Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol

Detalhes bibliográficos
Autor(a) principal: Santos, Izadora da Silva
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://tede.ufrrj.br/jspui/handle/jspui/6510
Resumo: The reaction of transesterification of oils and fats for biodiesel production generates glycerol as its main by-product, a low-cost and viable raw material for conversion into products with high added value. The glycerol dehydration reaction is an alternative to the partial oxidation of propylene (derived from fossil material) for the production of acrolein and acrylic acid, which makes the commercial development of the biodiesel value chain sustainable. Among the materials used, ZSM-5 zeolite in its acid form and SBA-15 mesoporous silica with natural sites are active catalysts for the glycerol dehydration reaction and selective for the production of acrolein. Thus, the objective of the present work was to synthesize the ZSM-5 zeolite with hierarchical pore structure through the alkaline treatment of desilication in the presence of a surfactant and the mesoporous silica Al-SBA-15 through the direct using different Si/Al to ratios use in the glycerol dehydration reaction. How they were characterized by different techniques to elucidate the influence on the reaction. A crystal structure of the ZSM-5 was confirmed by DRX and FTIR. By XRD and adsorption of N2, it was evidenced the obtainment of silica with highly regular mesopores, characteristic of SBA-15. For ZSM-5 zeolite, highlighted specific area and presence of micro and mesopores. The Al-SBA-15 Al-SBA-15 direct a direct relationship between the Si/Al ratio with a specific area and the volume of mesopores, indicating that the presence of aluminum affects the structure of the material. Through the chemical composition data, it was possible to establish a real Si/Al ratio and the theoretical acidity. ZSM-5 particles are spherical and crystals in plate shape and Al-SBA-15 in a cylindrical shape. The analysis of the physicochemical properties of the synthesized samples indicates that these materials are promising for a possible application in the glycerol dehydration reaction.
id UFRRJ-1_ae18c4da8ef2d37f22cd78f010c5c26a
oai_identifier_str oai:localhost:jspui/6510
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Fernandes, Lindoval Domiciano837.359.257-15http://lattes.cnpq.br/7921814684730923Fernandes, Lindoval DomicianoArroyo, Pedro AugustoMachado Junior, H?lio Fernandes385.854.508-27https://orcid.org/0000-0002-5556-5020http://lattes.cnpq.br/5778858249864254Santos, Izadora da Silva2023-04-12T17:07:44Z2021-07-28SANTOS, Izadora da Silva. Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol. 2021. 100 f. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2021.https://tede.ufrrj.br/jspui/handle/jspui/6510The reaction of transesterification of oils and fats for biodiesel production generates glycerol as its main by-product, a low-cost and viable raw material for conversion into products with high added value. The glycerol dehydration reaction is an alternative to the partial oxidation of propylene (derived from fossil material) for the production of acrolein and acrylic acid, which makes the commercial development of the biodiesel value chain sustainable. Among the materials used, ZSM-5 zeolite in its acid form and SBA-15 mesoporous silica with natural sites are active catalysts for the glycerol dehydration reaction and selective for the production of acrolein. Thus, the objective of the present work was to synthesize the ZSM-5 zeolite with hierarchical pore structure through the alkaline treatment of desilication in the presence of a surfactant and the mesoporous silica Al-SBA-15 through the direct using different Si/Al to ratios use in the glycerol dehydration reaction. How they were characterized by different techniques to elucidate the influence on the reaction. A crystal structure of the ZSM-5 was confirmed by DRX and FTIR. By XRD and adsorption of N2, it was evidenced the obtainment of silica with highly regular mesopores, characteristic of SBA-15. For ZSM-5 zeolite, highlighted specific area and presence of micro and mesopores. The Al-SBA-15 Al-SBA-15 direct a direct relationship between the Si/Al ratio with a specific area and the volume of mesopores, indicating that the presence of aluminum affects the structure of the material. Through the chemical composition data, it was possible to establish a real Si/Al ratio and the theoretical acidity. ZSM-5 particles are spherical and crystals in plate shape and Al-SBA-15 in a cylindrical shape. The analysis of the physicochemical properties of the synthesized samples indicates that these materials are promising for a possible application in the glycerol dehydration reaction.A rea??o de transesterifica??o de ?leos e gorduras para produ??o de biodiesel gera como principal subproduto o glicerol, uma mat?ria-prima de baixo custo e vi?vel para convers?o em produtos com alto valor agregado. A rea??o de desidrata??o de glicerol ? uma alternativa ? oxida??o parcial do propileno (derivado de material f?ssil) para a produ??o de acrole?na e ?cido acr?lico, que torna sustent?vel o desenvolvimento comercial da cadeia de valor do biodiesel. Dentre os materiais utilizados, a ze?lita ZSM-5 em sua forma ?cida e a s?lica mesoporosa SBA-15 com s?tios ?cidos s?o catalisadores ativos para a rea??o de desidrata??o do glicerol e seletivos para a produ??o da acrole?na. Dessa forma, o objetivo do presente trabalho foi sintetizar a ze?lita ZSM-5 com estrutura hier?rquica de poros por meio de tratamento alcalino de dessilica??o na presen?a de um surfactante e a s?lica mesoporosa AlSBA-15 pela da s?ntese direta utilizando diferentes raz?es Si/Al para utiliza??o na rea??o de desidrata??o do glicerol. As amostras foram caracterizadas por diferentes t?cnicas para elucidar a influ?ncia na rea??o. A estrutura cristalina das amostras de ZSM-5 foi confirmada por DRX e FTIR. Por DRX e adsor??o de N2 foi evidenciada a obten??o de s?lica com mesoporos altamente regulares, caracter?sticas da SBA-15. Para a ze?lita ZSM-5, mostrou alta ?rea espec?fica e a presen?a de micro e mesoporos. As amostras de AlSBA-15 apresentaram uma rela??o direta entre a raz?o Si/Al com a ?rea espec?fica e o volume de mesoporos, indicando que a presen?a de alum?nio afeta a estrutura do material. A partir dos dados de composi??o qu?mica, foi poss?vel estabelecer a raz?o Si/Al real das amostras e a acidez te?rica. As part?culas de ZSM-5 apresentaram formato esf?rico e cristais em forma de placa e a AlSBA-15 em formato cil?ndrico. A an?lise das propriedades f?sico-qu?micas das amostras sintetizadas indica que esses materiais s?o promissores para uma poss?vel aplica??o na rea??o de desidrata??o do glicerol.Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2023-04-12T17:07:44Z No. of bitstreams: 1 2021 - Izadora da Silva Santos.pdf: 3504671 bytes, checksum: d904b21a431aa53261bdbaab16fd5f37 (MD5)Made available in DSpace on 2023-04-12T17:07:44Z (GMT). No. of bitstreams: 1 2021 - Izadora da Silva Santos.pdf: 3504671 bytes, checksum: d904b21a431aa53261bdbaab16fd5f37 (MD5) Previous issue date: 2021-07-28CAPES - Coordena??o de Aperfei?oamento de Pessoal de N?vel Superiorapplication/pdfhttps://tede.ufrrj.br/retrieve/72922/2021%20-%20Izadora%20da%20Silva%20Santos.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Engenharia Qu?micaUFRRJBrasilInstituto de TecnologiaANITHA, M.; KAMARUDIN, S. K.; KOFLI, N. T. The potential of glycerol as a value-added commodity. Chemical Engineering Journal, v. 295, p. 119?130, 2016. ATKINS, P.; JONES, L. Princ?pios de Qu?mica: Questionando a vida moderna e o meio ambienteBookman, 2006. BEN, B. E. N. Relato?rio S?ntese: BEN 2020 - ano base 2019. p. 73, 2020. BHANGE, P.; BHANGE, D. S.; PRADHAN, S.; RAMASWAMY, V. Direct synthesis of well-ordered mesoporous Al-SBA-15 and its correlation with the catalytic activity. Applied Catalysis A: General, v. 400, n. 1?2, p. 176?184, 2011. CATUZO, G. L.; MARTINS, L. Estudo da desativa??o de ze?litas ZSM-5 na desidrata??o do glicerol. p. 5?10, 2014. CECILIA, J. A.; GARC?A-SANCHO, C.; M?RIDA-ROBLES, J. M.; SANTAMAR?A-GONZ?LEZ, J.; INFANTES-MOLINA, A.; MORENO-TOST, R.; MAIRELES-TORRES, P. Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, v. 83, n. 2, p. 342?354, 2017. CH. BAERLOCHER AND L.B. MCCUSKER. Database of Zeolite Structures. Dispon?vel em: <http://www.iza-structure.org/databases/>. CHIEREGATO, A.; SORIANO, M. D.; BASILE, F.; LIOSI, G.; ZAMORA, S.; CONCEPCI?N, P.; CAVANI, F.; L?PEZ NIETO, J. M. One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, v. 150?151, p. 37?46, 2014. CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, v. 82, n. 1?2, p. 1?78, 2005. CYCHOSZ, K. A.; THOMMES, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, v. 4, n. 4, p. 559?566, 2018. EPE. Analysis Of Biofuels? Current Outlook 2019. p. 79, 2020. GALADIMA, A.; MURAZA, O. A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, v. 67, p. 29?44, 2016. G?MEZ-CAZALILLA, M.; M?RIDA-ROBLES, J. M.; GURBANI, A.; RODR?GUEZ-CASTELL?N, E.; JIM?NEZ-L?PEZ, A. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica. Journal of Solid State Chemistry, v. 180, n. 3, p. 1130?1140, 2007. GONZALEZ-ARELLANO, C.; DE, S.; LUQUE, R. Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catalysis Science and Technology, v. 4, n. 12, p. 4242?4249, 2014. HE, Q. (SOPHIA); MCNUTT, J.; YANG, J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, v. 71, n. December 2016, p. 63?76, 2017. JIA, X.; KHAN, W.; WU, Z.; CHOI, J.; YIP, A. C. K. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, v. 30, n. 3, p. 467?484, 2019. JIANG, X. C.; ZHOU, C. H.; TESSER, R.; DI SERIO, M.; TONG, D. S.; ZHANG, J. R. Coking of Catalysts in Catalytic Glycerol Dehydration to Acrolein. Industrial and Engineering Chemistry Research, v. 57, n. 32, p. 10736?10753, 2018. JIN, L.; LIU, S.; XIE, T.; WANG, Y.; GUO, X.; HU, H. Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. Reaction Kinetics, Mechanisms and Catalysis, v. 113, n. 2, p. 575?584, 2014. KATRYNIOK, B.; PAUL, S.; BELLI?RE-BACA, V.; REY, P.; DUMEIGNIL, F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, v. 12, n. 12, p. 2079?2098, 2010. KATRYNIOK, B.; PAUL, S.; DUMEIGNIL, F. Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, v. 3, n. 8, p. 1819?1834, 2013. KLEINWORT, R.; KESSLER, H.; KLEINWORT, R.; PEREGO, G.; CARATI, A.; GOMARO, U.; FATORE, V.; GROBET, P. J.; MEYER, A. MFI High-Al ZSM-5. v. 24, n. 93, p. 7?8, 2019. KONG, P. S.; AROUA, M. K.; DAUD, W. M. A. W. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, v. 63, p. 533?555, 2016. LAGO, C. D.; DECOLATTI, H. P.; TONUTTI, L. G.; DALLA COSTA, B. O.; QUERINI, C. A. Gas phase glycerol dehydration over H-ZSM-5 zeolite modified by alkaline treatment with Na2CO3. Journal of Catalysis, v. 366, p. 16?27, 2018. LI, H.; FANG, Z.; SMITH, R. L.; YANG, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, v. 55, p. 98?194, 2016. LI, S.; LI, J.; DONG, M.; FAN, S.; ZHAO, T.; WANG, J.; FAN, W. Strategies to control zeolite particle morphology. Chemical Society Reviews, v. 48, n. 3, p. 885?907, 2019. LIN, S.; SHI, L.; RIBEIRO CARROTT, M. M. L.; CARROTT, P. J. M.; ROCHA, J.; LI, M. R.; ZOU, X. D. Direct synthesis without addition of acid of Al-SBA-15 with controllable porosity and high hydrothermal stability. Microporous and Mesoporous Materials, v. 142, n. 2?3, p. 526?534, 2011. LIU, H.; XIE, S.; XIN, W.; LIU, S.; XU, L. Hierarchical ZSM-11 zeolite prepared by alkaline treatment with mixed solution of NaOH and CTAB: Characterization and application for alkylation of benzene with dimethyl ether. Catalysis Science and Technology, v. 6, n. 5, p. 1328?1342, 2016. LOWELL, S; SHIELDS, J. E.; THOMAS, M. A.; THOMMES, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. [s.l.] Kluwer Academic Publishers, 2004. LUNA, F. J.; SCHUCHARDT, U. Modifica??o de ze?litas para uso em cat?lise. Quimica Nova, v. 24, n. 6, p. 885?892, 2001. MARTINUZZI, I.; AZIZI, Y.; ZAHRAA, O.; LECLERC, J. P. Deactivation study of a heteropolyacid catalyst for glycerol dehydration to form acrolein. Chemical Engineering Science, v. 134, p. 663?670, 2015. MCCUSKER, L. B.; OLSON, D. H.; BAERLOCHER, C. Atlas of Zeolite Framework Types. [s.l: s.n.]. MESA, M.; SIERRA, L.; GUTH, J. L. Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous and Mesoporous Materials, v. 112, n. 1?3, p. 338?350, 2008. MEYNEN, V.; COOL, P.; VANSANT, E. F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 125, n. 3, p. 170?223, 2009. MINER, C.; DALTON NN. Glycerine: An Overview. Chem Soc Monogr. 1953, v. 117, n. 212, p. 1?27, 1953. MOCHIZUKI, H.; YOKOI, T.; IMAI, H.; NAMBA, S.; KONDO, J. N.; TATSUMI, T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A: General, v. 449, p. 188?197, 2012. MONTEIRO, M. R.; KUGELMEIER, C. L.; PINHEIRO, R. S.; BATALHA, M. O.; DA SILVA C?SAR, A. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, v. 88, n. November 2016, p. 109?122, 2018. MOTA, C. J. A.; SILVA, C. X. A. D.; GON?ALVES, V. L. C. Glycerochemistry: New Products and Processes from Glycerin of Biodiesel Production. Quimica Nova, v. 32, n. 3, p. 639?648, 2009. NEVES, T. M.; FERNANDES, J. O.; LI?O, L. M.; DEISE DA SILVA, E.; AUGUSTO DA ROSA, C.; MORTOLA, V. B. Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Microporous and Mesoporous Materials, v. 275, n. May 2018, p. 244?252, 2019. OGURA, M.; SHINOMIYA, S. Y.; TATENO, J.; NARA, Y.; NOMURA, M.; KIKUCHI, E.; MATSUKATA, M. Alkali-treatment technique - New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, v. 219, n. 1?2, p. 33?43, 2001. OPANASENKO, M. Zeolite constructor kit: Design for catalytic applications. Catalysis Today, v. 304, n. July 2017, p. 2?11, 2018. OTT, L.; BICKER, M.; VOGEL, H. Catalytic dehydration of glycerol in sub- and supercritical water: A new chemical process for acrolein production. Green Chemistry, v. 8, n. 2, p. 214?220, 2006. PENG, P.; WANG, Y.; ZHANG, Z.; QIAO, K.; LIU, X.; YAN, Z.; SUBHAN, F.; KOMARNENI, S. ZSM-5-based mesostructures by combined alkali dissolution and re-assembly: Process controlling and scale-up. Chemical Engineering Journal, v. 302, p. 323?333, 2016. PEREGO, G. Characterization of heterogeneous catalysts by X-ray diffraction techniques. Catalysis Today, v. 41, p. 251?259, 1998. POSSATO, L. G.; CHAVES, T. F.; CASSINELLI, W. H.; PULCINELLI, S. H.; SANTILLI, C. V.; MARTINS, L. The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, v. 289, p. 20?28, 2017. PRASOMSRI, T.; JIAO, W.; WENG, S. Z.; GARCIA MARTINEZ, J. Mesostructured zeolites: Bridging the gap between zeolites and MCM-41. Chemical Communications, v. 51, n. 43, p. 8900?8911, 2015. QUISPE, C. A. G.; CORONADO, C. J. R.; CARVALHO, J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, v. 27, p. 475?493, 2013. ROUQUEROLT, J; AVNIR, D; FAIRBRIDGE, C W; EVERETT, D.H ; HAYNES, J H; PERNICONE, N; RAMSAY, J D F; UNGER, K. S. W. SING; UNGER, K. K. Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, v. 66, n. 8, p. 1739?1758, 1994. SACHSE, A.; GRAU-ATIENZA, A.; JARDIM, E. O.; LINARES, N.; THOMMES, M.; GARC?A-MART?NEZ, J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Crystal Growth and Design, v. 17, n. 8, p. 4289?4305, 2017. SADOWSKA, K.; WACH, A.; OLEJNICZAK, Z.; KU?TROWSKI, P.; DATKA, J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, v. 167, p. 82?88, 2013. SCHMIDT, F.; LOHE, M. R.; B?CHNER, B.; GIORDANINO, F.; BONINO, F.; KASKEL, S. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, v. 165, p. 148?157, 2013. SHAH, M.; DAI, J. J.; GUO, Q. X.; FU, Y. Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: A comprehensive review. Science China Chemistry, v. 58, n. 7, p. 1110?1121, 2015. SHAO, J.; FU, T.; MA, Q.; MA, Z.; ZHANG, C.; LI, Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, v. 273, n. June 2018, p. 122?132, 2019. SHI, L.; XU, Y.; ZHANG, N.; LIN, S.; LI, X.; GUO, P.; LI, X. Direct synthesis of Al-SBA-15 containing aluminosilicate species plugs in an acid-free medium and structural adjustment by hydrothermal post-treatment. Journal of Solid State Chemistry, v. 203, p. 281?290, 2013. SILAGHI, M. C.; CHIZALLET, C.; RAYBAUD, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials, v. 191, p. 82?96, 2014. SILVESTRE-ALBERO, A.; GRAU-ATIENZA, A.; SERRANO, E.; GARC?A-MART?NEZ, J.; SILVESTRE-ALBERO, J. Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catalysis Communications, v. 44, p. 35?39, 2014. SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. A.; ROUQUEROL, J.; SIEMIENIEWSKA, T. REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, v. 57, n. 4, p. 603?619, 1985. SINGH, S.; KUMAR, R.; SETIABUDI, H. D.; NANDA, S.; VO, D. V. N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Applied Catalysis A: General, v. 559, n. April, p. 57?74, 2018. SOCCI, J.; OSATIASHTIANI, A.; KYRIAKOU, G.; BRIDGWATER, T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A: General, v. 570, n. November 2018, p. 218?227, 2019. SU?REZ, N.; P?REZ-PARIENTE, J.; MONDRAG?N, F.; MORENO, A. Generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions. Microporous and Mesoporous Materials, v. 280, n. January, p. 144?150, 2019. SUDARSANAM, P.; ZHONG, R.; VAN DEN BOSCH, S.; COMAN, S. M.; PARVULESCU, V. I.; SELS, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, v. 47, n. 22, p. 8349?8402, 2018. SVELLE, S.; SOMMER, L.; BARBERA, K.; VENNESTR?M, P. N. R.; OLSBYE, U.; LILLERUD, K. P.; BORDIGA, S.; PAN, Y. H.; BEATO, P. How defects and crystal morphology control the effects of desilication. Catalysis Today, v. 168, n. 1, p. 38?47, 2011. SZCZODROWSKI, K.; PR?LOT, B.; LANTENOIS, S.; DOUILLARD, J. M.; ZAJAC, J. Effect of heteroatom doping on surface acidity and hydrophilicity of Al, Ti, Zr-doped mesoporous SBA-15. Microporous and Mesoporous Materials, v. 124, n. 1?3, p. 84?93, 2009. TALEBIAN-KIAKALAIEH, A.; AMIN, N. A. S.; HEZAVEH, H. Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, v. 40, p. 28?59, 2014. TAN, H. W.; ABDUL AZIZ, A. R.; AROUA, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, v. 27, p. 118?127, 2013. THOMMES, M. Chapter 15 Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. [s.l.] Elsevier B.V., 2007. v. 168 TREACY, M. M. J.; HIGGINS, J. B. Collection of Simulated XRD Powder Patterns for Zeolites. [s.l.] Elsevier, 2007. TSUKUDA, E.; SATO, S.; TAKAHASHI, R.; SODESAWA, T. Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communications, v. 8, n. 9, p. 1349?1353, 2007. UMPIERRE, A. P.; MACHADO, F. Glycerochemistry and glycerol valorization. Revista Virtual de Quimica, v. 5, n. 1, p. 106?116, 2013. VELUTURLA, S.; ARCHNA, N.; SUBBA RAO, D.; HEZIL, N.; INDRAJA, I. S.; SPOORTHI, S. Catalytic valorization of raw glycerol derived from biodiesel: a review. Biofuels, v. 9, n. 3, p. 305?314, 2018. WANG, Y.; SONG, J.; BAXTER, N. C.; KUO, G. T.; WANG, S. Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. Journal of Catalysis, v. 349, p. 53?65, 2017. WRIGHT, P. A.; LOZINSKA, M. Zeolites and Ordered Porous Solids: Fundamentals and Applications. [s.l: s.n.]. XING, S.; LV, P.; FU, J.; WANG, J.; FAN, P.; YANG, L.; YUAN, Z. Direct synthesis and characterization of pore-broadened Al-SBA-15. Microporous and Mesoporous Materials, v. 239, p. 316?327, 2017. YANG, R. T. Zeolites and Molecular Sieves. Adsorbents: Fundamentals and Applications, v. 1862, p. 157?190, 2003. YARIPOUR, F.; SHARIATINIA, Z.; SAHEBDELFAR, S.; IRANDOUKHT, A. Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. Journal of Natural Gas Science and Engineering, v. 22, p. 260?269, 2015. YOO, W. C.; ZHANG, X.; TSAPATSIS, M.; STEIN, A. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, v. 149, n. 1, p. 147?157, 2012. YU, D. K.; FU, M. L.; YUAN, Y. H.; SONG, Y. B.; CHEN, J. Y.; FANG, Y. W. One-step synthesis of hierarchical-structured ZSM-5 zeolite. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, v. 44, n. 11, p. 1363?1369, 2016. ZHANG, J.; LI, X.; LIU, J.; WANG, C. A comparative study of MFI zeolite derived from different silica sources: Synthesis, characterization and catalytic performance. Catalysts, v. 9, n. 1, 2019. ZHANG, K.; OSTRAAT, M. L. Innovations in hierarchical zeolite synthesis. Catalysis Today, v. 264, p. 3?15, 2016. ZHENG, X.; DONG, B.; YUAN, C.; ZHANG, K.; WANG, X. Direct synthesis, characterization and catalytic performance of Al-SBA-15 mesoporous catalysts with varying Si/Al molar ratios. Journal of Porous Materials, v. 20, n. 3, p. 539?546, 2013. ZONES, S. I.; YUEN, L. T. Verified Syntheses of Zeolitic Materials. [s.l: s.n.]. ZOU, B.; REN, S.; YE, X. P. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium. ChemSusChem, v. 9, n. 23, p. 3268?3271, 2016. ZOUBIDA, L.; HICHEM, B. The Nanostructure Zeolites MFI-Type ZSM5. In: Nanocrystals and Nanostructures. [s.l.] InTech, 2018. v. 32p. 137?144.Desidrata??o do glicerolZSM-5Al-SBA-15dessilica??ocatalisadores mesoposorosDehydration of glyceroldesilicationmesoporous catalystsEngenharia Qu?micaEstudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerolStudy of mesoporous catalysts for use in the glycerol dehydration reactioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Izadora da Silva Santos.pdf.jpg2021 - Izadora da Silva Santos.pdf.jpgimage/jpeg1943http://localhost:8080/tede/bitstream/jspui/6510/4/2021+-+Izadora+da+Silva+Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD54TEXT2021 - Izadora da Silva Santos.pdf.txt2021 - Izadora da Silva Santos.pdf.txttext/plain144559http://localhost:8080/tede/bitstream/jspui/6510/3/2021+-+Izadora+da+Silva+Santos.pdf.txtf852efda0e5c2affc3eed7fafd624c63MD53ORIGINAL2021 - Izadora da Silva Santos.pdf2021 - Izadora da Silva Santos.pdfapplication/pdf3504671http://localhost:8080/tede/bitstream/jspui/6510/2/2021+-+Izadora+da+Silva+Santos.pdfd904b21a431aa53261bdbaab16fd5f37MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/6510/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/65102023-04-13 01:00:43.084oai:localhost:jspui/6510Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-04-13T04:00:43Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
dc.title.alternative.eng.fl_str_mv Study of mesoporous catalysts for use in the glycerol dehydration reaction
title Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
spellingShingle Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
Santos, Izadora da Silva
Desidrata??o do glicerol
ZSM-5
Al-SBA-15
dessilica??o
catalisadores mesoposoros
Dehydration of glycerol
desilication
mesoporous catalysts
Engenharia Qu?mica
title_short Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
title_full Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
title_fullStr Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
title_full_unstemmed Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
title_sort Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol
author Santos, Izadora da Silva
author_facet Santos, Izadora da Silva
author_role author
dc.contributor.advisor1.fl_str_mv Fernandes, Lindoval Domiciano
dc.contributor.advisor1ID.fl_str_mv 837.359.257-15
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7921814684730923
dc.contributor.referee1.fl_str_mv Fernandes, Lindoval Domiciano
dc.contributor.referee2.fl_str_mv Arroyo, Pedro Augusto
dc.contributor.referee3.fl_str_mv Machado Junior, H?lio Fernandes
dc.contributor.authorID.fl_str_mv 385.854.508-27
https://orcid.org/0000-0002-5556-5020
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5778858249864254
dc.contributor.author.fl_str_mv Santos, Izadora da Silva
contributor_str_mv Fernandes, Lindoval Domiciano
Fernandes, Lindoval Domiciano
Arroyo, Pedro Augusto
Machado Junior, H?lio Fernandes
dc.subject.por.fl_str_mv Desidrata??o do glicerol
ZSM-5
Al-SBA-15
dessilica??o
catalisadores mesoposoros
topic Desidrata??o do glicerol
ZSM-5
Al-SBA-15
dessilica??o
catalisadores mesoposoros
Dehydration of glycerol
desilication
mesoporous catalysts
Engenharia Qu?mica
dc.subject.eng.fl_str_mv Dehydration of glycerol
desilication
mesoporous catalysts
dc.subject.cnpq.fl_str_mv Engenharia Qu?mica
description The reaction of transesterification of oils and fats for biodiesel production generates glycerol as its main by-product, a low-cost and viable raw material for conversion into products with high added value. The glycerol dehydration reaction is an alternative to the partial oxidation of propylene (derived from fossil material) for the production of acrolein and acrylic acid, which makes the commercial development of the biodiesel value chain sustainable. Among the materials used, ZSM-5 zeolite in its acid form and SBA-15 mesoporous silica with natural sites are active catalysts for the glycerol dehydration reaction and selective for the production of acrolein. Thus, the objective of the present work was to synthesize the ZSM-5 zeolite with hierarchical pore structure through the alkaline treatment of desilication in the presence of a surfactant and the mesoporous silica Al-SBA-15 through the direct using different Si/Al to ratios use in the glycerol dehydration reaction. How they were characterized by different techniques to elucidate the influence on the reaction. A crystal structure of the ZSM-5 was confirmed by DRX and FTIR. By XRD and adsorption of N2, it was evidenced the obtainment of silica with highly regular mesopores, characteristic of SBA-15. For ZSM-5 zeolite, highlighted specific area and presence of micro and mesopores. The Al-SBA-15 Al-SBA-15 direct a direct relationship between the Si/Al ratio with a specific area and the volume of mesopores, indicating that the presence of aluminum affects the structure of the material. Through the chemical composition data, it was possible to establish a real Si/Al ratio and the theoretical acidity. ZSM-5 particles are spherical and crystals in plate shape and Al-SBA-15 in a cylindrical shape. The analysis of the physicochemical properties of the synthesized samples indicates that these materials are promising for a possible application in the glycerol dehydration reaction.
publishDate 2021
dc.date.issued.fl_str_mv 2021-07-28
dc.date.accessioned.fl_str_mv 2023-04-12T17:07:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Izadora da Silva. Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol. 2021. 100 f. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2021.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/6510
identifier_str_mv SANTOS, Izadora da Silva. Estudo de catalisadores mesoporosos visando uso na rea??o de desidrata??o do glicerol. 2021. 100 f. Disserta??o (Mestrado em Engenharia Qu?mica) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Serop?dica, RJ, 2021.
url https://tede.ufrrj.br/jspui/handle/jspui/6510
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ANITHA, M.; KAMARUDIN, S. K.; KOFLI, N. T. The potential of glycerol as a value-added commodity. Chemical Engineering Journal, v. 295, p. 119?130, 2016. ATKINS, P.; JONES, L. Princ?pios de Qu?mica: Questionando a vida moderna e o meio ambienteBookman, 2006. BEN, B. E. N. Relato?rio S?ntese: BEN 2020 - ano base 2019. p. 73, 2020. BHANGE, P.; BHANGE, D. S.; PRADHAN, S.; RAMASWAMY, V. Direct synthesis of well-ordered mesoporous Al-SBA-15 and its correlation with the catalytic activity. Applied Catalysis A: General, v. 400, n. 1?2, p. 176?184, 2011. CATUZO, G. L.; MARTINS, L. Estudo da desativa??o de ze?litas ZSM-5 na desidrata??o do glicerol. p. 5?10, 2014. CECILIA, J. A.; GARC?A-SANCHO, C.; M?RIDA-ROBLES, J. M.; SANTAMAR?A-GONZ?LEZ, J.; INFANTES-MOLINA, A.; MORENO-TOST, R.; MAIRELES-TORRES, P. Aluminum doped mesoporous silica SBA-15 for glycerol dehydration to value-added chemicals. Journal of Sol-Gel Science and Technology, v. 83, n. 2, p. 342?354, 2017. CH. BAERLOCHER AND L.B. MCCUSKER. Database of Zeolite Structures. Dispon?vel em: <http://www.iza-structure.org/databases/>. CHIEREGATO, A.; SORIANO, M. D.; BASILE, F.; LIOSI, G.; ZAMORA, S.; CONCEPCI?N, P.; CAVANI, F.; L?PEZ NIETO, J. M. One-pot glycerol oxidehydration to acrylic acid on multifunctional catalysts: Focus on the influence of the reaction parameters in respect to the catalytic performance. Applied Catalysis B: Environmental, v. 150?151, p. 37?46, 2014. CUNDY, C. S.; COX, P. A. The hydrothermal synthesis of zeolites: Precursors, intermediates and reaction mechanism. Microporous and Mesoporous Materials, v. 82, n. 1?2, p. 1?78, 2005. CYCHOSZ, K. A.; THOMMES, M. Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials. Engineering, v. 4, n. 4, p. 559?566, 2018. EPE. Analysis Of Biofuels? Current Outlook 2019. p. 79, 2020. GALADIMA, A.; MURAZA, O. A review on glycerol valorization to acrolein over solid acid catalysts. Journal of the Taiwan Institute of Chemical Engineers, v. 67, p. 29?44, 2016. G?MEZ-CAZALILLA, M.; M?RIDA-ROBLES, J. M.; GURBANI, A.; RODR?GUEZ-CASTELL?N, E.; JIM?NEZ-L?PEZ, A. Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica. Journal of Solid State Chemistry, v. 180, n. 3, p. 1130?1140, 2007. GONZALEZ-ARELLANO, C.; DE, S.; LUQUE, R. Selective glycerol transformations to high value-added products catalysed by aluminosilicate-supported iron oxide nanoparticles. Catalysis Science and Technology, v. 4, n. 12, p. 4242?4249, 2014. HE, Q. (SOPHIA); MCNUTT, J.; YANG, J. Utilization of the residual glycerol from biodiesel production for renewable energy generation. Renewable and Sustainable Energy Reviews, v. 71, n. December 2016, p. 63?76, 2017. JIA, X.; KHAN, W.; WU, Z.; CHOI, J.; YIP, A. C. K. Modern synthesis strategies for hierarchical zeolites: Bottom-up versus top-down strategies. Advanced Powder Technology, v. 30, n. 3, p. 467?484, 2019. JIANG, X. C.; ZHOU, C. H.; TESSER, R.; DI SERIO, M.; TONG, D. S.; ZHANG, J. R. Coking of Catalysts in Catalytic Glycerol Dehydration to Acrolein. Industrial and Engineering Chemistry Research, v. 57, n. 32, p. 10736?10753, 2018. JIN, L.; LIU, S.; XIE, T.; WANG, Y.; GUO, X.; HU, H. Synthesis of hierarchical ZSM-5 by cetyltrimethylammonium bromide assisted self-assembly of zeolite seeds and its catalytic performances. Reaction Kinetics, Mechanisms and Catalysis, v. 113, n. 2, p. 575?584, 2014. KATRYNIOK, B.; PAUL, S.; BELLI?RE-BACA, V.; REY, P.; DUMEIGNIL, F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry, v. 12, n. 12, p. 2079?2098, 2010. KATRYNIOK, B.; PAUL, S.; DUMEIGNIL, F. Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, v. 3, n. 8, p. 1819?1834, 2013. KLEINWORT, R.; KESSLER, H.; KLEINWORT, R.; PEREGO, G.; CARATI, A.; GOMARO, U.; FATORE, V.; GROBET, P. J.; MEYER, A. MFI High-Al ZSM-5. v. 24, n. 93, p. 7?8, 2019. KONG, P. S.; AROUA, M. K.; DAUD, W. M. A. W. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renewable and Sustainable Energy Reviews, v. 63, p. 533?555, 2016. LAGO, C. D.; DECOLATTI, H. P.; TONUTTI, L. G.; DALLA COSTA, B. O.; QUERINI, C. A. Gas phase glycerol dehydration over H-ZSM-5 zeolite modified by alkaline treatment with Na2CO3. Journal of Catalysis, v. 366, p. 16?27, 2018. LI, H.; FANG, Z.; SMITH, R. L.; YANG, S. Efficient valorization of biomass to biofuels with bifunctional solid catalytic materials. Progress in Energy and Combustion Science, v. 55, p. 98?194, 2016. LI, S.; LI, J.; DONG, M.; FAN, S.; ZHAO, T.; WANG, J.; FAN, W. Strategies to control zeolite particle morphology. Chemical Society Reviews, v. 48, n. 3, p. 885?907, 2019. LIN, S.; SHI, L.; RIBEIRO CARROTT, M. M. L.; CARROTT, P. J. M.; ROCHA, J.; LI, M. R.; ZOU, X. D. Direct synthesis without addition of acid of Al-SBA-15 with controllable porosity and high hydrothermal stability. Microporous and Mesoporous Materials, v. 142, n. 2?3, p. 526?534, 2011. LIU, H.; XIE, S.; XIN, W.; LIU, S.; XU, L. Hierarchical ZSM-11 zeolite prepared by alkaline treatment with mixed solution of NaOH and CTAB: Characterization and application for alkylation of benzene with dimethyl ether. Catalysis Science and Technology, v. 6, n. 5, p. 1328?1342, 2016. LOWELL, S; SHIELDS, J. E.; THOMAS, M. A.; THOMMES, M. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. [s.l.] Kluwer Academic Publishers, 2004. LUNA, F. J.; SCHUCHARDT, U. Modifica??o de ze?litas para uso em cat?lise. Quimica Nova, v. 24, n. 6, p. 885?892, 2001. MARTINUZZI, I.; AZIZI, Y.; ZAHRAA, O.; LECLERC, J. P. Deactivation study of a heteropolyacid catalyst for glycerol dehydration to form acrolein. Chemical Engineering Science, v. 134, p. 663?670, 2015. MCCUSKER, L. B.; OLSON, D. H.; BAERLOCHER, C. Atlas of Zeolite Framework Types. [s.l: s.n.]. MESA, M.; SIERRA, L.; GUTH, J. L. Contribution to the study of the formation mechanism of mesoporous SBA-15 and SBA-16 type silica particles in aqueous acid solutions. Microporous and Mesoporous Materials, v. 112, n. 1?3, p. 338?350, 2008. MEYNEN, V.; COOL, P.; VANSANT, E. F. Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, v. 125, n. 3, p. 170?223, 2009. MINER, C.; DALTON NN. Glycerine: An Overview. Chem Soc Monogr. 1953, v. 117, n. 212, p. 1?27, 1953. MOCHIZUKI, H.; YOKOI, T.; IMAI, H.; NAMBA, S.; KONDO, J. N.; TATSUMI, T. Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking. Applied Catalysis A: General, v. 449, p. 188?197, 2012. MONTEIRO, M. R.; KUGELMEIER, C. L.; PINHEIRO, R. S.; BATALHA, M. O.; DA SILVA C?SAR, A. Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, v. 88, n. November 2016, p. 109?122, 2018. MOTA, C. J. A.; SILVA, C. X. A. D.; GON?ALVES, V. L. C. Glycerochemistry: New Products and Processes from Glycerin of Biodiesel Production. Quimica Nova, v. 32, n. 3, p. 639?648, 2009. NEVES, T. M.; FERNANDES, J. O.; LI?O, L. M.; DEISE DA SILVA, E.; AUGUSTO DA ROSA, C.; MORTOLA, V. B. Glycerol dehydration over micro- and mesoporous ZSM-5 synthesized from a one-step method. Microporous and Mesoporous Materials, v. 275, n. May 2018, p. 244?252, 2019. OGURA, M.; SHINOMIYA, S. Y.; TATENO, J.; NARA, Y.; NOMURA, M.; KIKUCHI, E.; MATSUKATA, M. Alkali-treatment technique - New method for modification of structural and acid-catalytic properties of ZSM-5 zeolites. Applied Catalysis A: General, v. 219, n. 1?2, p. 33?43, 2001. OPANASENKO, M. Zeolite constructor kit: Design for catalytic applications. Catalysis Today, v. 304, n. July 2017, p. 2?11, 2018. OTT, L.; BICKER, M.; VOGEL, H. Catalytic dehydration of glycerol in sub- and supercritical water: A new chemical process for acrolein production. Green Chemistry, v. 8, n. 2, p. 214?220, 2006. PENG, P.; WANG, Y.; ZHANG, Z.; QIAO, K.; LIU, X.; YAN, Z.; SUBHAN, F.; KOMARNENI, S. ZSM-5-based mesostructures by combined alkali dissolution and re-assembly: Process controlling and scale-up. Chemical Engineering Journal, v. 302, p. 323?333, 2016. PEREGO, G. Characterization of heterogeneous catalysts by X-ray diffraction techniques. Catalysis Today, v. 41, p. 251?259, 1998. POSSATO, L. G.; CHAVES, T. F.; CASSINELLI, W. H.; PULCINELLI, S. H.; SANTILLI, C. V.; MARTINS, L. The multiple benefits of glycerol conversion to acrolein and acrylic acid catalyzed by vanadium oxides supported on micro-mesoporous MFI zeolites. Catalysis Today, v. 289, p. 20?28, 2017. PRASOMSRI, T.; JIAO, W.; WENG, S. Z.; GARCIA MARTINEZ, J. Mesostructured zeolites: Bridging the gap between zeolites and MCM-41. Chemical Communications, v. 51, n. 43, p. 8900?8911, 2015. QUISPE, C. A. G.; CORONADO, C. J. R.; CARVALHO, J. A. Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, v. 27, p. 475?493, 2013. ROUQUEROLT, J; AVNIR, D; FAIRBRIDGE, C W; EVERETT, D.H ; HAYNES, J H; PERNICONE, N; RAMSAY, J D F; UNGER, K. S. W. SING; UNGER, K. K. Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, v. 66, n. 8, p. 1739?1758, 1994. SACHSE, A.; GRAU-ATIENZA, A.; JARDIM, E. O.; LINARES, N.; THOMMES, M.; GARC?A-MART?NEZ, J. Development of Intracrystalline Mesoporosity in Zeolites through Surfactant-Templating. Crystal Growth and Design, v. 17, n. 8, p. 4289?4305, 2017. SADOWSKA, K.; WACH, A.; OLEJNICZAK, Z.; KU?TROWSKI, P.; DATKA, J. Hierarchic zeolites: Zeolite ZSM-5 desilicated with NaOH and NaOH/tetrabutylamine hydroxide. Microporous and Mesoporous Materials, v. 167, p. 82?88, 2013. SCHMIDT, F.; LOHE, M. R.; B?CHNER, B.; GIORDANINO, F.; BONINO, F.; KASKEL, S. Improved catalytic performance of hierarchical ZSM-5 synthesized by desilication with surfactants. Microporous and Mesoporous Materials, v. 165, p. 148?157, 2013. SHAH, M.; DAI, J. J.; GUO, Q. X.; FU, Y. Products and production routes for the catalytic conversion of seed oil into fuel and chemicals: A comprehensive review. Science China Chemistry, v. 58, n. 7, p. 1110?1121, 2015. SHAO, J.; FU, T.; MA, Q.; MA, Z.; ZHANG, C.; LI, Z. Controllable synthesis of nano-ZSM-5 catalysts with large amount and high strength of acid sites for conversion of methanol to hydrocarbons. Microporous and Mesoporous Materials, v. 273, n. June 2018, p. 122?132, 2019. SHI, L.; XU, Y.; ZHANG, N.; LIN, S.; LI, X.; GUO, P.; LI, X. Direct synthesis of Al-SBA-15 containing aluminosilicate species plugs in an acid-free medium and structural adjustment by hydrothermal post-treatment. Journal of Solid State Chemistry, v. 203, p. 281?290, 2013. SILAGHI, M. C.; CHIZALLET, C.; RAYBAUD, P. Challenges on molecular aspects of dealumination and desilication of zeolites. Microporous and Mesoporous Materials, v. 191, p. 82?96, 2014. SILVESTRE-ALBERO, A.; GRAU-ATIENZA, A.; SERRANO, E.; GARC?A-MART?NEZ, J.; SILVESTRE-ALBERO, J. Desilication of TS-1 zeolite for the oxidation of bulky molecules. Catalysis Communications, v. 44, p. 35?39, 2014. SING, K. S. W.; EVERETT, D. H.; HAUL, R. A. W.; MOSCOU, L.; PIEROTTI, R. A.; ROUQUEROL, J.; SIEMIENIEWSKA, T. REPORTING PHYSISORPTION DATA FOR GAS / SOLID SYSTEMS with Special Reference to the Determination of Surface Area and Porosity. Pure and Applied Chemistry, v. 57, n. 4, p. 603?619, 1985. SINGH, S.; KUMAR, R.; SETIABUDI, H. D.; NANDA, S.; VO, D. V. N. Advanced synthesis strategies of mesoporous SBA-15 supported catalysts for catalytic reforming applications: A state-of-the-art review. Applied Catalysis A: General, v. 559, n. April, p. 57?74, 2018. SOCCI, J.; OSATIASHTIANI, A.; KYRIAKOU, G.; BRIDGWATER, T. The catalytic cracking of sterically challenging plastic feedstocks over high acid density Al-SBA-15 catalysts. Applied Catalysis A: General, v. 570, n. November 2018, p. 218?227, 2019. SU?REZ, N.; P?REZ-PARIENTE, J.; MONDRAG?N, F.; MORENO, A. Generation of hierarchical porosity in beta zeolite by post-synthesis treatment with the cetyltrimethylammonium cationic surfactant under alkaline conditions. Microporous and Mesoporous Materials, v. 280, n. January, p. 144?150, 2019. SUDARSANAM, P.; ZHONG, R.; VAN DEN BOSCH, S.; COMAN, S. M.; PARVULESCU, V. I.; SELS, B. F. Functionalised heterogeneous catalysts for sustainable biomass valorisation. Chemical Society Reviews, v. 47, n. 22, p. 8349?8402, 2018. SVELLE, S.; SOMMER, L.; BARBERA, K.; VENNESTR?M, P. N. R.; OLSBYE, U.; LILLERUD, K. P.; BORDIGA, S.; PAN, Y. H.; BEATO, P. How defects and crystal morphology control the effects of desilication. Catalysis Today, v. 168, n. 1, p. 38?47, 2011. SZCZODROWSKI, K.; PR?LOT, B.; LANTENOIS, S.; DOUILLARD, J. M.; ZAJAC, J. Effect of heteroatom doping on surface acidity and hydrophilicity of Al, Ti, Zr-doped mesoporous SBA-15. Microporous and Mesoporous Materials, v. 124, n. 1?3, p. 84?93, 2009. TALEBIAN-KIAKALAIEH, A.; AMIN, N. A. S.; HEZAVEH, H. Glycerol for renewable acrolein production by catalytic dehydration. Renewable and Sustainable Energy Reviews, v. 40, p. 28?59, 2014. TAN, H. W.; ABDUL AZIZ, A. R.; AROUA, M. K. Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, v. 27, p. 118?127, 2013. THOMMES, M. Chapter 15 Textural characterization of zeolites and ordered mesoporous materials by physical adsorption. [s.l.] Elsevier B.V., 2007. v. 168 TREACY, M. M. J.; HIGGINS, J. B. Collection of Simulated XRD Powder Patterns for Zeolites. [s.l.] Elsevier, 2007. TSUKUDA, E.; SATO, S.; TAKAHASHI, R.; SODESAWA, T. Production of acrolein from glycerol over silica-supported heteropoly acids. Catalysis Communications, v. 8, n. 9, p. 1349?1353, 2007. UMPIERRE, A. P.; MACHADO, F. Glycerochemistry and glycerol valorization. Revista Virtual de Quimica, v. 5, n. 1, p. 106?116, 2013. VELUTURLA, S.; ARCHNA, N.; SUBBA RAO, D.; HEZIL, N.; INDRAJA, I. S.; SPOORTHI, S. Catalytic valorization of raw glycerol derived from biodiesel: a review. Biofuels, v. 9, n. 3, p. 305?314, 2018. WANG, Y.; SONG, J.; BAXTER, N. C.; KUO, G. T.; WANG, S. Synthesis of hierarchical ZSM-5 zeolites by solid-state crystallization and their catalytic properties. Journal of Catalysis, v. 349, p. 53?65, 2017. WRIGHT, P. A.; LOZINSKA, M. Zeolites and Ordered Porous Solids: Fundamentals and Applications. [s.l: s.n.]. XING, S.; LV, P.; FU, J.; WANG, J.; FAN, P.; YANG, L.; YUAN, Z. Direct synthesis and characterization of pore-broadened Al-SBA-15. Microporous and Mesoporous Materials, v. 239, p. 316?327, 2017. YANG, R. T. Zeolites and Molecular Sieves. Adsorbents: Fundamentals and Applications, v. 1862, p. 157?190, 2003. YARIPOUR, F.; SHARIATINIA, Z.; SAHEBDELFAR, S.; IRANDOUKHT, A. Conventional hydrothermal synthesis of nanostructured H-ZSM-5 catalysts using various templates for light olefins production from methanol. Journal of Natural Gas Science and Engineering, v. 22, p. 260?269, 2015. YOO, W. C.; ZHANG, X.; TSAPATSIS, M.; STEIN, A. Synthesis of mesoporous ZSM-5 zeolites through desilication and re-assembly processes. Microporous and Mesoporous Materials, v. 149, n. 1, p. 147?157, 2012. YU, D. K.; FU, M. L.; YUAN, Y. H.; SONG, Y. B.; CHEN, J. Y.; FANG, Y. W. One-step synthesis of hierarchical-structured ZSM-5 zeolite. Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, v. 44, n. 11, p. 1363?1369, 2016. ZHANG, J.; LI, X.; LIU, J.; WANG, C. A comparative study of MFI zeolite derived from different silica sources: Synthesis, characterization and catalytic performance. Catalysts, v. 9, n. 1, 2019. ZHANG, K.; OSTRAAT, M. L. Innovations in hierarchical zeolite synthesis. Catalysis Today, v. 264, p. 3?15, 2016. ZHENG, X.; DONG, B.; YUAN, C.; ZHANG, K.; WANG, X. Direct synthesis, characterization and catalytic performance of Al-SBA-15 mesoporous catalysts with varying Si/Al molar ratios. Journal of Porous Materials, v. 20, n. 3, p. 539?546, 2013. ZONES, S. I.; YUEN, L. T. Verified Syntheses of Zeolitic Materials. [s.l: s.n.]. ZOU, B.; REN, S.; YE, X. P. Glycerol Dehydration to Acrolein Catalyzed by ZSM-5 Zeolite in Supercritical Carbon Dioxide Medium. ChemSusChem, v. 9, n. 23, p. 3268?3271, 2016. ZOUBIDA, L.; HICHEM, B. The Nanostructure Zeolites MFI-Type ZSM5. In: Nanocrystals and Nanostructures. [s.l.] InTech, 2018. v. 32p. 137?144.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Engenharia Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/6510/4/2021+-+Izadora+da+Silva+Santos.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/6510/3/2021+-+Izadora+da+Silva+Santos.pdf.txt
http://localhost:8080/tede/bitstream/jspui/6510/2/2021+-+Izadora+da+Silva+Santos.pdf
http://localhost:8080/tede/bitstream/jspui/6510/1/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
f852efda0e5c2affc3eed7fafd624c63
d904b21a431aa53261bdbaab16fd5f37
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1800313569797996544