Neotropical palms in the Anthropocene Age: tracking a changing world

Detalhes bibliográficos
Autor(a) principal: Oda, Gabriela Akemi Macedo
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9376
Resumo: As alterações no planeta promovidas pelo homem são tão significativas que justificaram a criação de uma nova era geológica: o Antropoceno. A perda e fragmentação de habitats, invasão de espécies exóticas e as mudanças climáticas estão entre os principais impactos à biodiversidade. Ao sofrer determinado impacto, as espécies podem responder de diferentes formas, e a estratégia adotada por cada uma está relacionada com características intrínsecas das mesmas. Dado o crescente risco de extinções globais, vários métodos de avaliação de risco têm sido propostos, mas poucos levam em consideração as características fisiológicas das espécies. Esses atributos podem auxiliar a entender adaptações à heterogeneidade ambiental e, consequentemente, a resposta das espécies às mudanças climáticas. Nesse estudo buscou-se identificar atributos ecológicos e fisiológicos que auxiliem na avaliação da sensibilidade de palmeiras neotropicais aos impactos antrópicos, em especial às mudanças climáticas. Com uma abordagem abrangente e integrada, foram utilizadas metodologias baseadas em revisão bibliográfica, medidas de atributos funcionais e Modelagem de Nicho Ecológico. Os principais resultados encontrados – que permitiram entender melhor as estratégias ecológicas de escape e a relação dos atributos foliares com o espaço, clima, microhabitats e adequabilidade ambiental - foram: (1) palmeiras tendem a apresentar mais estratégias de escape do que de aclimatização; (2) atributos foliares não são espacialmente distribuídos; (3) a correlação de atributos foliares com o clima se dá com mais intensidade em microhabitats em que os atributos estão mais expostos ao clima; (4) espécies com folhas mais grossas e menor área específica foliar (SLA) são menos sensíveis às mudanças climáticas; (5) espécies com folhas mais grossas apresentam maior expansão de adequabilidade ambiental do que as com folhas finas, em um cenário de mudanças climáticas; (6) espessura foliar de palmeiras pode ser bom preditor de impactos das mudanças no clima, e deve ser utilizado em analises de sensibilidade; (7) palmeiras tendem a ser favorecidas num cenário de mudanças climáticas, através de um aumento na adequabilidade ambiental, no entanto outros impactos antrópicos devem ser mensurados. É incentivada a busca de novos atributos que sejam de fácil obtenção, para uma avaliação da ampla gama de espécies, e que apresentem estreita relação com variáveis climáticas associadas às mudanças climáticas.
id UFRRJ-1_a9c23927fde9c0b1b9dc3773e30579c0
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9376
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Oda, Gabriela Akemi MacedoPires, AlexandraCPF: 045.527.247-62Portela, Rita de Cassia QuiteteCPF: 075.595.087-90Siqueira, Marinez Ferreira deCPF: 077.346.068-30Tapia, Andrea SánchezVale, Mariana MoncassimFigueiredo, Marcos de Souza LimaLoyola, Rafael DiasCPF: 115.722.117-33http://lattes.cnpq.br/65501869318891972023-12-21T18:38:16Z2023-12-21T18:38:16Z2019-02-18ODA, Gabriela Akemi Macedo. Neotropical palms in the Anthropocene Age: tracking a changing world. 2019. 121 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/9376As alterações no planeta promovidas pelo homem são tão significativas que justificaram a criação de uma nova era geológica: o Antropoceno. A perda e fragmentação de habitats, invasão de espécies exóticas e as mudanças climáticas estão entre os principais impactos à biodiversidade. Ao sofrer determinado impacto, as espécies podem responder de diferentes formas, e a estratégia adotada por cada uma está relacionada com características intrínsecas das mesmas. Dado o crescente risco de extinções globais, vários métodos de avaliação de risco têm sido propostos, mas poucos levam em consideração as características fisiológicas das espécies. Esses atributos podem auxiliar a entender adaptações à heterogeneidade ambiental e, consequentemente, a resposta das espécies às mudanças climáticas. Nesse estudo buscou-se identificar atributos ecológicos e fisiológicos que auxiliem na avaliação da sensibilidade de palmeiras neotropicais aos impactos antrópicos, em especial às mudanças climáticas. Com uma abordagem abrangente e integrada, foram utilizadas metodologias baseadas em revisão bibliográfica, medidas de atributos funcionais e Modelagem de Nicho Ecológico. Os principais resultados encontrados – que permitiram entender melhor as estratégias ecológicas de escape e a relação dos atributos foliares com o espaço, clima, microhabitats e adequabilidade ambiental - foram: (1) palmeiras tendem a apresentar mais estratégias de escape do que de aclimatização; (2) atributos foliares não são espacialmente distribuídos; (3) a correlação de atributos foliares com o clima se dá com mais intensidade em microhabitats em que os atributos estão mais expostos ao clima; (4) espécies com folhas mais grossas e menor área específica foliar (SLA) são menos sensíveis às mudanças climáticas; (5) espécies com folhas mais grossas apresentam maior expansão de adequabilidade ambiental do que as com folhas finas, em um cenário de mudanças climáticas; (6) espessura foliar de palmeiras pode ser bom preditor de impactos das mudanças no clima, e deve ser utilizado em analises de sensibilidade; (7) palmeiras tendem a ser favorecidas num cenário de mudanças climáticas, através de um aumento na adequabilidade ambiental, no entanto outros impactos antrópicos devem ser mensurados. É incentivada a busca de novos atributos que sejam de fácil obtenção, para uma avaliação da ampla gama de espécies, e que apresentem estreita relação com variáveis climáticas associadas às mudanças climáticas.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorThe changes in the planet promoted by humans are so significant that they justified the creation of a new geological Age: the Anthropocene. Habitat loss, fragmentation, expansion of alien species and climate change are among the major impacts on biodiversity. When experiencing an impact, species can respond in different ways, and the strategy adopted by each species is related to their intrinsic characteristics. Given the increasing risk of global extinction, several standardized methods of risk assessment have been proposed, however, few consider the physiological characteristics of the species. These traits may help to understand adaptations to environmental heterogeneity and consequently to species responses to climate change. In this study, we sought to identify ecological and physiological traits that aid in the evaluation of the sensitivity of neotropical palms to anthropic impacts, especially climate change. With a broad and integrated approach, methodologies based on bibliographic review, functional traits measures and Ecological Niche Modeling were used. The results obtained provided important insights on ecological escape strategies and the relationship of leaf traits with space, climate, microhabitats and environmental suitability, among the main results are: (1) palm tend to present more escape strategies than acclimatization strategies; (2) leaf traits are not spatially distributed; (3) the correlation of leaf traits with climate occurs more strongly when the traits are more exposed to the climate; (4) species with thicker leaves and less specific leaf area (SLA) are less sensitive to climate change; (5) thicker leaf species showed a greater expansion of environmental suitability than thin leaf species in a climate change scenario; (6) leaf thickness of palms can be a good predictor of impacts of climate changes, and should be used in sensitivity analyzes; (7) palms tend to be favored climatically, with an increase of environmental suitability in a climate change scenario, however other anthropic impacts must be measured. In addition, it is encouraged the search for new traits that present features that are easy to obtain, for a wide evaluation of species, and that are closely related to climatic variables associated with climate change.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências Ambientais e FlorestaisUFRRJBrasilInstituto de Florestasatributos ecológicosestratégias de escapeatributos foliaresárea específica foliarespessura foliarmudanças climáticasparâmetros de sensibilidadeavaliação de riscoecological traitsescape strategiesleaf traitsspecific leaf arealeaf thicknessclimatic changessensitivity parametersrisk assessmentRecursos Florestais e Engenharia FlorestalBotânicaNeotropical palms in the Anthropocene Age: tracking a changing worldNeotropical palms in the Anthropocene Age: tracking a changing worldinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisAllouche O., Tsoar A., Kadmon R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232. Begon M., Wall, R. (1987). Individual variation and competitor coexistence: a model. Functional Ecology, 1. Bjorholm S., Svenning J.C., Baker W.J., Skov F., Balslev H. (2006). Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Botanical Journal of the Linnean Society 151: 113-125. Bjorholm S., Svenning J.C., Skov F., Balslev H. (2005). Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14: 423-429. Blach-Overgaard A., Balslev H., Dransfield J., Normand S., Svenning J-C. (2015). Global-change vulnerability of a key plant resource, the African palms. Scientific Reports 5: 12611. Doi: 10.1038/srep12611 Blach-Overgaard A., Svenning J.C., Dransfield J., Greve M., Balslev H. (2010). Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33: 380-391. Callaway R. M., Pennings S.C., Richards C. R. (2003). Phenotypic plasticity and interactions among plants. Ecology 84(5). Colombo A.F., Joly C.A. (2010). Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70(3): 697-708. Cornelissen J.H.C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D.E., Reich P.B, Ter Steege H., Morgan H.D., Van Der Heijden M.G.A., Pausas J.G., Poorter H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4). Diaz S., Cabido M. (1997). Plant Functional Types and Ecosystem Function in Relation to Global Change. Journal of Vegetation Science 8(4). Dickinson R.E., Kennedy P. (1992) Impacts on regional climate of Amazonian deforestation. Geophys. Res. Lett. 19: 1947–1950. Dransfield J., Uhl N.W., Asmussen C.B., Baker W.J., Harley M.M., Lewis C.E. (2008). Genera Palmarum. Richmond, UK: Royal Botanic Gardens, Kew. Eiserhardt W.L., Svenning J-C., Kissling W.D., Balslev H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany 1–26. Doi: 10.1093/aob/mcr146 Gamfeldt L., Kallstrom B. (2007). Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116. Göldel B., Kissling W.D., Svenning J. (2015). Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Botanical Journal of the Linnean Society. DOI: 10.1111/boj.12349 Guitay H., Noble I.R. (1997). What are functional types and how can we seek them? In: Smith T.M., Shugart H.H., Woodward F.I. (eds.). Plant functional types: their relevance to ecosystem properties and global change. Cambridge: Cambridge University Press. Henderson A.J., Galeano G., Bernal R. (1995). Field Guide to the palms of the Americas. Princeton: Princeton University Press. Hoffmann W.A., Jackson R.B. (2000). Vegetation–Climate Feedbacks in the Conversion of Tropical Savanna to Grassland. Journal of climate (13): 1593-1602. Hughes L. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15: 56-61. Doi: 10.1016/S0169 5347(99)01764-4 International Panel on Climate Changes/IPCC. (2014). Climate change 2014: mitigation of climate change. In: Edenhofer, O. et al. (Ed.). Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014c. Disponível em: <https://www.ipcc.ch/pdf/assessment-report/ ar5/w g3/ipcc_wg3_ar5_full.pdf>. Acesso em: 10 jun. 2015. Kissling W.D., Baker W.J., Balslev H., Barfod A.S., Borchsenius F., Dransfield J., Govaerts R., Svenning J-C. (2012). Quaternary and pre Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology Biogeography 21: 909-921. Doi: 10.1111/j.1466-8238.2011.00728.x Klink C.A., Moreira A.G., Solbrig O.T. (1993). Ecological impact of agricultural development in the Brazilian Cerrado. In: Young M.D., Solbrig O.T. (eds). The world’s savannas. Economic driving forces, ecological constraints and policy options for sustainable land use. Parthenon Publishing, London 259–83 Knutti R., Masson D., Gettelman A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters 40: 1194–1199. Doi:10.1002/grl.50256, 2013 Kristiansen T., Svenning J-C., Pedersen D., Eiserhardt W., Grández C., Balslev H. (2011). Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon. Journal of Ecology 99: 1001-1015. Doi:10.1111/j.1365-2745.2011.01834.x. Lebrija-Trejos E., Pérez-García E.A., Meave J.A., Bongers F., Poorter L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2): 386–398. McGill B.J., Enquist B.J., Weiher E., Westoby M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185. Michaletz S.T., Weiser M.D., McDowell N.G., Zhou J., Kaspari M., Helliker B.R., Enquist B. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2: 16129 Nepstad D., Carvalho G., Barros A.C., Alencar A., Capobianco J.P., Bishop J., Moutinho P., Lefebvre P., Silva U. L., Prins E. (2001). Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecol. Manage. 154: 395– 407. Noblick L.R. (2013). Leaflet anatomy verifies relationships within Syagrus (Arecaceae) and aids in identification. PhytoKeys (26): 75–99. Nobre C.A., Sellers P. J., Shukla J. (1991). Amazonian deforestation and regional climate change. J. Clim. 4: 957– 988. Olivares I., Svenning J.-C., Van Bodegom P.M., Valencia R., Balslev H. (2017). Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17 years. Global Change Biology 23(3): 1232-1239 Pearman P.B., Guisan A., Broennimann O., Randin C.F. (2008). Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–58 Petchey O. L., Gaston K. J. (2006). Functional diversity: back to basics and looking forward. Ecology Letter 9(6) Peterson A.T., Soberón J. (2012). Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Brazilian Journal for Nature Conservation 10(2): 102-107. Peterson A.T., Soberon J., Pearson R.G., Anderson R.P., Martinez-Meyer E., Nakamera M., Araújo M.B. (2011). Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. Ratter J.A., Ribeiro J.F., Bridgewater S. (1997). The Brazilian Cerrado vegetation and threats to biodiversity Annals of Botany 80: 223–30 Reusch T.B.H., Ehlers A., Hämmerli A., Worm B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102(8): 2826-2831. Richards C.L., Bossdorf O., Muth N.Z., Gurevitch J., Pigliucci M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9 (8): 981-93. Roncal J., Blach-Overgaard A., Borchsenius F., Balslev H., Svenning J-C. (2011). A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica 43: 324-334. Sala O.E., Chapin F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M., Wall D.H. (2000). Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. Salazar L.F., Nobre C.A., Oyama M.D. (2007). Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters 34: L09708. Doi:10.1029/2007GL029695 Sexton J.P., Mckay J.K., Sala A. (2001). Plasticity and the genetic diversity may allow saltcedar to invade cold climates in North America. Ecology Applications 12(6). Shabani F., Kumar L., Taylor S. (2012). Climate Change Impacts on the Future Distribution of Date Palms: A Modeling Exercise Using CLIMEX. PLoS ONE 7(10): e48021. Shabani F., Kumar L., Taylor S. (2014). Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios. Journal of Agricultural Science 152: 543-557. Doi:10.1017/S0021859613000816 Soudzilovskaia N.A., Elumeeva T.G., Onipchenko V.G., Shidakov I.I., Salpagarova F.S., Khubiev A.B., Tekeev D.K., Cornelissen J.H.C. (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. 110 (45): 18180–18184 Svenning J-C., Borchsenius F., Bjorholm S., Balslev H. (2008). High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography 35: 394-406. Thomas C. D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Siqueira M.F.D., Grainger A., Hannah L. (2004). Extinction risk from climate change. Nature 427 (6970): 145-148. Doi: 10.1038/nature02121 Thuiller W., Lavorel S., Araújo M.B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography 14(4). Tripp E.A., Dexter K.G. (2006). Sabal minor (Arecaceae): a new northern record of palms in eastern North America. Castanea 71: 172-177. Vaz U.L., Nabout J.C. (2016). Using ecological niche models to predict the impact of global climate change on the geographical distribution and productivity of Euterpe oleracea Mart. (Arecaceae) in the Amazon. Acta Botanica Brasilica 30(2). Doi: 10.1590/0102-33062016abb0036. Vedel-Sørensen M., Tovaranonte J., Bøcher P.K., Balslev H., Barfod A.S. (2013). Spatial distribution and environmental preferences of 10 economically important forest palms in western South America. Forest Ecology and Management 307(1): 284-292. Walther G.R. (2000). Climatic forcing on the dispersal of exotic species. Phytocoenologia 30: 409-430. Walther G.R., Gritti E.S., Berger S., Hickler T., Tang Z.Y., Sykes M.T. (2007). Palms tracking climate change. Global Ecology and Biogeography 16: 801-809. Webb C.T., Hoeting J.A., Ames G.M., Pyne M.I., Poff N.L. (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13(3). Wright S.J. (2005). Tropical forests in a changing environment. Trends in Ecology & Evolution 20 (10). Doi: 10.1016/j.tree.2005.07.009 Xue Y., Shukla J. (1993). The influence of land surface properties on Sahel climate. Part I: Desertification. J. Climate 6: 2232–2245. Zhang H., Henderson-Sellers A. (1996). Impacts of tropical deforestation.Part I: Process analysis of local climatic change. J. Climate 9: 1497–1517.https://tede.ufrrj.br/retrieve/67831/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5306Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-12-28T20:51:15Z No. of bitstreams: 1 2019 - Gabriela Akemi Macedo Oda.pdf: 2604508 bytes, checksum: 67deda5cc5764085136c1410f978ba6d (MD5)Made available in DSpace on 2021-12-28T20:51:15Z (GMT). No. of bitstreams: 1 2019 - Gabriela Akemi Macedo Oda.pdf: 2604508 bytes, checksum: 67deda5cc5764085136c1410f978ba6d (MD5) Previous issue date: 2019-02-18info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Gabriela Akemi Macedo Oda.pdf.jpgGenerated Thumbnailimage/jpeg2104https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/1/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf.jpgc4715912a635b5fbde63d2a9b070733fMD51TEXT2019 - Gabriela Akemi Macedo Oda.pdf.txtExtracted Texttext/plain276409https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/2/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf.txt73fa26c8a051d115e3798e97c34ead14MD52ORIGINAL2019 - Gabriela Akemi Macedo Oda.pdfapplication/pdf2604508https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/3/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf67deda5cc5764085136c1410f978ba6dMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/93762023-12-21 15:38:16.86oai:rima.ufrrj.br:20.500.14407/9376Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:38:16Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Neotropical palms in the Anthropocene Age: tracking a changing world
dc.title.alternative.eng.fl_str_mv Neotropical palms in the Anthropocene Age: tracking a changing world
title Neotropical palms in the Anthropocene Age: tracking a changing world
spellingShingle Neotropical palms in the Anthropocene Age: tracking a changing world
Oda, Gabriela Akemi Macedo
atributos ecológicos
estratégias de escape
atributos foliares
área específica foliar
espessura foliar
mudanças climáticas
parâmetros de sensibilidade
avaliação de risco
ecological traits
escape strategies
leaf traits
specific leaf area
leaf thickness
climatic changes
sensitivity parameters
risk assessment
Recursos Florestais e Engenharia Florestal
Botânica
title_short Neotropical palms in the Anthropocene Age: tracking a changing world
title_full Neotropical palms in the Anthropocene Age: tracking a changing world
title_fullStr Neotropical palms in the Anthropocene Age: tracking a changing world
title_full_unstemmed Neotropical palms in the Anthropocene Age: tracking a changing world
title_sort Neotropical palms in the Anthropocene Age: tracking a changing world
author Oda, Gabriela Akemi Macedo
author_facet Oda, Gabriela Akemi Macedo
author_role author
dc.contributor.author.fl_str_mv Oda, Gabriela Akemi Macedo
dc.contributor.advisor1.fl_str_mv Pires, Alexandra
dc.contributor.advisor1ID.fl_str_mv CPF: 045.527.247-62
dc.contributor.advisor-co1.fl_str_mv Portela, Rita de Cassia Quitete
dc.contributor.advisor-co1ID.fl_str_mv CPF: 075.595.087-90
dc.contributor.advisor-co2.fl_str_mv Siqueira, Marinez Ferreira de
dc.contributor.advisor-co2ID.fl_str_mv CPF: 077.346.068-30
dc.contributor.referee1.fl_str_mv Tapia, Andrea Sánchez
dc.contributor.referee2.fl_str_mv Vale, Mariana Moncassim
dc.contributor.referee3.fl_str_mv Figueiredo, Marcos de Souza Lima
dc.contributor.referee4.fl_str_mv Loyola, Rafael Dias
dc.contributor.authorID.fl_str_mv CPF: 115.722.117-33
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6550186931889197
contributor_str_mv Pires, Alexandra
Portela, Rita de Cassia Quitete
Siqueira, Marinez Ferreira de
Tapia, Andrea Sánchez
Vale, Mariana Moncassim
Figueiredo, Marcos de Souza Lima
Loyola, Rafael Dias
dc.subject.por.fl_str_mv atributos ecológicos
estratégias de escape
atributos foliares
área específica foliar
espessura foliar
mudanças climáticas
parâmetros de sensibilidade
avaliação de risco
topic atributos ecológicos
estratégias de escape
atributos foliares
área específica foliar
espessura foliar
mudanças climáticas
parâmetros de sensibilidade
avaliação de risco
ecological traits
escape strategies
leaf traits
specific leaf area
leaf thickness
climatic changes
sensitivity parameters
risk assessment
Recursos Florestais e Engenharia Florestal
Botânica
dc.subject.eng.fl_str_mv ecological traits
escape strategies
leaf traits
specific leaf area
leaf thickness
climatic changes
sensitivity parameters
risk assessment
dc.subject.cnpq.fl_str_mv Recursos Florestais e Engenharia Florestal
Botânica
description As alterações no planeta promovidas pelo homem são tão significativas que justificaram a criação de uma nova era geológica: o Antropoceno. A perda e fragmentação de habitats, invasão de espécies exóticas e as mudanças climáticas estão entre os principais impactos à biodiversidade. Ao sofrer determinado impacto, as espécies podem responder de diferentes formas, e a estratégia adotada por cada uma está relacionada com características intrínsecas das mesmas. Dado o crescente risco de extinções globais, vários métodos de avaliação de risco têm sido propostos, mas poucos levam em consideração as características fisiológicas das espécies. Esses atributos podem auxiliar a entender adaptações à heterogeneidade ambiental e, consequentemente, a resposta das espécies às mudanças climáticas. Nesse estudo buscou-se identificar atributos ecológicos e fisiológicos que auxiliem na avaliação da sensibilidade de palmeiras neotropicais aos impactos antrópicos, em especial às mudanças climáticas. Com uma abordagem abrangente e integrada, foram utilizadas metodologias baseadas em revisão bibliográfica, medidas de atributos funcionais e Modelagem de Nicho Ecológico. Os principais resultados encontrados – que permitiram entender melhor as estratégias ecológicas de escape e a relação dos atributos foliares com o espaço, clima, microhabitats e adequabilidade ambiental - foram: (1) palmeiras tendem a apresentar mais estratégias de escape do que de aclimatização; (2) atributos foliares não são espacialmente distribuídos; (3) a correlação de atributos foliares com o clima se dá com mais intensidade em microhabitats em que os atributos estão mais expostos ao clima; (4) espécies com folhas mais grossas e menor área específica foliar (SLA) são menos sensíveis às mudanças climáticas; (5) espécies com folhas mais grossas apresentam maior expansão de adequabilidade ambiental do que as com folhas finas, em um cenário de mudanças climáticas; (6) espessura foliar de palmeiras pode ser bom preditor de impactos das mudanças no clima, e deve ser utilizado em analises de sensibilidade; (7) palmeiras tendem a ser favorecidas num cenário de mudanças climáticas, através de um aumento na adequabilidade ambiental, no entanto outros impactos antrópicos devem ser mensurados. É incentivada a busca de novos atributos que sejam de fácil obtenção, para uma avaliação da ampla gama de espécies, e que apresentem estreita relação com variáveis climáticas associadas às mudanças climáticas.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-18
dc.date.accessioned.fl_str_mv 2023-12-21T18:38:16Z
dc.date.available.fl_str_mv 2023-12-21T18:38:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ODA, Gabriela Akemi Macedo. Neotropical palms in the Anthropocene Age: tracking a changing world. 2019. 121 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9376
identifier_str_mv ODA, Gabriela Akemi Macedo. Neotropical palms in the Anthropocene Age: tracking a changing world. 2019. 121 f. Tese (Doutorado em Ciências Ambientais e Florestais) - Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9376
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv Allouche O., Tsoar A., Kadmon R. (2006). Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43, 1223-1232. Begon M., Wall, R. (1987). Individual variation and competitor coexistence: a model. Functional Ecology, 1. Bjorholm S., Svenning J.C., Baker W.J., Skov F., Balslev H. (2006). Historical legacies in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Botanical Journal of the Linnean Society 151: 113-125. Bjorholm S., Svenning J.C., Skov F., Balslev H. (2005). Environmental and spatial controls of palm (Arecaceae) species richness across the Americas. Global Ecology and Biogeography 14: 423-429. Blach-Overgaard A., Balslev H., Dransfield J., Normand S., Svenning J-C. (2015). Global-change vulnerability of a key plant resource, the African palms. Scientific Reports 5: 12611. Doi: 10.1038/srep12611 Blach-Overgaard A., Svenning J.C., Dransfield J., Greve M., Balslev H. (2010). Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33: 380-391. Callaway R. M., Pennings S.C., Richards C. R. (2003). Phenotypic plasticity and interactions among plants. Ecology 84(5). Colombo A.F., Joly C.A. (2010). Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70(3): 697-708. Cornelissen J.H.C., Lavorel S., Garnier E., Díaz S., Buchmann N., Gurvich D.E., Reich P.B, Ter Steege H., Morgan H.D., Van Der Heijden M.G.A., Pausas J.G., Poorter H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51(4). Diaz S., Cabido M. (1997). Plant Functional Types and Ecosystem Function in Relation to Global Change. Journal of Vegetation Science 8(4). Dickinson R.E., Kennedy P. (1992) Impacts on regional climate of Amazonian deforestation. Geophys. Res. Lett. 19: 1947–1950. Dransfield J., Uhl N.W., Asmussen C.B., Baker W.J., Harley M.M., Lewis C.E. (2008). Genera Palmarum. Richmond, UK: Royal Botanic Gardens, Kew. Eiserhardt W.L., Svenning J-C., Kissling W.D., Balslev H. (2011). Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Annals of Botany 1–26. Doi: 10.1093/aob/mcr146 Gamfeldt L., Kallstrom B. (2007). Increasing intraspecific diversity increases predictability in population survival in the face of perturbations. Oikos 116. Göldel B., Kissling W.D., Svenning J. (2015). Geographical variation and environmental correlates of functional trait distributions in palms (Arecaceae) across the New World. Botanical Journal of the Linnean Society. DOI: 10.1111/boj.12349 Guitay H., Noble I.R. (1997). What are functional types and how can we seek them? In: Smith T.M., Shugart H.H., Woodward F.I. (eds.). Plant functional types: their relevance to ecosystem properties and global change. Cambridge: Cambridge University Press. Henderson A.J., Galeano G., Bernal R. (1995). Field Guide to the palms of the Americas. Princeton: Princeton University Press. Hoffmann W.A., Jackson R.B. (2000). Vegetation–Climate Feedbacks in the Conversion of Tropical Savanna to Grassland. Journal of climate (13): 1593-1602. Hughes L. (2000). Biological consequences of global warming: is the signal already apparent? Trends in Ecology & Evolution 15: 56-61. Doi: 10.1016/S0169 5347(99)01764-4 International Panel on Climate Changes/IPCC. (2014). Climate change 2014: mitigation of climate change. In: Edenhofer, O. et al. (Ed.). Contribution of working group III to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press, 2014c. Disponível em: <https://www.ipcc.ch/pdf/assessment-report/ ar5/w g3/ipcc_wg3_ar5_full.pdf>. Acesso em: 10 jun. 2015. Kissling W.D., Baker W.J., Balslev H., Barfod A.S., Borchsenius F., Dransfield J., Govaerts R., Svenning J-C. (2012). Quaternary and pre Quaternary historical legacies in the global distribution of a major tropical plant lineage. Global Ecology Biogeography 21: 909-921. Doi: 10.1111/j.1466-8238.2011.00728.x Klink C.A., Moreira A.G., Solbrig O.T. (1993). Ecological impact of agricultural development in the Brazilian Cerrado. In: Young M.D., Solbrig O.T. (eds). The world’s savannas. Economic driving forces, ecological constraints and policy options for sustainable land use. Parthenon Publishing, London 259–83 Knutti R., Masson D., Gettelman A. (2013). Climate model genealogy: Generation CMIP5 and how we got there. Geophysical Research Letters 40: 1194–1199. Doi:10.1002/grl.50256, 2013 Kristiansen T., Svenning J-C., Pedersen D., Eiserhardt W., Grández C., Balslev H. (2011). Local and regional palm (Arecaceae) species richness patterns and their cross-scale determinants in the western Amazon. Journal of Ecology 99: 1001-1015. Doi:10.1111/j.1365-2745.2011.01834.x. Lebrija-Trejos E., Pérez-García E.A., Meave J.A., Bongers F., Poorter L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91(2): 386–398. McGill B.J., Enquist B.J., Weiher E., Westoby M. (2006) Rebuilding community ecology from functional traits. Trends in Ecology & Evolution 21: 178–185. Michaletz S.T., Weiser M.D., McDowell N.G., Zhou J., Kaspari M., Helliker B.R., Enquist B. (2016). The energetic and carbon economic origins of leaf thermoregulation. Nature Plants 2: 16129 Nepstad D., Carvalho G., Barros A.C., Alencar A., Capobianco J.P., Bishop J., Moutinho P., Lefebvre P., Silva U. L., Prins E. (2001). Road paving, fire regime feedbacks, and the future of Amazon forests. Forest Ecol. Manage. 154: 395– 407. Noblick L.R. (2013). Leaflet anatomy verifies relationships within Syagrus (Arecaceae) and aids in identification. PhytoKeys (26): 75–99. Nobre C.A., Sellers P. J., Shukla J. (1991). Amazonian deforestation and regional climate change. J. Clim. 4: 957– 988. Olivares I., Svenning J.-C., Van Bodegom P.M., Valencia R., Balslev H. (2017). Stability in a changing world – palm community dynamics in the hyperdiverse western Amazon over 17 years. Global Change Biology 23(3): 1232-1239 Pearman P.B., Guisan A., Broennimann O., Randin C.F. (2008). Niche dynamics in space and time. Trends Ecol. Evol. 23, 149–58 Petchey O. L., Gaston K. J. (2006). Functional diversity: back to basics and looking forward. Ecology Letter 9(6) Peterson A.T., Soberón J. (2012). Species Distribution Modeling and Ecological Niche Modeling: Getting the Concepts Right. Brazilian Journal for Nature Conservation 10(2): 102-107. Peterson A.T., Soberon J., Pearson R.G., Anderson R.P., Martinez-Meyer E., Nakamera M., Araújo M.B. (2011). Ecological Niches and Geographic Distributions. Princeton University Press, New Jersey. Ratter J.A., Ribeiro J.F., Bridgewater S. (1997). The Brazilian Cerrado vegetation and threats to biodiversity Annals of Botany 80: 223–30 Reusch T.B.H., Ehlers A., Hämmerli A., Worm B. (2005). Ecosystem recovery after climatic extremes enhanced by genotypic diversity. Proceedings of the National Academy of Sciences of the United States of America 102(8): 2826-2831. Richards C.L., Bossdorf O., Muth N.Z., Gurevitch J., Pigliucci M. (2006). Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9 (8): 981-93. Roncal J., Blach-Overgaard A., Borchsenius F., Balslev H., Svenning J-C. (2011). A dated phylogeny complements macroecological analysis to explain the diversity patterns in Geonoma (Arecaceae). Biotropica 43: 324-334. Sala O.E., Chapin F.S., Armesto J.J., Berlow E., Bloomfield J., Dirzo R., Huber-Sanwald E., Huenneke L.F., Jackson R.B., Kinzig A., Leemans R., Lodge D.M., Mooney H.A., Oesterheld M., Poff N.L., Sykes M.T., Walker B.H., Walker M., Wall D.H. (2000). Global biodiversity scenarios for the year 2100. Science 287: 1770-1774. Salazar L.F., Nobre C.A., Oyama M.D. (2007). Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters 34: L09708. Doi:10.1029/2007GL029695 Sexton J.P., Mckay J.K., Sala A. (2001). Plasticity and the genetic diversity may allow saltcedar to invade cold climates in North America. Ecology Applications 12(6). Shabani F., Kumar L., Taylor S. (2012). Climate Change Impacts on the Future Distribution of Date Palms: A Modeling Exercise Using CLIMEX. PLoS ONE 7(10): e48021. Shabani F., Kumar L., Taylor S. (2014). Suitable regions for date palm cultivation in Iran are predicted to increase substantially under future climate change scenarios. Journal of Agricultural Science 152: 543-557. Doi:10.1017/S0021859613000816 Soudzilovskaia N.A., Elumeeva T.G., Onipchenko V.G., Shidakov I.I., Salpagarova F.S., Khubiev A.B., Tekeev D.K., Cornelissen J.H.C. (2013). Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proc. Natl. Acad. Sci. 110 (45): 18180–18184 Svenning J-C., Borchsenius F., Bjorholm S., Balslev H. (2008). High tropical net diversification drives the New World latitudinal gradient in palm (Arecaceae) species richness. Journal of Biogeography 35: 394-406. Thomas C. D., Cameron A., Green R.E., Bakkenes M., Beaumont L.J., Collingham Y.C., Erasmus B.F.N., Siqueira M.F.D., Grainger A., Hannah L. (2004). Extinction risk from climate change. Nature 427 (6970): 145-148. Doi: 10.1038/nature02121 Thuiller W., Lavorel S., Araújo M.B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography 14(4). Tripp E.A., Dexter K.G. (2006). Sabal minor (Arecaceae): a new northern record of palms in eastern North America. Castanea 71: 172-177. Vaz U.L., Nabout J.C. (2016). Using ecological niche models to predict the impact of global climate change on the geographical distribution and productivity of Euterpe oleracea Mart. (Arecaceae) in the Amazon. Acta Botanica Brasilica 30(2). Doi: 10.1590/0102-33062016abb0036. Vedel-Sørensen M., Tovaranonte J., Bøcher P.K., Balslev H., Barfod A.S. (2013). Spatial distribution and environmental preferences of 10 economically important forest palms in western South America. Forest Ecology and Management 307(1): 284-292. Walther G.R. (2000). Climatic forcing on the dispersal of exotic species. Phytocoenologia 30: 409-430. Walther G.R., Gritti E.S., Berger S., Hickler T., Tang Z.Y., Sykes M.T. (2007). Palms tracking climate change. Global Ecology and Biogeography 16: 801-809. Webb C.T., Hoeting J.A., Ames G.M., Pyne M.I., Poff N.L. (2010). A structured and dynamic framework to advance traits-based theory and prediction in ecology. Ecology Letters 13(3). Wright S.J. (2005). Tropical forests in a changing environment. Trends in Ecology & Evolution 20 (10). Doi: 10.1016/j.tree.2005.07.009 Xue Y., Shukla J. (1993). The influence of land surface properties on Sahel climate. Part I: Desertification. J. Climate 6: 2232–2245. Zhang H., Henderson-Sellers A. (1996). Impacts of tropical deforestation.Part I: Process analysis of local climatic change. J. Climate 9: 1497–1517.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Ambientais e Florestais
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Florestas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/1/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/2/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/3/2019%20-%20Gabriela%20Akemi%20Macedo%20Oda.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9376/4/license.txt
bitstream.checksum.fl_str_mv c4715912a635b5fbde63d2a9b070733f
73fa26c8a051d115e3798e97c34ead14
67deda5cc5764085136c1410f978ba6d
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107899668594688