENBERG, Ilana; ROSENBERG, Eugene. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS microbiology reviews, v.32.5, p.723-735, 2008. ZION MARKET. "Mercado de parasiticidas de animais por tipo de produto (endoparasiticidas, ectoparasiticidas e endectocidas), por tipo de animal (gatos, cães, porcos, Bovinos, caprinos, ovinos e outros) e por usuário final (instalações de P&D, fazendas e clínicas veterinárias): perspectiva global da indústria, análise abrangente e previsão, 2018-2025”, Nova York, NY, Zion Market, 2019. ZUG, R.; HAMMERSTEIN, P. Bad guys turned nice? A critical assessment of Wolbachia mutualisms in arthropod hosts. Biological Reviews, v. 90, n. 1, p. 89-111, 2015. ZUREK, L.; GHOSH, A. Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl. Environ. Microbiol, v.80, n.12, p. 3562-3567, 2014. ZUREK, L.; SCHAL, C.; WATSON, D. W. Diversity and contribution of the intestinal bacterial community to the development of Musca domestica (Diptera: Muscidae) larvae. Journal of Medical Entomology, v.37, n.6, p. 924-928, 2000.https://tede.ufrrj.br/retrieve/72374/2020%20-%20Tatiana%20Werneck%20Franco.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6376Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2023-03-01T12:17:11Z No. of bitstreams: 1 2020 - Tatiana Werneck Franco.pdf: 959932 bytes, checksum: d93419e730c7280e7b47ac6bc5e9639f (MD5)Made available in DSpace on 2023-03-01T12:17:13Z (GMT). No. of bitstreams: 1 2020 - Tatiana Werneck Franco.pdf: 959932 bytes, checksum: d93419e730c7280e7b47ac6bc5e9639f (MD5) Previous issue date: 2020-02-19info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Tatiana Werneck Franco.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/1/2020%20-%20Tatiana%20Werneck%20Franco.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2020 - Tatiana Werneck Franco.pdf.txtExtracted Texttext/plain221174https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/2/2020%20-%20Tatiana%20Werneck%20Franco.pdf.txt8398e2483442175020f941470c410c3eMD52ORIGINAL2020 - Tatiana Werneck Franco.pdf2020 - Tatiana Werneck Francoapplication/pdf959932https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/3/2020%20-%20Tatiana%20Werneck%20Franco.pdfd93419e730c7280e7b47ac6bc5e9639fMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/118092023-12-21 22:57:10.427oai:rima.ufrrj.br:20.500.14407/11809Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:57:10Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
dc.title.alternative.eng.fl_str_mv |
Analysis of the cultivable microbiota associated with a laboratory colony of Ctenocephalides felis felis (Siphonaptera, Pulicidae). |
title |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
spellingShingle |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) Franco, Tatiana Werneck Ectoparasitas Comunidades microbianas PCR Resistência a antibióticos Ectoparasites Microbial communities PCR Antibiotic resistance Medicina Veterinária |
title_short |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
title_full |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
title_fullStr |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
title_full_unstemmed |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
title_sort |
Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae) |
author |
Franco, Tatiana Werneck |
author_facet |
Franco, Tatiana Werneck |
author_role |
author |
dc.contributor.author.fl_str_mv |
Franco, Tatiana Werneck |
dc.contributor.advisor1.fl_str_mv |
McIntosh, Douglas |
dc.contributor.advisor1ID.fl_str_mv |
054.046.627-19 https://orcid.org/0000-0003-3652-7835 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5166697605343047 |
dc.contributor.referee1.fl_str_mv |
McIntosh, Douglas |
dc.contributor.referee1ID.fl_str_mv |
054.046.627-19 https://orcid.org/0000-0003-3652-7835 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/5166697605343047 |
dc.contributor.referee2.fl_str_mv |
Coelho, Irene da Silva |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0003-1357-2529 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/2191695584157582 |
dc.contributor.referee3.fl_str_mv |
Ogrzewalska, Maria Halina |
dc.contributor.referee3ID.fl_str_mv |
- |
dc.contributor.referee3Lattes.fl_str_mv |
- |
dc.contributor.referee4.fl_str_mv |
Schwab, Stefan |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0001-9058-0632 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/1256663530917190 |
dc.contributor.referee5.fl_str_mv |
Azevedo, Thaís Ribeiro Correia |
dc.contributor.referee5ID.fl_str_mv |
https://orcid.org/0000-0003-3045-8787 |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/6049103053269712 |
dc.contributor.authorID.fl_str_mv |
148.795.097-79 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8876903922905914 |
contributor_str_mv |
McIntosh, Douglas McIntosh, Douglas Coelho, Irene da Silva Ogrzewalska, Maria Halina Schwab, Stefan Azevedo, Thaís Ribeiro Correia |
dc.subject.por.fl_str_mv |
Ectoparasitas Comunidades microbianas PCR Resistência a antibióticos |
topic |
Ectoparasitas Comunidades microbianas PCR Resistência a antibióticos Ectoparasites Microbial communities PCR Antibiotic resistance Medicina Veterinária |
dc.subject.eng.fl_str_mv |
Ectoparasites Microbial communities PCR Antibiotic resistance |
dc.subject.cnpq.fl_str_mv |
Medicina Veterinária |
description |
A pulga Ctenocephalides felis é ectoparasita de cães e gatos em todo o mundo, atuando como vetor de patógenos zoonóticos, incluindo Rickettsia felis e Bartonella sp. A diversidade de micróbios associados ao hospedeiro e suas interações dentro de seus hospedeiros, incluindo artrópodes, são fundamentais para as funções ecológicas nessas comunidades e podem contribuir para sua evolução. Além disso, as interações simbióticas podem influenciar as transmissões de patógenos zoonóticos, através de efeitos sobre a competência vetorial. O conhecimento da microbiota de vetores tem sido utilizado para desenvolver novas abordagens de controle com base no conceito de manipulação da microbiota. Um componente chave nesta estratégia é a presença de uma microbiota estável/ “core”. O presente estudo caracterizou a estabilidade, durante oito anos, da microbiota cultivável de uma colônia de laboratório de C. felis. As bactérias associadas aos diferentes estágios da vida foram isoladas por cultura em placas de ágar nutriente. As bactérias foram identificadas, em nível de gênero ou espécie, por amplificação por reação em cadeia da polimerase (PCR) de um fragmento de 500 pares de bases (pb) do gene que codifica o RNA ribossômico 16S procariótico, seguido de sequenciamento de nucleotídeos. As culturas foram caracterizadas quanto à suscetibilidade a sete compostos antimicrobianos (ampicilina, cloranfenicol, cloreto de mercúrio, nitrofurantoína, tetraciclina, rifampicina e estreptomicina), utilizando um método de microdiluição. Cada uma das diferentes etapas da vida apresentou uma microbiota única, no entanto, um componente central de todas as amostras era membro do gênero Staphylococcus, com alguns demonstrando fenótipos resistentes a múltiplos antimicrobianos. As espécies mais prevalentes foram S. saprophyticus, S. nepalensis, S. lentus e S. cohnii, as quais foram relatadas previamente como patógenos oportunistas com potencial zoonótico. A presença constante da mesma espécie de Staphylococcus, em múltiplos estágios da vida, sugere que estas bactérias são componentes essenciais da microbiota. Pesquisas futuras examinaram os efeitos da manipulação do microbioma “core” como o primeiro passo no desenvolvimento de novas estratégias para o controle de infestações, como por exemplo realizando a indução de bacteriófagos específicos de bactérias presentes no microbioma. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-02-19 |
dc.date.accessioned.fl_str_mv |
2023-12-22T01:57:10Z |
dc.date.available.fl_str_mv |
2023-12-22T01:57:10Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FRANCO, Tatiana Werneck. Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae). 2020.83 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/11809 |
identifier_str_mv |
FRANCO, Tatiana Werneck. Análise da microbiota cultivável de uma colônia de pulgas Ctenocephalides felis (Siphonaptera, Pulicidae). 2020.83 f. Dissertação (Mestrado em Ciências Veterinárias) - Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2020. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/11809 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
AIVELO, T.; TSCHIRREN, B. Bacterial microbiota composition of a common ectoparasite of cavity‐breeding birds, the Hen Flea Ceratophyllus gallinae. Ibis, p. 1-15, 2019. ALBINO, Luiz Augusto Aguiar et al. Isolamento, caracterização e uso de bacteriófagos no biocontrole de Salmonella typhimurium. 2011. ALFANO, N.; TAGLIAPIETRA, V.; ROSSO, F.; MANICA, M.; ARNOLDI, D.; PINDO, M.; RIZZOLI, A. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-Based Control Strategies. Frontiers in Microbiology, v.10, p.1-15, 2019. ALONSO, A.; SANCHEZ, P; MARTINEZ, J.L. Environmental selection of antibiotic resistance genes. Environmental Microbiology, v. 3, p. 1-9, 2001. AMÉRICO, J. H. P.; DE OLIVEIRA MANOEL, L.; TORRES, N. H.; FERREIRA, L. F. R. O uso de agrotóxicos e os impactos nos ecossistemas aquáticos. Revista Científica, ANAP Brasil, v. 8, n. 13, p. 1-15, 2015. AMPICILINA-VETERIN-ORAL. vetnil.com.br, 2019. Disponível em: < http://www.vetnil.com.br/produtos/ampicilina-veterin-oral/ >. Acesso em: 15/01/2019. ANDRADE, A. C. S.; DOS SANTOS, I. C.; BARBOSA, L. N.; DA SILVA CAETANO, I. C.; ZANIOLO, M. M.; FONSECA, B. D.; GONÇALVES, D. D. Antimicrobial Resistance and Extended-Spectrum Beta-Lactamase Production in Enterobacteriaceae Isolates from Household Cats (Felis silvestris catus). Acta Scientiae Veterinariae, v. 47, p. 1-9, 2019. ANDRADE, S. F. Quimioterápicos, antimicrobianos e quimioterápicos. In: ANDRADE, S. F. Manual de terapêutica Veterinária, 3 ed. São Paulo: Editora Roca, 2008. ANGLERÓ-RODRÍGUEZ, Y. I.; BLUMBERG, B. J.; DONG, Y.; SANDIFORD, S. L.; PIKE, A.; CLAYTON, AM.; DIMOPOULOS, G. A natural Anopheles-associated Penicillium chrysogenum enhances mosquito susceptibility to Plasmodium infection. Scientific reports, v. 6, n. 34084, p. 1-10, 2016. BAE, T.; BABA, T.; HIRAMATSU, K.; SCHNEEWIND, O Prophages of Staphylococcus aureus Newman and their contribution to virulence. Mol Microbiol, v. 62, n. 4, p. 1035-1047, 2006. 51 BAHRNDORFF, S.; DE JONGE, N.; SKOVGÅRD, H., NIELSEN, J. L. (2017). Bacterial communities associated with houseflies (Musca domestica L.) sampled within and between farms. PLoS One, v.12, n. 1, 2017. BAKER, G. C.; SMITH, J. J.; COWAN, D. A. Review and re-analysis of domain-specific 16S primers. Jounal of Microbiol Methods, v. 55(3), p. 541–55, 2003. BAKER, G. C.; SMITH, J. J.; COWAN, D. A. Review and re-analysis of domain-specific 16S primers. J Microbiol Methods, by culturomics. Nat Microbiol, v.55(3), p.541-55, 2003. BALDRIDGE, G. D.; BURKHARDT, N. Y.; SIMSER, J. A.; KURTTI, T. J.; MUNDERLOH, U. GSequence and expression analysis of the ompA gene of Rickettsia peacockii, an endosymbiont of the Rocky Mountain wood tick, Dermacentor andersoni. Appl. Environ. Microbiol, v. 70, n. 11, p. 6628-6636, 2004. BARRANGOU, R.; MARRAFFINI, L.A. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity. Molecular cell, v. 54, n. 2, p. 234-244, 2014. BAUER, A. W.; KIRBY, W.M.M.; SHERRIS, J.C.; TURCK, M. Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, v. 45, n. 4 ts, p. 493-496, 1966. BEARD, C. B.; BUTLER, J. F.; HALL, D. W. Prevalence and biology of endosymbionts of fleas (Siphonaptera: Pulicidae) from dogs and cats in Alachua County, Florida. Journal of medical entomology, v. 27, n. 6, p. 1050-1061, 1990. BEARD, C.B.; CORDON-ROSALES, C.; DURVASULA, R.V. Bacterial symbionts of the triatominae and their potential use in control of Chagas disease transmission. Annual Review of Entomology, v. 47, p.123-141, 2002. BECKER, K.; HEILMANN, C.; PETERS, G. Coagulase-negative staphylococci. Clinical microbiology reviews, v. 27, n. 4, p. 870-926, 2014. BEN, Y.; FU, C.; H. U, M.; LIU, L.; WONG, M. H.; Z HENG, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environmental research, v. 169, p. 483-493, 2019. BENNETT, K. L.; ALMANZA, A, MCMILLAN, W.; O, SALTONSTALL, K.; VDOVENKO E. L.; VINDA, J. S.; MEJIA L.; DRIESSE, K.; DE LEÓN, L. F.; LOAIZA, J.R. Habitat disturbance and the organization of bacterial communities in. Neotropical hematophagous arthropods. PloS One, v.14 p. 9, 2019. 52 BERNHEIM, A.; BIKARD, D.; TOUCHON, M.; ROCHA, E.P. A matter of background: DNA repair pathways as a possible cause for the sparse distribution of CRISPR-Cas systems in bacteria. Philosophical Transactions of the Royal Society B. v. 374, n. 1772, p. 20180088, 2019. BI, J.; WANG, Y.F. The effect of the endosymbiont Wolbachia on the behavior of insect hosts. Insect science, p. 1-32, 2019. BIAN, G.; XU, Y.; LU, P.; XIE, Y.; XI, Z. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti. PLoS Pathology, v. 6 n.4, p. 1-32, 2010. BINETRUY, F.; DUPRAZ, M.; BUYSSE, M.; DURON, O. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites & vectors, v. 12, n. 1, p. 268, 2019. BITAM, I.; DITTMAR, K.; PAROLA, P.; WHITING, M. F.; RAOULT, D.L. Fleas and flea-borne diseases. International journal of infectious diseases, v. 14, n. 8, p. e667-e676, 2010. BLANTON L. S.; WALKER D. H. Flea-borne rickettsioses and rickettsiae. The American journal of tropical medicine and hygiene, v. 96, n. 1, p. 53-56, 2017. BOIOCCHI, F.; DAVIES, M. P.; HILTON, A. C. AN Examination of Flying Insects in Seven Hospitals in the United Kingdom and Carriage of Bacteria by True Flies (Diptera: Calliphoridae, Dolichopodidae, Fanniidae, Muscidae, Phoridae, Psychodidae, Sphaeroceridae). Journal of Medical Entomology, v. 56, p. 1684-1697, 2019. BORDENSTEIN, S. R.; THEIS, K. R. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS biology, v. 13, p. 8: e1002226, 2015. BOUYER, D. H.; STENOS, J.; CROCQUET-VALDES, P.; MORON, C. G.; POPOV, V. L.; ZAVALA-VELAZQUEZ, J. E.; WALKER, D. H. Rickettsia felis: molecular characterization of a new member of the spotted fever group. International journal of systematic and evolutionary microbiology, v. 51, n. 2, p. 339-347, 2001. BRINKER, P.; FONTAINE, M.C.; BEUKEBOOM, L. W.; SALLES, J.F. Host, symbionts, and the microbiome: the missing tripartite interaction. Trends in microbiology, v.27, p. 480-488, 2019. BROUNS, S. J.; JORE, M. M.; LUNDGREN, M.; WESTRA, E. R.; SLIJKHUIS, R. J.; SNIJDERS, A. P.; VAN DER OOST, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, v.321, n.5891, p. 960-964, 2008. 53 BUARQUE, D. S.; GOMES, C. M.; ARAÚJO, R. N.; PEREIRA, M. H.; FERREIRA, R. C.; GUARNERI, A. A.; TANAKA, A. S. A new antimicrobial protein from the anterior midgut of Triatoma infestans mediates Trypanosoma cruzi establishment by controlling the microbiota. Biochimie, v. 123, p. 138-143, 2016. BURSTEIN, D.; SUN, C. L.; BROWN, C.T.; SHARON, I.; ANANTHARAMAN, K.; PROBST, A.J., …& BANFIELD, J.F. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nature communications, feb, 2016, v.7, n.10613, 2016. CABELLO, R.R.; RUIZ, A.C.; FEREGRINO, R.R.; ROMERO, L.C.; FEREGRINO, R.R.; ZAVALA, J.T. Dipylidium caninum infection. BMJ case reports, bcr0720114510. 2011. CAO, Y.; FANNING, S.; PROOS, S.; JORDAN, K.; SRIKUMAR, S. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Frontiers in Microbiology, v.8, p. 1-16, 2017. CARAGATA, E. P, TIKHE, C. V, DIMOPOULOS, G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Current opinion in virology. Aug 2019 v.1, n.37, p.26-36, 2019. CARAGATA, E. P.; DUTRA, H. L.; MOREIRA, L. A. Exploiting intimate relationships: controlling mosquito-transmitted disease with Wolbachia. Trends in parasitology, v. 32, n. 3, p. 207-218, 2016. CARTHEY, A. J.; BLUMSTEIN, D. T.; GALLAGHER, R. V.; TETU, S. G.; GILLINGS, M. R. Conserving the holobiont. Functional Ecology, p. 1-31, 2020. CARTHEY, A.J.; BLUMSTEIN, D.T.; GALLAGHER, R.V.; TETU, S.G.; GILLINGS, M.R. Conserving the holobiont. Functional Ecology, p. 1-31, 2020. CARVALHO, V. M.; SPINOLA, T.; TAVOLARI, F.; IRINO, K.; OLIVEIRA, R. M.; RAMOS, M. C. C. Infecções do trato urinário (ITU) de cães e gatos: etiologia e resistência aos antimicrobianos. Pesquisa Veterinária Brasileira, v. 34, n. 1, p. 62-70, 2014. CAUMO, K. S.; DUARTE, M.; CARGNIN, S. T.; RIBEIRO, V. B.; TASCA, T.; MACEDO, A. J. Resistência bacteriana no meio ambiente e implicações na clínica hospitalar. Revista Liberato: revista de divulgação de educação, ciência e tecnologia. Novo Hamburgo, RS. v. 11, n.16, p.89-188, 2010. CHAKRABORTY, S.; SNIJDERS, A. P.; CHAKRAVORTY, R.; AHMED, M.; TAREK A. M. Comparative network clustering of direct repeats (DRs) and cas genes confirms the 54 possibility of the horizontal transfer of CRISPR locus among bacteria. Mol Phylogenet Evol, v.56, n.3, p. 878-887, 2010. CHANDEL, K.; MENDKI, M. J.; PARIKH, R. Y.; KULKARNI, G.; TIKAR, S. N., SUKUMARAN, D.; VEER, V. Midgut microbial community of Culex quinquefasciatus mosquito populations from India. PloS one, v.8, n.11, 2013. CHUN-HONG, L.; JIE, C.; YONG-ZHI, Z.; HOU-SHUANG, Z. H. A. N. G.; HAI-YAN, G. O. N. G.; JIN-LIN, Z. The Midgut Bacterial Flora of Laboratory-Reared Hard Ticks, Haemaphysalis longicornis, Hyalomma asiaticum, and Rhipicephalus haemaphysaloides. Journal of Integrative Agriculture, 2014. CLARK, N. J.; SEDDON, J. M.; ŠLAPETA, J.; WELLS, K. Parasite spread at the domestic animal-wildlife interface: anthropogenic habitat use, phylogeny and body mass drive risk of cat and dog flea (Ctenocephalides spp.) infestation in wild mammals. Parasites & vectors, v. 11, n. 1, p. 8, 2018. CLIFTON, S.M.; KIM, T.; CHANDRASHEKHAR, J.H.; O’TOOLE, G.A.; RAPTI, Z.; WHITAKER, R. J. Lying in Wait: Modeling the Control of Bacterial Infections via Antibiotic-Induced Proviruses. MSystems, v. 4, n. 5, p. e00221-19, 2019. COLES, T.B.; DRYDEN, M. W. Insecticide/acaricide resistance in fleas and ticks infesting dogs and cats. Parasites & vectors, v. 7, n. 1, p. 8, 2014. CRKVENCIC, N.; ŠLAPETA, J. Climate change models predict southerly shift of the cat flea (Ctenocephalides felis) distribution in Australia. Parasites & vectors, v. 12, n. 1, p. 137, 2019. CZEKAJ, T.; CISZEWSKI, M.; SZEWCZYK, E.M. Staphylococcus haemolyticus–an emerging threat in the twilight of the antibiotics age. Microbiology, v. 161, n. 11, p. 2061-2068, 2015. D. HUBÁLEK, Z. Identificação baseada no gene 16S rRNA da flora bacteriana cultivada dos carrapatos Ixodes ricinus, Dermacentor reticulatus e Haemaphysalis concinna, vetores de patógenos vertebrados. Folia Microbiol, v.54, n.419, 2009. DANCER, S. J.; SHEARS, P.; PLATT, D. J. Isolation and characterization of coliforms from glacial ice and water in Canada's High Arctic. Journal of applied microbiology, v. 82, n. 5, p. 597-609, 1997. DASZAK, P.; CUNNINGHAM, A. A.; HYATT, A. D. Emerging infectious diseases of wildlife--threats to biodiversity and human health. Science, v. 287, n. 5452, p. 443- 449, 2000. 55 DE AVELAR, D. M. Endossimbiontes de Ctenocephalides felis felis (Siphonaptera: Pulicidae) de cães vadios de Belo Horizonte, MG–Brasil. 2006. 114f. Dissertação de mestrado – Universidade Federal de Minas Gerais, 2006. DE PAEPE, M.; LECLERC, M.; TINSLEY, C. R.; PETIT, M. A. Bacteriophages: an underestimated role in human and animal health? Frontiers in cellular and infection microbiology, v. 4, n.39, 2014. DÍAZ-SÁNCHEZ S.; ESTRADA-PEÑA A.; CABEZAS-CRUZ A.; DE LA FUENTE J. Evolutionary insights into the tick hologenome. Trends in parasitology. 2019 Jul 19. DICKINSON A.W.; POWER A.; HANSEN M. G.; BRANDT K. K.; PILIPOSIAN G, APPLEBY P, O'NEILL P. A.; JONES R. T.; SIEROCINSKI P.; KOSKELLA B.; VOS M. Heavy metal pollution and co-selection for antibiotic resistance: A microbial palaeontology approach. Environment international, v. 1, n. 132, p. 105-117, 2019. DIEP, B. A.; GILL, S. R.; CHANG, R. F.; PHAN, T. H.; CHEN, J. H.; DAVIDSON, M. G.; SENSABAUGH, G. F. Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. Lancet v. 367, p. 731–739. 2006. DISSANAYAKE, A. J.; PURAHONG, W.; WUBET, T.; HYDE, K. D.; ZHANG, W.; XU, H.; ZHANG, G.; FU, C.; LIU, M.; XING, Q.; LI X. Direct comparison of culture-dependent and culture-independent molecular approach reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Diversity, v. 90(1), p. 85-107, 2018. DOTTO, G.; BERLANDA, M.; PASOTTO, D.; MONDIN, A.; ZAMBOTTO, G, MENANDRO, M. L. Pets as potential carriers of multidrug-resistant Enterococcus faecium of significance to public health. The new microbiologica. 2018 Apr v.1;41(2), p. 168-72, 2018. DRYDEN, M. W.; RUST, M. K. The cat flea: biology, ecology and control. Veterinary Parasitology, v. 52, n. 1-2, p. 1-19, 1994. DUGUMA, D.; HALL, M. W, SMARTT, C. T, DEBBOUN, M.; NEUFELD, J. D. Variações de microbiota no mosquito vetor da doença de Culex nigripalpus do vírus do Nilo Ocidental e da encefalite de Saint Louis de diferentes origens geográficas. PeerJ, v.6, e6168, 2019. DURAND, G. A.; RAOULT, D.; DUBOURG, G. Antibiotic discovery: History, methods and perspectives. International journal of antimicrobial agents, v. 53.4, p. 371-382, 2019. DURDEN, L.A.; HINKLE, N.C. Fleas (Siphonaptera). In: Medical and Veterinary Entomology. Academic Press, p. 145-169, 2009. 56 DURON, O.; BINETRUY, F.; NOËL, V.; CREMASCHI, J.; MCCOY, K.D.; ARNATHAU, C.; PLANTARD, O.; GOOLSBY, J.; PÉREZ DE LEÓN, A.A.; HEYLEN, D.J.; VAN, OOSTEN, A.R. Evolutionary changes in symbiont community structure in ticks. Molecular ecology, v. 26(11), p. 2905-2921, 2017. DURON, O.; MOREL, O.; NOËL, V.; BUYSSE, M.; BINETRUY, F.; LANCELOT, R.; VIAL, L. Tick-bacteria mutualism depends on B vitamin synthesis pathways. Current Biology, v. 28, n. 12, p. 1896-1902. e5, 2018. EGYED, L.; MAKRAI, L. Cultivable internal bacterial flora of ticks isolated in Hungary. Experimental and Applied Acarology, v. 63, n. 1, p. 107-122, 2014. ELBEDIWI, M.; LI, Y.; PAUDYAL, N.; PAN, H.; LI, X.; XIE, S.; YUE, M. (2019). Carga Global de Bactérias Resistentes a Colistina: Estudo Mobilizado de Genes de Resistência à Colistina (1980-2018). Microrganismos, v. 7 (10), p. 461, 2019. ERICKSON, D.L.; ANDERSON, N.E.; CROMAR, L.M.; JOLLEY, A. Bacterial Communities Associated With Flea Vectors of Plague. Journal of Medical Entomology, v. 46, n. 6, p.1532-1536, 2009. FIŠAROVÁ, L.; PANTŮČEK, R.; BOTKA, T.; DOŠKAŘ, J. Variabilidade dos plasmídeos de resistência em estafilococos coagulase-negativos e sua importância como reservatório de resistência antimicrobiana. Pesquisa em microbiologia, v. 170, n. 2, p. 105-111, 2019. FONTANA, C.; FAVARO, M.; PELLICCIONI, M.; PISTOIA, E, S.; FAVALLI, C. Use of the MicroSeq 500 16S rRNA gene-based sequencing for identification of bacterial isolates that commercial automated systems failed to identify correctly. Journal of clinical microbiology, v. 43(2), p.615-619, 2005. FONTANA, R.; WETLER, R. M. D. C.; AQUINO, R. S.; ANDRIOLI, J. L.; QUEIROZ, G. R.; FERREIRA, S. L.; DELABIE, J. H. Pathogenic bacteria dissemination by ants (Hymenoptera: Formicidae) in two hospitals in northeast Brazil. Neotropical entomology, v.39(4), p. 655-663, 2010. FREDENSBORG, B.L.; FOSSDAL, Í.; KÁLVALÍÐ, I.; JOHANNESEN, T.B.; STENSVOLD, C.R.; NIELSEN, H.V.; KAPEL, C.M. Parasites modulate the gut-microbiome in insects: A proof-of-concept study. PloS one, v.15(1), e0227561, p 1-18, 2020. FURUYA, E.Y, LOWY FD.; FRANKLIN D. Antimicrobial-resistant bacteria in the community setting. Nat Rev Microbiol v.4, n. 36, p.45, 2006. 57 GAO, H.; CUI, C.; WANG L.; JACOBS-LORENA, M.; WANG, S. Mosquito Microbiota and Implications for Disease Control. Trends in Parasitology, v. 36, p. 98-111, 2019. GARDINER, B.J.; STEWARDSON, A.J.; ABBOTT, I.J.; PELEG, A.Y. Nitrofurantoin and fosfomycin for resistant urinary tract infections: old drugs for emerging problems. Australian prescriber, v. 42, n. 1, p. 14, 2019. GARG, Staphylococcus cohnii: Not so innocuous. Journal of Acute Disease, v.5, p. 239, 2019. GIGUÈRE, S., PRESCOTT, J. F., BAGGOT, J. D., WALKER, R. D., & DOWLING, P. M. TERAPIA antimicrobiana em medicina veterinária. Roca, São Paulo. P. 683, 2010. GÓMEZ-SANZ, E.; CEBALLOS, S.; RUIZ-RIPA, L.; ZARAZAGA, M., TORRES, C. (2019). Clonally Diverse Methicillin and Multidrug Resistant Coagulase Negative Staphylococci Are Ubiquitous and Pose Transfer Ability Between Pets and Their Owners. Frontiers in Microbiology, v.10, p. 485, 2019. GORHAM, C. H.; FANG, Q. Q.; DURDEN, L. A. Wolbachia endosymbionts in fleas (Siphonaptera). Journal of Parasitology, v.89.2, p. 283-289, 2003. GREAY, T.L, GOFTON AW, PAPARINI A, RYAN UM, OSKAM CL, IRWIN PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites & vectors, v. 11(1), p.12, 2018. GRENNI, P.; ANCONA, V.; CARACCIOLO, A.B. Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, v. 136, p. 25-39, 2018. GUARDABASSI, L.; KRUSE, H. Princípios da utilização prudente e racional de antimicrobianos em animais. Guia de antimicrobianos em veterinária, p. 17-30, 2010. GURUNG, K.; WERTHEIM, B.; FALCAO S.J. The microbiome of pest insects: it is not just bacteria. Entomologia Experimentalis et Applicata, v. 167, n. 3, p. 156-170, 2019. HADRICH, D. Microbiome research is becoming the key to better understanding health and nutrition. Frontiers in genetics, v. 9, p. 212, 2018. HALOS, LÉNAÏG.; BEUGNET, F.; CARDOSO, L.; FARKAS, R., FRANC, M., GUILLOT, J.; WALL, R. Flea control failure? Myths and realities. Trends in Parasitology, v. 30, n. 5, p. 228-233, 2014. 58 HARTANTYO, S.H.; CHAU, M.L.; FILLON, L.; ARIFF, A.Z.; KANG, J.S.; AUNG, K.T.; GUTIÉRREZ, R.A. Sick pets as potential reservoirs of antibiotic-resistant bacteria in Singapore. Antimicrobial Resistance & Infection Control, v.7, n.1, p.106, 2018. HEADLEY, S. A.; SCORPIO, D. G.; VIDOTTO, O.; DUMLER, J. S. NEORICKETTSIA helminthoeca and salmon poisoning disease: a review. The Veterinary Journal, v. 187, n. 2, p. 165-173, 2011. HEALY, S. P.; BROWN, L.D.; HAGSTROM, M. R.; FOIL, L. D.; MACALUSO, K. R. Effect of Rickettsia felis strain variation on infection, transmission, and fitness in the cat flea (Siphonaptera: Pulicidae). Journal of medical entomology, v. 54(4), p. 1037-1043, 2017. HESSE, S.; ADHYA, S. Phage Therapy in the Twenty-First Century: Facing the Decline of The Antibiotic Era; Is it Finally Time for The Age of the Phage? Annual review of microbiology, v. 73, 2019. HIGGINS, J.A.; SACCI Jr, J.B.; SCHIEFER, M.E.; ENDRIS, R.G.; AZAD, A.F. Molecular identification of rickettsia-like microorganisms associated with colonized cat fleas (Ctenocephalides felis). Insect Molecular Biology, v. 3, n.1, p.27–33, 1994. HIRUNKANOKPUN, S.; THEPPARIT, C.; FOIL, L. D.; MACALUSO, K. R. Horizontal transmission of Rickettsia felis between cat fleas, Ctenocephalides felis. Molecular ecology, v. 20, n. 21, p. 4577-4586, 2011. HORTA, M. C.; SCOTT, F. B.; CORREIA, T. R.; FERNANDES, J. I.; RICHTZENHAIN, L. J.; LABRUNA, M. B. Rickettsia felis infection in cat fleas Ctenocephalides felis felis. Brazilian Journal of Microbiology, v.41(3), p. 813-818, 2010. HUNTER, D. J., TORKELSON, J. L., BODNAR, J., MORTAZAVI, B., LAURENT, T., DEASON, J.; ZHONG, J. The Rickettsia endosymbiont of Ixodes pacificus contains all the genes of de novo folate biosynthesis. PloS one, v. 10, n. 12, 2015. HYDE, J.; GORHAM, C.; BRACKNEY, D.E.; STEVEN, B. Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome. PloS one, 2019, v.14, p.8, 2019. IGNASIAK, K.; MAXWELL, A. Antibiotic-resistant bacteria in the guts of insects feeding on plants: prospects for discovering plant-derived antibiotics. BMC microbiology, 17(1), 223, 2017. JIANG, W.; MANIV, I..; ARAIN, F.; WANG, Y.; LEVIN, B.R.; MARRAFFINI, L.A. Dealing with the evolutionary downside of CRISPR immunity: bacteria and beneficial plasmids. PLoS genetics, v.9(9), e1003844, 2013. 59 JOHNSON, K. The impact of Wolbachia on virus infection in mosquitoes. Viruses, v. 7, n. 11, p. 5705-5717, 2015. JONES, R.T.; KNIGHT, R.; MARTIN, A.P. Bacterial communities of disease vectors sampled across time, space, and species. The ISME Journal, v. 4, n. 2, p. 223, 2009. KAKASIS, A.; PANITSA, G. Bacteriophage therapy as an alternative treatment for human infections. A comprehensive review. International journal of antimicrobial agents, v. 53, n. 1, p. 16-21, 2019. KHAN, H. A. A.; AKRAM, W.; FATIMA, A. Resistance to pyrethroid insecticides in house flies, Musca domestica L., (Diptera: Muscidae) collected from urban areas in Punjab, Pakistan. Parasitology research, v.116, n.12, p. 3381-3385, 2017. KARIMI, Z.; AHMADI A.; NAJAFI, A.; RANJBAR, R. Bacterial CRISPR regions: general features and their potential for epidemiological molecular typing studies. The open microbiology jornal, v.12, p.59, 2018. KAUR, P.; PETERSON, E. Mecanismos de resistência a antibióticos em bactérias: relações entre determinantes de resistência de produtores de antibióticos, bactérias ambientais e patógenos clínicos. Frontiers in Microbiology, v. 9: 2928, 20 p.1-21,2018. KELLY, P. H.; BAHR, S. M.; SERAFIM, T. D.; AJAMI, N. J.; PETROSINO, J. F.; MENESES, C.; WILSON, M. E. The gut microbiome of the vector Lutzomyia longipalpis is essential for survival of Leishmania infantum. MBio, v. 8, n. 1, p. e01121-16, 2017. KOHL, T.; PONTAROLO, G.H.; PEDRASSANI, D. Resistência antimicrobiana de bactérias isoladas de amostras de animais atendidos em hospital veterinário. Saúde e meio ambiente: revista interdisciplinar, v. 5, n. 2, p. 115-127, 2016. KOYLE, M. L.; VELOZ, M.; JUDD, A. M.; WONG, A. C.; NEWELL, P. D.; DOUGLAS, A. E.; CHASTON, J. M. Rearing the fruit fly Drosophila melanogaster under axenic and gnotobiotic conditions. Journal of visualized experiments: JoVE, n. 113, 2016. KUMBHARE, M. R.; SURANA A. R.; ABHALE, A. U.; BHOIR, A. A.; AGRAWAL S. P. An Updates on Antibiotic Resistance. Drug Designing & Intellectual Properties International Journal India, 01.03.2019. v.2 p. 1-5, 2019. LAGIER, J. C.; ARMOUGOM, F.; MILLION, M.; HUGON, P.; PAGNIER, I.; ROBERT, C.; TRAPE, J. F. Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection, v. 18, n. 12, p. 1185-1193, 2012. 60 LAGIER, J. C.; KHELAIFIA, S.; ALOU, M. T.; NDONGO, S.; DIONE, N.; HUGON, P.; DURAND, G. Culture of previously uncultured members of the human gut microbiota culturomics. Nature microbiology, v. 1, n. 12, p. 1-8, 2016. LALZAR, I.; HARRUS, S.; MUMCUOGLU, K. Y.; GOTTLIEB, Y. Composition and seasonal variation of Rhipicephalus turanicus and Rhipicephalus sanguineus bacterial communities. Appl. Environ. Microbiol, v.78, n.12, p.4110-4116, 2012. LANE, D. J.; PACE, B.; OLSEN, G. J.; STAHL, D. A.; SOGIN, M. L.; PACE, N. R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A, v. 82, n.20, p. 6955–6959, 1985. LAU, C. H. F.; VAN E. K.; GORDON, S.; RENAUD, J.; TOPP, E. N. Antibiotic resistance determinants from agricultural soil exposed to antibiotics widely used in human medicine and animal farming. Appl. Environ. Microbiol, v. 83, p.16, 2017. LAUDADIO, I.; FULCI, V.; STRONATI L.; CARISSIMI, C. Next-generation metagenomics: Methodological challenges and opportunities. Omics: a journal of integrative biology, v.23, n.7, p.327-33, 2019. LAWRENCE, A. L.; HII, S. F.; CHONG R.; WEBB, C. E.; TRAUB, R.; BROWN, G.; ŠLAPETA, J. Evaluation of the bacterial microbiome of two flea species using different DNA-isolation techniques provides insights into flea host ecology. FEMS microbiology ecology, vol. 91.12, 2015. LAWRENCE, A.; WEBB, C. E.; CLARK, N. J.; HALAJIAN, A.; MIHALCA, A. D.; MIRET, J.; ŠLAPETA, J. Out-of-Africa, human-mediated dispersal of the common cat flea, Ctenocephalides felis: the hitchhiker’s guide to world domination. International journal for parasitology, v. 49, n. 5, p. 321-336, 2019. LEDERBERG, J.; MCCRAY, A.T. Ome SweetOmics--A genealogical treasury of words. The Scientist, v.15.7, p 8-8, 2001. LEVISON, M. E.; KAYE, D. Treatment of complicated urinary tract infections with an emphasis on drug-resistant gram-negative uropathogens. Current infectious disease reports, v15, n.2, p.109-115, 2013. LFANO, N.; TAGLIAPIETRA, V.; ROSSO, F.; MANICA, M.; ARNOLDI, D.; PINDO, M.; RIZZOLI, A. Changes in Microbiota Across Developmental Stages of Aedes koreicus, an Invasive Mosquito Vector in Europe: Indications for Microbiota-based Control Strategies. Frontiers in Microbiology. v.10, n.2832, p. 1-15, 2019. 61 LINARDI, P. M. SANTOS J. L. C. Ctenocephalides felis felis vs Ctenocephalides canis (Siphonaptera: Pulicidae): algumas questões identificam corretamente estas espécies. Rev Bras Parasitol Vet. v.21, n.4, p.345-54, 2012. LINARDI, P.M. Checklist of Siphonaptera (Insecta) from Mato Grosso State, Brazil. Iheringia. Série Zoologia, p.107, 2017. LINARDI, P.M. Checklist de Siphonaptera (Insecta) from São Paulo State, Brazil. Biota Neotrópical, vol. 11, p. 607-617, 2011. LIU, Y. Y.; WANG, Y.; WALSH, T. R.; YI, L. X.; ZHANG, R.; SPENCER, J.; YU, L. F. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet infectious diseases, v. 16, n. 2, p. 161-168, 2016. LONCARIC, I.; KÜBBER-HEISS, A.; POSAUTZ, A.; STALDER, G. L.; HOFFMANN, D.; ROSENGARTEN, R.; WALZER, C. Characterization of methicillin-resistant Staphylococcus spp. carrying the mecC gene, isolated from wildlife. Journal of Antimicrobial Chemotherapy, v. 68, n. 10, p. 2222-2225, 2013. LOPEZ-ORDONEZ, T.; FLORES-LÓPEZ, C. A.; MONTEJO-LOPEZ, R.; CRUZ-HERNANDEZ, A.; CONNERS, E. E. Cultivable Bacterial Diversity in the Gut of the Chagas Disease Vector Triatoma dimidiata: Identification of Possible Bacterial Candidates for a Paratransgenesis Approach. Frontiers in Ecology and Evolution, v.5, p. 174, 2018. LUCERO-VELASCO, E. A.; MOLINA-GARZA, Z. J.; GALAVIZ-SILVA, L. First survey of cultivable bacteria from Rhipicephalus sanguineus sensu lato and assessment of the antagonism against five microorganisms of clinical importance. International Journal of Acarology, v. 44, n. 4-5, p. 204-209, 2018. MA, G. C. WORTHING, K. A.; WARD, M. P.; NORRIS, J. M. Estafilococos Comensais Incluindo Staphylococcus aureus Resistente à Meticilina de Cães e Gatos em Remote New South Wales, Austrália. Microb Ecol, p. 1-11, 2019. MALEKI-RAVASAN, N.; OSHAGHI, M. A.; AFSHAR, D.; ARANDIAN, M. H.; HAJIKHANI, S.; AKHAVAN, A. A.; AMINIAN, K. Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus. Parasites & vectors, v.8(1), p. 63, 2015. MAGNET, S; BLANCHARD, J, S. Molecular insights into aminoglycoside action and resistance. Chemical reviews, v.9 n.105(2), p.477-98, 2005. 62 MAKAROVA, K.S.; HAFT, D. H.; BARRANGOU, R., BROUNS, S. J., CHARPENTIER, E., HORVATH, P.; VAN DER OOST, J. Evolution and classification of the CRISPR–Cas systems. Nature Reviews Microbiology, v. 9, n. 6, p. 467, 2011. MARIA, C. K.; KIPPER M.; ANDRETTA, I.; MACHADO L. R. A. Withdrawal of antibiotic growth promoters from broiler diets: performance indexes and economic impact. Poultry science, v. 98(12), p. 6659-67, 2019. MARKO, M. Science is a war zone: some comments on Brazil, Tapuya: Latin American Science, Technology and Society, v. 3, n.1, p. 4-8, 2020. MARRAFFINI L.A.; SONTHEIMER EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, v.322, n.5909, p.1843-5, 2008. MARTINEZ, J.; LONGDON, B.; BAUER, S.; CHAN, Y.S.; MILLER, W. J.; BOURTZIS, K.; JIGGINS, F.M. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS pathogens, v.10(9), e1004369, 2014. MCINTOSH, D.; CUNNINGHAM, M.; JI, B.; FEKETE, F.A.; PARRY, E.M.; CLARK, S.E.; ZALINGER, Z. B.; GILG, I.C.; DANNER, G.R.; JOHNSON, K. A.; BEATTIE, M. Transferable, multiple antibiotic and mercury resistance in Atlantic Canadian isolates of Aeromonas salmonicida subsp. salmonicida is associated with carriage of an IncA/C plasmid similar to the Salmonella enterica plasmid pSN254. Journal of Antimicrobial Chemotherapy, v. 61(6), p. 1221-8, 2008. MENEGUZZI, M.; PISSETTI, C.; REBELATTO, R.; KUCHIISHI, S. S.; COSTA, A. T. R.; GUEDES, R. M. C.; KICH, J. D. Resistência à colistina em isolados de salmonella de casos clínicos de suínos no Brasil. In: Embrapa Suínos e Aves-Artigo em anais de congresso (ALICE). In: CONGRESSO DA ABRAVES, Goiânia. Suinocultura brasileira na era da tecnologia e da sustentabilidade: anais. Concórdia: Embrapa Suínos e Aves, v. 1, p. 27-28, 2017. MERRIL, C. R.; BISWAS, B.; CARLTON, R.; JENSEN, N. C.; CREED, G.J.; ZULLO, S.; ADHYA, S. Long-circulating bacteriophage as antibacterial agents. Proceedings of the National Academy of Sciences, v. 93, n. 8, p. 3188-3192, 1996. MIRZAEI, M. K.; MAURICE, C. F. Ménage à trois in the human gut: interactions between host, bacteria and phages. Nature Reviews Microbiology, v.15(7), p. 397, 2017. 63 MOHANTY, I.; RATH A.; SWAIN S.P.; PRADHAN, N.; HAZRA, R.K. Wolbachia Population in Vectors and Non-vectors: A Sustainable Approach Towards Dengue Control. Current microbiology, v.76(2), p. 133-43, 2019. MONTEIRO, M. Science is a war zone: some comments on Brazil, Tapuya: Latin American Science, Technology and Society, v. 3, p. 4-8, 2020. MURRELL, A.; DOBSON, S. J.; YANG, X.; LACEY, E.; BARKER, S. C. A survey of bacterial diversity in ticks, lice and fleas from Australia. Parasitology Research, v. 89, n. 4, p. 326-334, 2003. NARASIMHANE, S.; FIKRIG, E. Tick microbiome: the force within. Trends in parasitology, v. 31, n. 7, p. 315-323, 2015. NISBET, A. J.; HUNTLEY, J. F. Progress and opportunities in the development of vaccines against mites, fleas and myiasis‐causing flies of v |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Veterinárias |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Veterinária |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/1/2020%20-%20Tatiana%20Werneck%20Franco.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/2/2020%20-%20Tatiana%20Werneck%20Franco.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/3/2020%20-%20Tatiana%20Werneck%20Franco.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11809/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 8398e2483442175020f941470c410c3e d93419e730c7280e7b47ac6bc5e9639f 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108161112145920 |