Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede

Detalhes bibliográficos
Autor(a) principal: Guena, Aline Cortines de Almeida
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/11006
Resumo: A microencapsulação é utilizada no setor alimentício para a proteção de compostos bioativos suscetíveis à degradação durante o processamento, como o ácido ascórbico, que é uma vitamina com propriedades antioxidantes, mas altamente instável. Biopolímeros vem sendo empregados como materiais de revestimento devido a sua influência na formação e estabilização de microcápsulas através da técnica de coacervação complexa. A microencapsulação do ácido ascórbico o protege, possibilitando a sua aplicação em novos alimentos e prevenindo alterações sensoriais indesejáveis no produto aplicado. O objetivo deste trabalho foi a produção de microcápsulas de ácido ascórbico formadas por emulsificação dupla seguida de coacervação complexa da goma xantana com duas proteínas diferentes: lactoferrina ou gelatina tipo A. Os complexos coacervados tiveram sua formação avaliada em relação ao pH e à razão dos biopolímeros por potencial zeta e turbidimetria. Os coacervados formados entre a proteína e o polissacarídeo na proporção de 6 : 1 em pH 5,0 para o sistema contendo lactoferrina e na proporção de 2 : 1 em pH 4,0 para o sistema com gelatina, foram os que apresentaram os melhores rendimentos, assim, foram aplicados para a microencapsulação usando diferentes proporções de núcleo e material de parede. Foi feita a caracterização morfológica, de estabilidade e térmica, por TGA e DSC, das microcápsulas contendo 75% de núcleo em relação à concentração de biopolímeros no material de parede formado pelo complexo coacervado entre a goma xantana e proteínas, as quais apresentaram as melhores eficiências de encapsulação neste estudo, de 83,19 ± 0,37 % para a lactoferrina e 73,60 ± 0,71%, para a gelatina. Embora uma maior eficiência de encapsulação tenha sido obtida pelo sistema contendo a lactoferrina, o melhor desempenho geral do estudo foi alcançado pelas microcápsulas contendo gelatina, que apresentaram melhor estabilidade e propriedades térmicas, proporcionando uma melhor proteção do ácido ascórbico durante pelo menos 30 dias, mantidas em temperatura ambiente. Em ambos os sistemas de microcápsulas avaliados, houve aumento da estabilidade térmica, em comparação ao ácido ascórbico não encapsulado, através da coacervação complexa entre os biopolímeros, o que possibilitaria sua aplicação em produtos alimentícios submetidos ao aquecimento, como pães, biscoitos ou hamburguers
id UFRRJ-1_b9d54bbfbbb9c463aa662f3bf7b49c22
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/11006
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Guena, Aline Cortines de AlmeidaGarcia Rojas, Edwin Elard014.548.996-54http://orcid.org/0000-0003-3388-8424http://lattes.cnpq.br/1205756654416987Garcia Rojas, Edwin Elard014.548.996-54,http://orcid.org/0000-0003-3388-8424http://lattes.cnpq.br/1205756654416987Machado, Mariana Teixeira da Costahttp://lattes.cnpq.br/0032469366203941Gulão, Eliana da Silvahttp://lattes.cnpq.br/5986638108643018057.752.167-50http://lattes.cnpq.br/20806895987266172023-12-22T01:45:30Z2023-12-22T01:45:30Z2019-08-08GUENA, Aline Cortines de Almeida. Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede. 2019.83 f.. Dissertação( Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/11006A microencapsulação é utilizada no setor alimentício para a proteção de compostos bioativos suscetíveis à degradação durante o processamento, como o ácido ascórbico, que é uma vitamina com propriedades antioxidantes, mas altamente instável. Biopolímeros vem sendo empregados como materiais de revestimento devido a sua influência na formação e estabilização de microcápsulas através da técnica de coacervação complexa. A microencapsulação do ácido ascórbico o protege, possibilitando a sua aplicação em novos alimentos e prevenindo alterações sensoriais indesejáveis no produto aplicado. O objetivo deste trabalho foi a produção de microcápsulas de ácido ascórbico formadas por emulsificação dupla seguida de coacervação complexa da goma xantana com duas proteínas diferentes: lactoferrina ou gelatina tipo A. Os complexos coacervados tiveram sua formação avaliada em relação ao pH e à razão dos biopolímeros por potencial zeta e turbidimetria. Os coacervados formados entre a proteína e o polissacarídeo na proporção de 6 : 1 em pH 5,0 para o sistema contendo lactoferrina e na proporção de 2 : 1 em pH 4,0 para o sistema com gelatina, foram os que apresentaram os melhores rendimentos, assim, foram aplicados para a microencapsulação usando diferentes proporções de núcleo e material de parede. Foi feita a caracterização morfológica, de estabilidade e térmica, por TGA e DSC, das microcápsulas contendo 75% de núcleo em relação à concentração de biopolímeros no material de parede formado pelo complexo coacervado entre a goma xantana e proteínas, as quais apresentaram as melhores eficiências de encapsulação neste estudo, de 83,19 ± 0,37 % para a lactoferrina e 73,60 ± 0,71%, para a gelatina. Embora uma maior eficiência de encapsulação tenha sido obtida pelo sistema contendo a lactoferrina, o melhor desempenho geral do estudo foi alcançado pelas microcápsulas contendo gelatina, que apresentaram melhor estabilidade e propriedades térmicas, proporcionando uma melhor proteção do ácido ascórbico durante pelo menos 30 dias, mantidas em temperatura ambiente. Em ambos os sistemas de microcápsulas avaliados, houve aumento da estabilidade térmica, em comparação ao ácido ascórbico não encapsulado, através da coacervação complexa entre os biopolímeros, o que possibilitaria sua aplicação em produtos alimentícios submetidos ao aquecimento, como pães, biscoitos ou hamburguersCAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorMicroencapsulation is used in the food technology to protect bioactive compounds susceptible to degradation during processing, such as ascorbic acid, which is a vitamin with antioxidant properties but highly unstable. Biopolymers have been used as wall materials because of their influence on the formation and stabilization of microcapsules through the complex coacervation technique. The microencapsulation of ascorbic acid protects it, enables its application in new foods and prevents undesirable sensorial changes. The aim of this work was the production of ascorbic acid microcapsules formed by double emulsification followed by complex coacervation of xanthan gum with two different proteins: lactoferrin or type A gelatine. The coacervate complexes had their formation evaluated in relation to the pH and the ratio of the biopolymers by zeta potential and turbidimetry. The coacervates formed between protein and xanthan at a ratio of 6 : 1 at pH 5.0 for the lactoferrin-containing system and at a ratio of 2 : 1 at pH 4.0 for the gelatin system were the ones with the best performance. Thus, they were applied for microencapsulation using different proportions of core and wall material. The morphological, stability and thermal characterization by TGA and DSC were assessed for the microcapsules with 75% core in relation to the total concentration of the wall material, which showed the best encapsulation efficiencies in this study, 83.19 ± 0.37% for lactoferrin and 73.60 ± 0.71% for gelatin. Although higher encapsulation efficiency was obtained by the lactoferrin-containing system, the best overall performance of the study was achieved by microcapsules containing gelatin, which showed better stability and thermal properties, providing better protection of ascorbic acid for at least 30 days at room temperature. In both microcapsule systems studied, there was an increase in thermal stability, compared to free ascorbic acid, provided by the complex coacervation between biopolymers, which would allow the application of these capsules in food products, such as breads, cookies or hamburgersapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciência e Tecnologia de AlimentosUFRRJBrasilInstituto de TecnologiaÁcido ascórbicoPolissacarídeo aniônicoLactoferrinaGelatina de porcoComplexos coacervadosAscorbic acidAnionic polysaccharideLactoferrinPig gelatinComplex coacervatesCiência e Tecnologia de AlimentosEncapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de paredeEncapsulation of vitamin C by complex coacervation using xanthan gum and protein as wall materialinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABBAS, S.; WEI, C. D.; HAYAT, K.; XIAOMING, Z. Ascorbic Acid: Microencapsulation Techniques and Trends - A Review. Food Reviews International, v. 28, n. 4, p. 343–374, 2012. ACH, D.; BRIANÇON, S.; BROZE, G.; PUEL, F.; RIVOIRE, A.; GALVAN, J-M. Formation of microcapsules by complex coacervation. The Canadian Journal of Chemical Engineering, v.93, p. 183-191, 2015. ADAL, E.; SADEGHPOUR, A.; CONNELL, S.; RAPPOLT, M.; IBANOGLU, E.; SARKAR, A. Heteroprotein complex formation of bovine lactoferrin and pea protein isolate: A multiscale structural analysis. Biomacromolecules, v.18, n° 2, p. 625–635, 2017. ADITYA, N. P.; ADITYA, S.; YANG, H.; KIM, H. W.; PARK, S. O.; KO, S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry, v. 173, p.7–13, 2015. ADITYA, N. P.; ESPINOSA, Y. G.; NORTON, I. T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances, v. 35, p.450-457, 2017. AGNIHOTRI, N.; MISHRA, R.; GODA, C.; ARORA, M. Microencapsulation – a novel approach in drug delivery: A review. Indo Global Journal of Pharmaceutical Sciences, v. 2, n° 1, p. 1- 20, 2012. ALOYS, H.; KORMA, S. A.; ALICE, T. M.; CHANTAL, N.; ALI, A. H.; ABED, S. M.; ILDEPHONSE, H. Microencapsulation by complex coacervation: methods, techniques, benefits, and applications – a review. American Journal of Food Science and Nutrition Research, v. 3, n° 6, p. 188 – 192, 2016. ALVIM, I. D.; STEIN, M. A.; KOURY, I. P.; DANTAS, F. B. H.; CRUZ, C. L. C. V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in baked product application. LWT – Food Science and Technology, v. 65, p. 689 – 694, 2016. ANAL, A. K.; SHRESTHA, S.; SADIQ, M. B. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids, v. 87, p. 691-702, 2019. AOAC. Official methods of analysis of AOAC International, Arlington, 16 th ed, v.2, p.3-5, 1984. ARGIN-SOYSAL, S.; KOFINAS, P.; LO, Y. M. Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocolloids, v. 23, n°1, p. 202 -209, 2009. BAMBA, B. S. B.; SHI, J.; TRANCHANT, C. C.; XUE, S. J.; FORNEY, C. F.; LIM, L. T.; XU, W.; XU, G. Coencapsulation of polyphenols and anthocyanins from blueberry pomace by double emulsion stabilized by whey proteins: Effect of homogenization parameters. Molecules, v. 23, p. 2525-2544, 2018. 67 BASTOS, L. P. H.; DE CARVALHO, C. W. P.; GARCIA-ROJAS, E. E. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules, v. 120, p. 332-338, 2018. BENASSI, M. D. T.; ANTUNES, A. J. A. A comparison of methaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, v. 31, n. 4, p. 507 – 513, 1988. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n°5, p. 1227-1232, 2011. BENICHOU, A.; ASERIN, A.; GARTI, N. W/O/W double emulsions stabilized with WPI-polysaccharide complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 294, p. 20-32, 2007. BHAT, V.; SHIVAKUMAR, H. R.; SHESHAPPA, R. K.; SANJEEV, G. Preparation and study on miscibility, thermal behavior of biocompatible polymer blends of xanthan gum-polyacrylamide. International Journal of Plastic Technology, v. 18, n° 2, p. 183 – 191, 2014. BOKKHIM, H.; BANSAL,N.; GRØNDAHL, L.; BHANDARI, B. Physico-chemical properties of different forms of bovine lactoferrin. Food Chemistry, v. 141, n°3, p. 3007-3013, 2013. BOSNEA, L. A.; MOSCHAKIS, T.; BILIADERIS, C. G. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food & Function, v. 8, p. 554-562, 2017. BOURBON, A. I.; CERQUEIRA, M. A.; VICENTE, A. A. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, v. 180, p. 110-119, 2016. BOURGANIS, V.; KARAMANIDOU, T.; KAMMONA, O.; KIPARISSIDES, C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, v. 111, p. 44-60, 2017. BRUNCHI, C. E.; BERCEA, M.; MORARIU, S.; DASCALU, M. Some properties of xanthan gum in aqueous solutions: effect of temperature and pH. Journal of Polymer Research, v. 23:123, 2016. CADDEO, C.; NÁCHER, A.; DÍEZ-SALES, O.; MERINO-SANJUÁN, M.; FADDA, A. M.; MANCONI, M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. Journal of Microencapsulation, v. 31, n° 7, p. 694 – 699, 2014. 68 CAI, X.; DU, X.; CUI, D.; WANG, X.; YANG, Z.; ZHU, G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocolloids, v. 91, p. 238-245, 2019. CALDERÓN-OLIVER, M.; PEDROZA-ISLAS, R.; ESCALONA-BUENDÍA, H. B.; PEDRAZA-CHAVERRI, J.; PONCE-ALQUICIRA, E. Comparative study of the microencapsulation by complex coacervation of nisin in combination with na avocado antioxidante extract. Food Hydrocolloids, v. 62, p. 49-57, 2017. CARNEIRO, H. C. F.; TONON, R. V.; GROSSO, C. R. F.; HUBINGER, M. D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using diferente combinations of wall materials. Journal of Food Engineering, v. 115, p. 443-451, 2013. CARVALHO, I. T.; ESTEVINHO, B. N.; SANTOS, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. International Journal of Cosmetic Science, v. 38, p. 109 – 119, 2016. CARVALHO, J. D. S.; ORIANI, V. B.; OLIVEIRA, G. M.; HUBINGER, M. D. Characterization of ascorbic acid microencapsulated by the spray chilling technique using palm oil and fully hydrogenated palm oil. LWT- Food Science and Technology, v. 101, p. 306-314, 2019. CASAS, J. A.; SANTOS, V. E.; GARCIA-OCHOA, F. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology, v. 26, n° 2 – 4, p. 282- 291, 2000. CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J. A.; VAZQUEZ, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, v. 68, p.136-148, 2017. CHAPEAU, A. L.; TAVARES, G. M.; HAMON, P.; CROGUENNEC, T. A, B, DENIS PONCELET, D.; BOUHALLAB, S. Spontaneous co-assembly of lactoferrin and b-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocolloids, v. 57, p. 280-290, 2016. CHAWDA, P. J.; SHI, J.; XUE, S.; QUEK, S. Y. Co-encapsulation of bioactives for food applications. Food Quality and Safety, v. 1, n° 4, p. 302-309, 2017. CHEN, H.; YUE, X.; LIU, S.; YIN, L. Complex coacervation of proteins and sugar beet pectin: stabilizing oil-in-water emulsions. International Agricultural Engineering Journal, v. 27, n° 1, p. 227- 236, 2018. CHEN, X.; MCCLEMENTS, D. J.; WANG, J.; ZOU, L.; DENG, S.; LIU, W.; YAN, C.; ZHU, Y.; CHENG, C.; LIU, C. Co-encapsulation of (-)-Epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: Controlled release and bioaccessibility. Journal of Agricultural and Food Chemistry, v. 66, n° 14, p. 3691-3699, 2018. COMUNIAN, T. A.; NOGUEIRA, M.; SCOLARO, B.; THOMAZINI, M.; FERRO-FURTADO, R.; DE CASTRO, I. A.; FAVARO-TRINDADE, C. S. Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation 69 using diferente combinations of wall materials and crosslinkers. Food Chemistry, v. 252, p. 277-284, 2018. COMUNIAN, T. A.; THOMAZINI, M.; ALVES, A. J. G.; DE MATOS JUNIOR, F. E.; BALIEIRO, J. C. C.; FAVARO-TRINDADE, C. S. Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, v. 52, p. 373–379, 2013. COMUNIAN, T. A.; ABBASPOURRAD, A.; FAVARO-TRINDADE, C. S.; WEITZ, D. A. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chemistry, v.152, p. 271–275, 2014a COMUNIAN, T. A.; FAVARO-TRINDADE, C. S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, v. 61, p. 442-457, 2016. COMUNIAN, T. A.; THOMAZINI, M.; GAMBAGORTE, V. F.; TRINDADE, M. A.; FAVARO-TRINDADE, C. S. Effect of Incorporating Free or Encapsulated Ascorbic Acid in Chicken Frankfurters on Physicochemical and Sensory Stability. Journal of Food Science and Engineering, v. 4, p. 167-175, 2014b COOK, M. T. ; TZORTZIS, G.; CHARALAMPOPOULOS, D.; KHUTORYANSKIY, V.V. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162 , p. 56–67, 2012. DA CRUZ, M. C. R.; ANDREOTTI DAGOSTIN, J. L.; PERUSSELLO, C. A.; MASSON, M. L. Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocolloids, v. 87, p. 71-82, 2019. DA CRUZ, M. C. R.; PERUSSELLO, C. A.; MASSON, M. L. Microencapsulated ascorbic acid: Development, characterization, and release profile in simulated gastrointestinal fluids. Journal of Food Process Engineering, v. 41, e12922, 2018. http://doi.org/10.1111/jfpe.12922 DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de alimentos de Fennema. 4. ed. Porto Alegre: Artmed, 900 p, 2010. DA SILVA, T. M.; RODRIGUES, L. Z.; NUNES, G. L.; CODEVILLA, C. F.; DA SILVA, C. B.; DE MENEZES, C. R. Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, Santa Maria, Ed. Especial-Nano e Microencapsulação de compostos bioativos e probióticos em alimentos. Dez. v.37, p. 56 – 64, 2015 DE SOUZA, C. A. G.; SIQUEIRA, S. M. C.; AMORIM, A. F. V. ; MORAIS, S. M.; GONÇALVES, T.; GOMES, R. N.; CUNHA, A. P.; RICARDO, N. M. P. S. Encapsulação do ácido L-ascórbico no biopolímero natural galactomanana por spray-drying: preparação, caracterização e atividade antioxidante. Química Nova, v. 38, no. 7, p. 877-883, 2015. DE SOUZA, V. B.; THOMAZINI, M.; BARRIENTOS, M. A. E.; NALIN, C. M.; FERRO-FURTADO, R.; GENOVESE, M. I.; FAVARO-TRINDADE, C. M. Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamon 70 zeylanicum) by complex coacervation using gelatina and different polysaccharides. Food Hydrocolloids, v. 77, p. 297-306, 2018. DEVI, N.; KAKATI, D. K. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, v. 117, n° 2, p. 193-204, 2013. DEVI, N.; SARMAH, M.; KHATUN, B.; MAJI, T. K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in Colloid and Interface Science, v. 239, p.136–145, 2017. DIARRASSOUBA, F.; REMONDETTO, G.; GARRAIT, G.; ALVAREZ, P.; BEYSSAC, E.; SUBIRADE, M. Self-assembly of b-lactoglobulin and egg white lysozyme as a potentialcarrier for nutraceuticals. Food Chemistry, v. 173 , p. 203–209, 2015. DICKINSON, E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, v. 24, n°1, p. 4-12, 2012. DONHOWE, E. G.; FLORES, F. P.; KERR, W. L.; WICKER, L.;KONG, F. Characterization and in vitro bioavailability of b-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology, v. 57, p. 42-48, 2014. DOUBLIER, J. L.; GARNIER, C.; RENARD, D.; SANCHEZ, C. Protein-polysaccharide interactions. Current Opinion in Colloid & Interface , v. 5, p. 202-214, 2000. DRUSCH, S.; BERG, S.; SCAMPICCHIO, M.; SERFERT, Y.; SOMOZA, V.; MANNINO, S.; SCHWARZ, K. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients. Food Hydrocolloids, v. 23, p. 942-948, 2009. EGHBAL, N.; CHOUDHARY, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT- Food Science and Technology, v. 90, p. 254-264, 2018. ERATTE, D.; DOWLING, K.; BARROW, C. J.; ADHIKARI, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science & Technology, v. 71, p. 121-131, 2018. ERATTE, D.; MCKNIGHT, S.; GENGENBACH, T. R.; DOWLING, K.; BARROW, C. J.; ADHIKARI,B. P. Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate-gum arabic complex coacervates. Journal of Functional Foods, v. 19, p. 882–892, 2015. ESTÉVEZ, M.; GÜELL, C.; DE LAMO-CASTELLVÍ, S.; FERRANDO, M. Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release. Food Chemistry, v. 272, p. 478-487, 2019. 71 EVANS, M.; RATCIIFFE, I.; WILLIAMS, P. A. Emulsion stabilization using polysaccharide-protein complexes. Current Opinion in Colloid & Interface Science, v.18, p. 272-282, 2013. FAREEZ, I. M.; LIM, S. M.; MISHRA, R. K.; RAMASAMY, K. Chitosan coated alginate–xanthan gum bead enhanced pH andthermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, v. 72, p. 1419-1428, 2015. FARHANG, B.; KAKUDA, Y.; CORREDIG, M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Science & Technology., v. 92, p. 353–366, 2012. FARIAS, M. D. P.; ALBUQUERQUE, P. B. S.; SOARES, P. A.G.; DE SÁ, D. M. A. T.; VICENTE, A. A.; CARNEIRO-DA-CUNHA, M.G. Xyloglucan from Hymenaea courbaril seeds as encapsulating agente of L-ascorbic acid. International Journal of Biological Macromolecules, v. 107, parte B, p. 1559-1566, 2018. FARIA, S.; PETKOWICZ, C. L. O.; DE MORAIS, S. A. L.; TERRONES, M. G. H.; DE REZENDE, M. M.; DE FRANÇA, F. P.; CARDOSO, V. L. Characterization of xanthan gum produced from sugar cane broth. Carbohydrate Polymers, v. 86, n° 2, p. 469 – 476, 2011. FERRÁNDIZ, M.; CAPABLANCA, L.; FRANCO, E.; MIRA, E. Microencapsulation of L-ascorbic acid by spray drying using sodium alginate as wall material. Journal of Encapsulation and Adsorption Sciences, v. 6, p.1-8, 2016. FLANAGAN, S. E.; MALANOWSKI, A. J.; KIZILAY, E.; SEEMAN, D.; DUBIN, P. L.; DONATO-CAPEL, L.; BOVETTO, L.; SCHMITT, C. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin. Langmuir, v. 31, n° 5, p. 1776-1783, 2015. FROTA, H. B. M. ; MENEZES, J. E. S. A.; SIQUEIRA, S. M. C. ; RICARDO, N. M. P.; ARAÚJO, T. G. ; SOUZA, C. A. G.; BANDEIRA, P. N.; DOS SANTOS, H. S.Preparação, caracterização físico-química e liberação controlada de micropartículas de galactomanana contendo alantoína. Química Nova, v. 41, n° 5, p. 544-549, 2018. FU, D.; DENG, S.; MCCLEMENTS, D. J.; ZHOU, L.; ZOU, L.; YI, J.; LIU, C.; LIU, W. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, v. 89, p.80-89, 2019. GHAYEMPOUR, S.; MONTAZER, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. Journal of Microencapsulation, v. 33, n° 6, p. 497- 510, 2016. GHARSALLAOUI, A.; ROUDAUT, G.; CHAMBIN, O.; VOILLEY, A.; SAUREl, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, v. 40, p.1107–1121, 2007. GHAYEMPOUR, S.; MONTAZER, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. Journal of Microencapsulation, v. 33, n° 6, p. 497- 510, 2016. 72 GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Thermodynamic parameters of β-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry. Journal of Agricultural and Food Chemistry, v. 51, p. 4450 – 4455, 2003 GÓMEZ-GUILLÉN, M. C.; GIMÉNEZ, B.; LÓPEZ-CABALLERO, M. E.; MONTERO, M. P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, v. 25, p. 1813-1827, 2011. GÓMEZ-MASCARAQUE, L. G.; MARTÍNEZ-SANZ, M.; FABRA, M. J.; LÓPEZ-RUBIO, A. Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocolloids, v. 90, p. 523 – 533, 2019. GONZÁLEZ-CHÁVEZ, S. A.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, v.33, n. 4, p. 301.e1–301.e8, 2009. GOSWAMI, S.; NAIK, S. Natural gums and its pharmaceutical application. Journal of Scientific and Innovative Research, v. 3, n° 1, p. 112-121, 2014. GUILLEN, C.; MCINNES, I. B.; VAUGHAN, D.; SPEEKENBRINK , A. B. J.; BROCK, J. H. The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis & rheumatism, v. 43, n° 9, p. 2073–2080, 2000. GULÃO, E. S.; SOUZA, C. J. F.; DA COSTA, A. R.; ROCHA-LEÃO, M. H. M.; GARCIA-ROJAS, E. E. Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polímeros, v. 28, n° 5, p. 413-421, 2018. GULÃO, E. D. S.; SOUZA, C. J. F.; DA SILVA, F. A. S.; COIMBRA, J.S. R. , GARCIA-ROJAS, E. E. Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, v. 65, p 367-374, 2014. GULÃO, E. D. S.; SOUZA, C. J. F.; ANDRADE, C. T.; GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization. Food Chemistry, v. 194, p 680-686, 2016. HASANVAND, E.; RAFE, A. Development of vanillin/β-cyclodexterin inclusion microcapsules using flax seed gum-rice bran protein complex coacervates. International Journal of Biological Macromolecules, v. 131, p. 60-66, 2019. HATTREM, M. N.; DILLE, M. J.; SETERNES, T.; DRAGET, K. I. Macro- vs. micromolecular stabilisation of W/O/W-emulsions. Food Hydrocolloids, v. 37, p. 77- 85, 2014. HO, L. Y.; LIM, Y. Y.; TAN, C. P.; SIOW, L. F. Comparison of physicochemical properties and aqueous solubility of xanthone prepared via oil-in-water emulsion and complex coacervation techniques. International Journal of Food Properties, v. 21, n° 1, p. 784-798, 2018. 73 HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, E. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT - Food Science and Technology, v. 76, p. 216-222, 2017. HOYOS-LEYVA, J. D. ; CHAVEZ-SALAZAR, A.; CASTELLANOS-GALEANO, F.; BELLO-PEREZ, L. A.; ALVAREZ-RAMIREZ, J. Physical and chemical stability of l-ascorbic acid microencapsulated into taro starch spherical aggregates by spray drying. Food Hydrocolloids, v. 83, p. 143-152, 2018. HU, Y.-T.; TING, Y.; HU, J.-Y.; HSIEH, S.-C. Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, v. 25, p.16-26, 2017. IGE, O. O.; UMORU, L. E.; ARIBO, S. Natural Products: A minefield of biomaterials. International Scholarly Research Network Materials Science, v. 2012, p.1-20, 2012. JACKSON, L. S.; LEE, K. Microencapsulation and the food industry. Lebensmittelwissenschaft und Technologie, v. 24, p. 289-297, 1991. JAIN, A.; THAKUR, D.; GHOSHAL, G.; KATARE, O. P.; SHIVHARE, U. S. Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, v. 8, n° 8, p. 1635-1644, 2015. JAMEKHORSHID, A.; SADRAMELI, S. M.; FARID, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, v.31, p. 531-542, 2014. JANNASARI, N.; FATHI, M.; MOSHTAGHIAN, S. J.; ABBASPOURRAD, A. Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules, v. 129, p. 972- 979, 2019. JIMÉNEZ-ALVARADO, R.; BERISTAIN, C. I.; MEDINA-TORRES, L.; ROMÁN-GUERRERO, A.; VERNON-CARTER, E. J. Ferrous bisglycinate contente and release in W1/O/W2 emulsions stabilized by protein-polysaccharide complexes. Food Hydrocolloids, v. 23, p. 2425-2433, 2009. JIMÉNES-COLMENERO, F. Emulsiones multiples; compostos bioactivos y alimentos funcionales. Nutricion Hospitalaria, v. 28, n.5, p.1413-1421, 2013. JIN, R.; YIN, H.; WANG, H.; ZHANG, D.; CAO, K.; YUAN, C. Preparation and characterization of squalene microcapsules by complex coacervation. Journal of Food Process Engineering, v. 41, n°6, e12847, 2018. JOYE, I. J.; MCCLEMETS, D. J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, v. 19, n° 5, p. 417- 427, 2014. 74 KALOGIANNIS, S.; IAKOVIDOU, G.; LIAKOPOULOU-KYRIAKIDES, M.; KIRIAKIDIS, D. A.; SKARACIS, G. N. Optimization of xanthan gum production by Xanthomonas capestris grown in molasses. Process Biochemistry, v. 39, p. 249 -256, 2003. KARIM, A. A.; BHAT, R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, v. 23, p. 563-576, 2009. KARIM, F. T.; GHAFOOR, K.; FERDOSH, S.; AL-JUHAIMI, F.; ALI, E.; YUNUS, K. B.; HAMED, M. H.; ISLAM, A.; ASIF, M.; SARKER, M. Z. I.; Microencapsulation using supercritical antisolvent process. Journal of Food and Drug Analysis, v. 25, p. 654 - 666, 2017. KATOUZIAN, I.; JAFARI, S. M. Nano-encapsulation as promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, v. 53, p. 34-48, 2016. KHAN, B. A.; AKHTAR, N.; KHAN, H. M. S.; WASEEM, K.; MAHMOOD, T.; IQBAL, M.; KHAN, H. Basics of pharmaceutical emulsions: A review. African Journal of Pharmacy and Pharmacology, v. 5, n° 25, p. 2715-2725, 2011. KOUPANTIS, T.; PAVLIDOU, E.; PARASKEVOPOULOU, A. Glycerol and tannic acid as applied in the preparation of milk proteins – CMC complex coacervates for flavor encapsulation. Food Hydrocolloids, v. 57, p. 62-71, 2016. KUROIWA, T.; · HORIKOSHI, K.; SUZUKI, A.; NEVES, M. A.; KOBAYASHI, I.; UEMURA, K.; NAKAJIMA, M.; KANAZAWA, A.; ICHIKAWA, S. Efficient encapsulation of a water-soluble molecule into lipid vesicles using W/O/W multiple emulsions via solvent evaporation. Journal of the American Oil Chemists' Society, v. 93, p. 421- 430, 2016. KIM, Y. D.; MORR, C. V.; SCHENZ, T. V. Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry, v. 44, p. 1308-1313, 1996. KOIDA,Y.; KOBAYASHI, M.; HIRATA, G. Studies on Microcapsules. III. Influence of molecular weight of polyisobutylene in the microencapsulation of ascorbic acid, Chemical and Pharmaceutical Bulletin, v. 32, n°12, p. 4971 - 4978, 1984. KUMAR, A.; RAO, K. M.; HAN, S. S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers, v. 180, p. 128-144, 2018. LAM, P.-L.; KOK, S. H.-L.; BIAN, Z.-X.; LAM, K.-H.; GAMBARI, R.; LEE, K. K.-H.; CHUI, C.-H. Microencapsulaion-protected L-ascorbic acid for the application of human epithelial HaCaT cell proliferation. Journal of Microencapsulation, v. 31, n° 8, p. 754 – 758, 2014. LANEUVILLE, S. I.; PAQUIN, P.; TURGEON, S. L.. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes. Food Hydrocolloids, v.14, p. 305–314, 2000. LESMES, U.; SANDRA, S.; DECKER, E. A.; MCCLEMENTS, D. J. Impact of surface deposition of lactoferrin on physical and chemical stability of ômega-3 rich lipid droplets stabilised by caseinate. Food Chemistry, v. 123, n°1, p. 99-106, 2010. 75 LII, C. Y.; LIAW, S. C.; LAI,V. M. F.; TOMASIK, P. Xanthan gum–gelatin complexes. European Polymer Journal, v. 38, n7, p. 1377-1381, 2002. LIU, W.; WANG, J.; MCCLEMENTS, D. J.; ZOU, L. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, v.40, p. 527-535, 2018. LIU, F.; ZHANG, S.; LI, J.; MCCLEMENTS, D. J.; LIU, X. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science & Technology , v.79, p. 67–77, 2018. LU, W.; KELLY, A. L.; MIAO, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends in Food Science & Technology , v.47, p. 1-9, 2016. MA, T.; ZHAO, H.; WANG, J.; SUN, B. Effect of processing conditions on the morphology and oxidative stability of lipid microcapsules during complex coacervation. Food Hydrocolloids, v. 87, p. 637-643, 2019. MADHAMUTHANALLI, C. V.; BANGALORE, S. A. Rheological and physico-chemical properties of GE extracted from the skin of a few species of freshwater carp. International Journal of Food Science & Technology, v. 49, p. 1758 – 1764, 2014. MAJI, T. K.; HOUSSAIN, R. Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. Journal of Applied Polymer Science, v. 111, n° 2, p. 779-785, 2009. MANELA-AZULAY, M.; LACERDA, C. A. M.; PEREZ, M. A.; FILGUEIRA, A. L.; CUZZI, T. Vitamin C. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 78, n. 3, p. 265-274, maio/jun. 2003. MARIOD, A. A.; ADAM, H. F. Review: Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum Technologia Alimentaria, v. 12, n° 2, p. 135 -147, 2013. MARTINS, I. M.; RODRIGUES, S. N.; BARREIRO, F.; RODRIGUES, A. E. Microencapsulation of thyme oil by coacervation. Journal of Microencapsulation, v. 26, p. 667 - 675, 2009. MARK, J. E. Polymer Data Handbook. Gelatin. Oxford University Press, p. 120- 129, 1 Edição, 1999. MARSANASCO, M.; MÁRQUEZ, A. L.; WAGNER, J. R.; ALONSO, S. V., CHIARAMONI, N. S. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, v. 44, p. 3039–3046, 2011. MARSHALL, K. Therapeutic Applications of Whey Protein. Alternative Medicine Review, v. 9, n. 2, 2004. MATOS-JR, F. E.; COMUNIAN, T. A.; THOMAZINI, M.; FAVARO-TRINDADE, C. S. Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT - Food Science and Technology, v. 75, p. 251-260, 2017. 76 MATOS-JR, F. E.; DI SABATINO, M.; PASSERINI, N.,CARMEN SÍLVIA FAVARO-TRINDADE, C. S.; ALBERTINI, B. Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Research International, v.67, p.52–59, 2015. MASUELLI, M. A. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. Journal of Polymer and Biopolymer Physics Chemistry, v. 2, n° 2, p. 37- 43, 2014. MCCLEMENTS, D. J.; DECKER, E. A.; WEISS, J. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science R: Concise Reviews/ Hypotheses in Food Science, v. 72, n° 8, p. 109- 124, 2007. MCCLEMENTS, D. J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle systems: A review. Advances in Colloid and Interface Science, v. 253, p. 1-22, 2018. MENDANHA, D. V. ; ORTIZ, S. E. M. ; FAVARO-TRINDADE, C. S. ; MAURI, A. ; MONTERREY-QUINTERO, E. S. ; THOMAZINI, M. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, v.42, no8, p.1099-1104, 2009. MOSCHAKIS, T.; BILIADERIS, C. G. Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid & Interface Science, v. 28, p. 96-109, 2017. MUHOZA, B.; XIA, S.; CAI, J.; ZHANG, X.; DUHORANIMANA, E., SU, J. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced termal stability. Food Hydrocolloids, v. 87, p. 712-722, 2019. MUN, S.; CHO, Y.; DECKER, E. A.; MCCLEMENTS; D. J. Utilization of polysaccharide coatings to improve freeze-thaw and freeze-dry stability of protein-coated lipid droplets. Food Engineering, v. 86, p. 508- 518, 2007. MUTALIYEVA, B.; GRIGORIEV, D.; MADYBEKOVA, G.; SHARIPOVA, A. AIDAROVA, S.; SAPARBEKOVA, A.; MILLER, R. Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 521, p. 147-152, 2017. MUYONGA, J. H.; COLE, C. G. B.; DUODU, K. G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, v. 85, p. 81–89, 2004. NAZZARO, F.; ORLANDO, P.; FRATIANNI, F.; COPPOLA, R. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology, v. 23, p. 182–186, 2012. NESTERENKO, A.; ALRIC, I.; SILVESTRE, F.; DURRIEU, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, v. 42, p. 469 - 479, 2013. 77 NEUMANN, S. M.; VAN DER SCHAAF, U. S.; KARBSTEIN, H. P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions. Colloids and Surfaces A, v. 553, p. 464- 471, 2018. OUTUKI, P. M.; DE FRANCISCO, L. M. B.; HOSCHEID, J.; BONIFÁCIO, K. L.; BARBOSA, D. S.; CARDOSO, M. L. C. Development of arabic and xanthan gum microparticles loaded with an extract of Eschweilera nana Miers leaves with antioxidant capacity. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 499, n° 20, p. 103-112, 2016. OZKAN, G.; FRANCO, P.; DE MARCO, I.; XIAO, J.; CAPANOGLU, E. A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, v. 272, p. 494 – 506, 2019. PALMA-RODRIGUEZ, H. M.; AGAMA-ACEVEDO, E.; GONZALEZ-SOTO, R. A.; VERNON-CARTER, E.J.; ALVAREZ-RAMIREZ, J.; BELLO-PEREZ, L. A. Ascorbic acid microencapsulation by spray-drying in native and acid-modified starches from diferente botanical sources. Starch/Stärke, v. 65, p. 584 – 592, 2013. PARTHASARATHI, S.; ANANDHARAMAKRISHNAN, C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules. Food and Bioproducts Processing, v.100, p. 469–476, 2016. PAULO, F.; SANTOS, L. Design of experiments for microencapsulation applications: A review. Materials Science and Engineering C, v. 77, p. 1327 – 1340, 2017. PAWAR, H. A.; KAMAT, S. R.; CHOUDHARY, P. D. An overview of natural polysaccharides as biological macromolecules: Their chemical modifications and pharmaceutical applications. Biology and Medicine (Aligarth) 6: 224, v. 7, 2015. doi: 10.4172/0974-8369.1000224 PEINADO, I.; LESMES, U.; ANDRÉS, A.; MCCLEMENTS, J. D. Fabrication and morphological characterization of biopolymer particles formed by electrostatic complexation of heat treated lactoferrin and anionic polysaccharides. Langmuir, v. 26, n. 12, p. 9827-9834, 2010. PEREIRA, L. J. B.; GARCIA-ROJAS, E. E. Multiple emulsions: formation and application in microencapsulation of bioactive components. Ciência Rural, Santa Maria, v. 45, n.1, p.155-162, 2015. PRAMANIK, D.; GANGULY, M. Formulation and evaluation of a pectin based controlled drug delivery system containing metronidazole. Research Journal of Life Sciences, Bioinformatics, Pharmaceutical and Chemical Sciences, v. 3, n. 4, p 16-25, 2017. PUDDU, P.; VALENTI, P.; GESSANI, S. Immunomodulatory effects of lactoferrin on antigen presenting cells. Biochimie, v. 91, n° 1, p. 11-18, 2009. QIAN, C.; DECKER, E. A.; XIAO, H.; MCCLEMENTS, D. J. Comparison of Biopolymer Emulsifier Performance in Formation and Stabilization of Orange Oil-in-Water Emulsions. Journal of the American Oil Chemists Society, v. 88, p. 47-55, 2011. 78 QIU, C.; ZHAO, M.; MCCLEMENTS, D. J. Improving the stability of wheat protein-stabilized emulsions: Effect of pectin and xanthan gum addition. Food Hydrocolloids v. 43, p. 377-387, 2015. RAEI, M.; SHAHIDI, F.; FARHOODI, M.; JAFARI, S. M.; RAFE, A. Application of whey protein-pectin nano-complex carriers for loading of lactoferrin. International Journal of Biological Macromolecules, v. 105, p. 281-291, 2017. RAHAYU, P. P.; PURWADI; RADIATI, L. E.; MANAB, A. Physico chemical properties of whey protein and gelatine biopolymer using tea leaf extract as crosslink materials. Current Research in Nutrition and Food Science. v.3, n°3, p. 224-236, 2015. RAOUFI, N.; KADKHODAEE, R.; PHILLIPS, G. O.; FANG, Y.; NAJAFI, M. N. Characterisation of whey protein isolate–gum tragacanth electrostatic interactions in aqueous solutions. International Journal of Food Science and Technology, v. 51, p. 1220–1227, 2016. RAO, M. G.; BHARATHI, P.; AKILA, R. M. A comprehensive review on biopolymers. Scientific Reviews & Chemical Communication. v.4, n.2, p. 61-68, 2014. RAWDKUEN, S.; THITIPRAMOTE, N.; BENJAKUL, S. Preparation and functional characterization of fish skin gelatin and comparison with commercial gelatin. International Journal of Food science and Technology, v. 48, p. 1093-1102, 2013. ROCHA-SELMI, G. A.; BOZZA, F. T., THOMAZINI, M.; BOLINI, H. M. A.;FÁVARO-TRINDADE, C. S. Microencapsulation of aspartame by double emulsion followed by complex coacervation to provide protection and prolong sweetness. Food Chemistry, v. 139, p. 72–78, 2013. ROKKA, S.; RANTAMÄKI, P. Protecting probiotic bacteria by microencapsulation: challenges for industrial applications. European Food Research and Technology, v. 231, p. 1–12, 2010. RUTZ, J. K.; BORGES, C. D.; ZAMBIAZI, R. C.; CRIZEL-CARDOZO, M. M.; KUCK, L. S.; NOREÑA, C. P. Z. Microencapsulation of palm oil by complex coacervation for application in food systems. Food Chemistry, v. 220, p. 59-66, 2017. SABERIAN, H.; HAMIDI‐ESFAHANI, Z.; ABBASI, S. Effect of pasteurization and storage on bioactive components of aloe vera gel. Nutrition & Food Science, vol. 43, n° 2, p.175-183, 2013. SACHAN, N. K.; SINGH, B.; RAO, K. R. Controlled drug delivery through microencapsulation. Malaysian Journal of Pharmaceutical Sciences, v. 4, n° 1, p. 65 -81, 2006. SANTOS, M. G.; BOZZA, F. T. B.; THOMAZINI, M.; FAVARO-TRINDADE, C. S. Microencapsulation of xylitol by double emulsion followed by complex coacervation. Food Chemistry, v. 171, p. 32-39, 2015. SANTOS, M. G.; CARPINTEIRO, D. A.; THOMAZINI, M.; ROCHA-SELMI, G. A.; DA CRUZ, A. G.; RODRIGUES, C. E. C.; FAVARO-TRINDADE, C. S. Coencapsulation of xylitol and menthol by double emulsion followed by complex 79 coacervation and microcapsule application in chewing gum. Food Research International, v. 66, p. 454-462, 2014. SANTOS, M. B.; DA COSTA, N. R.; GARCIA-ROJAS, E. E. Interpolymeric complexes formed between whey proteins and biopolymers: Delivery systems of bioactive ingredientes. Comprehensive Reviews in Food Science and Food Safety, v.17, p. 792-805, 2018a. SANTOS, M. B.; DA COSTA, A. R.; GARCIA-ROJAS, E. E. Heteroprotein complex coacervates of ovoalbumin and lysozyme: formation and thermodynamic characterization. International Journal of Biological Macromolecules, v. 106, p. 1323 -1329, 2018b. SANTOS, M. B.; DE CARVALHO, C. V. P.; GARCIA-ROJAS, E. E. Heteroprotein complex formation of bovine sérum albumin and lysozyme: Structure and thermal stability. Food Hydrocolloids, v. 74, p. 267-274, 2018c. SANTOS, M. B.; SANTOS, C. H. C.; DE CARVALHO, M. G.; DE CARVALHO, C. W. P.; GARCIA-ROJAS, E. E. Physicochemical, thermal and rheological properties of synthesized carboxymethyl tara gum (Caesalpinia spinosa). International Journal of Biological Macromolecules, v. 134, p. 595-603, 2019. SARBON, N. M.; BADII, F.; HOWELL, N. K. Preparation and characterization of chicken skin gelatin as an alternative to mammalian gelatin. Food Hydrocolloids, v. 30, p. 143-151, 2013. SARTORI, T.; CONSOLI, L.; HUBINGER, M. D.; MENEGALLI, F. C. Ascorbic acid microencapsulation by spray chilling: Production and characterization. LWT - Food Science and Technology, v. 63, p. 353 – 360, 2015. SERVAT, L.; SPINDOLA, H. M.; RODRIGUES, R. A. F.; FOGLIO, M. A. Microencapsulation: a Promising Alternative for Preserving, Natural Products, v. 5, n.02, Junho, 2010. SAXENA, A.; SACHIN, K.; BOHIDAR, H. B.; VERMA, A. K. Effect of molecular weight heterogeneity on drug encapsulation efficiency of gelatin nano-particles. Colloids and Surfaces B: Biointerfaces, v. 45, p. 42 – 48, 2005. SHAO, H.; HAN, G.; LING, P.; ZHU, X.; LIU, F.; JIN, Y.; ZHAO, L.; ZHANG, T. Intra-articular injection of xanthan gum: A potential therapy for osteoarthritis. Advances in Bioscience and Biotechnology, v. 3, p.449-453, 2012. SHADDEL, R.; HESARI, J.; AZADMARD-DAMIRCHI, S.; HAMISHEHKAR, H.; FATHI-ACHACHLOUEI, B.; HUANG, Q. Double emulsion followed by complex coacervation as a promising method for protection of black raspberry anthocyanins. Food Hydrocolloids, v. 77, p. 803-816, 2018. SHISHIR, M. R. I.; XIE, L.; SUN, C.; ZHENG, X.; CHEN, W. Advances in micro and nano-encapsulation of bioactive compounds using biopolymer and lipid-based transporters. Trends in Food Science & Technology, v. 78, p. 34-60, 2018. SHIT, S. C.; SHAH, P. M. Edible polymers: Challenges and opportunities. Journal of Polymers, v. 2014, http://dx.doi.org/10.1155/2014/427259 80 SILVA, D. F.; FAVARO-TRINDADE, C. S.; ROCHA, G. A.; THOMAZINI, M. Microencapsulation of lycopene by gelatina-pectin complex coacervation. Journal of Food Processing and Preservation, v. 36, p. 185-190, 2012. SOBRAL, P. J. A.; HABITANTE, A. M. Q. B. Phase transitions of pigskin gelatin. Food Hydrocolloids, v.15, n° 4–6, p. 377-382, 2001. SOUZA, C. A. G. ; SIQUEIRA, S. M. C.; AMORIM, A. F. V.; MORAIS, S. M.; GONÇALVES, T.; GOMES, R. N.; CUNHA, A. P.; RICARDO, N. M. P. S.. Encapsulação do ácido l-ascórbico no biopolímero natural galactomanana por spray‑drying: preparação, caracterização e atividade antioxidante. Química Nova, v.38 no.7, p. 877- 883, 2015. SOUZA, C. J. F.; GARCIA-ROJAS, E. E. Interpolymeric complexing between egg white proteins and xanthan gum: Effect of salt and protein/polysaccharide ratio. Food Hydrocolloids, v. 66, p. 268-275, 2017. SOUZA, C. J. F.; SOUZA, C. S. F.; BASTOS, L. P. H.; GARCIA-ROJAS, E. E. Interpolymer complexation of egg white proteins and carrageenan: Phase behavior, thermodynamics and rheological properties. International Journal of Biological Macromolecules, v. 109, p. 467-475, 2018a. SOUZA, C. J. F.; GARCIA-ROJAS, E. E.; FAVARO-TRINDADE, C. S. Lactase (β-galactosidase) immobilization by complex formation: Impact o biopolymers on enzyme activity. Food Hydrocolloids, v. 83, p. 88-96, 2018b SOUZA, C. J. F.; COMUNIAN, T. A.; KASEMODEL, M. G. C.; FAVARO-TRINDADE, C. S. Microencapsulation of lactase by W/O/W emulsion followed by complex coacervation: Effects of enzyme source, addition of potassium and core to shell ratio on encapsulation efficiency, stability and kinetics of release. Food Research International, v.1, p. 1-11, 2018c. SOUZA, C. J. F.; GARCIA-ROJAS, E. E.; SOUZA, C. S. F.; VRIESMANN, L. C.; VICENTE, J.; DE CARVALHO, M. G.; PETKOWICZ, C. L. O.; FAVARO-TRINDADE, C. S. Immobilization of β-galactosidase by complex coacervation: Effect of interaction on the properties of the enzyme. International Journal of Biological Macromolecules, v. 122, p. 594-602, 2019. STONE, A. K.; NICKERSON, M. T. Formation and functionality of whey protein isolate-(kappa-, iota-, and lambda-type) carrageenan electrostatic complexes. Food Hydrocolloids, v. 27, p. 271-277, 2012. TAMNAK, S.; MIRHOSSEINI, H.; TAN, C. P.; AMID, B. T.; KAZEMI, M.; HEDAYATNIA, S. Encapsulation properties, release behavior and physicochemical characteristics of water-in-oil-in-water (W/O/W) emulsion stabilized with pectine -pea protein isolate conjugate and Tween 80. Food Hydrocolloids, v. 61, p. 599-608, 2016. TAVARES, G. M.; CROGUENNEC, T.; HAMON, P.; CARVALHO, A. F.; BOUHALLAB, S. Selective coacervation between lactoferrin and the two isoforms of β-lactoglobulin. Food Hydrocolloids, v. 48, p. 238-247, 2015. TAVARES, L.; NOREÑA, C. P. Z. Encapsulation of garlic extract using complex coacervation with whey protein isolate and chitosan as wall materials followed by spray drying. Food Hydrocolloids, v. 89, p. 360-369, 2019. 81 TIMILSENA, Y. P.; ADHIKARI, R. ; BARROW, C. J.; ADHIKARI, B. Microencapsulation of chia seed oil using chia seed protein isolate-chia seed gum complex coacervates. International Journal of Biological Macromolecules, v. 91, p. 347-357, 2016. TIMILSENA ,Y. P.; AKANBI , T. O.; KHALID, N.; ADHIKARI, B.; BARROW, C. J. Complex coacervation: Principles, mechanisms and applications in microencapsulation. International Journal of Biological Macromolecules, v.121, p.1276–1286, 2019. TIMILSENA, Y. P.; WANG, B.; ADHIKARI, R.; ADHIKARI, B. Advances in microencapsulation of polyunsaturated fatty acids (PUFAs)-rich plant oils using complex coacervation: A review. Food Hydrocolloids, v. 69, p. 369-381, 2017. TOKLE, T.; LESMES, U.; MCCLEMENTS, D. J. Impact of electrostatic deposition of anionic polysaccharides on the stability of oil droplets coated by lactoferrin. Journal of Agricultural and Food Chemistry, v. 58, n° 17, p. 9825-9832, 2010. TORRES, M. D.; MOREIRA, R.; CHENLO, F., VÁZQUEZ, M. J. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums. Carbohydrate Polymers, v.89, n.2, p. 592-598, 2012. TURGEON, S. L.; SCHMITT, C.; SANCHEZ, C. Protein-polysaccharide complexes and coacervates. Current Opinion in Colloid & Interface Science, v. 12, p. 166 – 178, 2007. TRIFKOVIĆ, K.; TADIĆ, G.; BUGARSKI, B. Short overview of encapsulation technologies for delivery of bioactives to food. Journal of Engineering & Processing Management, v. 8, n. 1, p.103 – 111; 2016. USHIKUBO, F. Y.; CUNHA, R. L. Stability mechanisms of liquid water-in-oil emulsions. Food Hydrocolloids, v. 34, p. 145-153, 2014. VALENTA, T.; LAPČÍKOVÁ, B.; LAPČÍK, L. Determination of kinetic and thermodynamic parameters of food hydrocolloids/water interactions by means of thermal analysis and viscometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v.555, p. 270-279, 2018. VICENTE, J.; PEREIRA, L. J. B.; BASTOS, L. P. H.; CARVALHO, M. G.; GARCIA-ROJAS, E. E. Effect of xanthan gum or pectin addition on Sacha Inchi oil-in-water emulsions stabilized by ovoalbumin or tween 80: Droplet size distribution, rheological behavior and stability. International Journal of Biological Macromolecules, v. 120, p. 339-345, 2018. WANG, B.; ADHIKARI, B.; BARROW, C. J. Optimisation of the microencapsulation of tuna oil in gelatin–sodium hexametaphosphate using complex coacervation. Food Chemistry, v.158, p. 358–365, 2014. WANG, Y., KIMURA, K., DUBIN, P.L. & JAEGER, W. Polyelectrolyte- micelle coacervation: effects of micelle surface charge density, polymer molecular weight: and polymer/surfactant ratio. Macromolecules, v. 33, p. 3324–3331, 2000. 82 WANG, L.; YANG, S.; CAO, J.; ZHAO, S.; WANG, W. Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chemical and Pharmaceutical Bulletin, v. 64, p. 21–26, 2016. WANG, C-S.; VIRGILIO, N.; WOOD-ADAMS, P.; HEUZEY, M-C. A mechanism for the synergistic gelation properties of gelatin B and xanthan gum aqueous mixtures. Carbohydrate Polymers, v. 175, p. 484-492, 2017. WANG, B.; VONGSVIVUT, J.; ADHIKARI, B.; BARROW, C. J. Microencapsulation of tuna oil fortified with the multiple lipophilic ingredients vitamins A, D3, E, K2, curcumin and coenzyme Q10. Journal of Functional Foods, v. 19, p. 893-901, 2015. WEINBRECK, F. ; DE VRIES, R. ; SCHROOYEN, P. ; DE KRUIF, C. G. Complex coacervation of whey proteins and gum Arabic. Biomacromolecules, v.4, no2, p.293-303, 2003. WEINBRECK, F.; MINOR, M.; DE KRUIF, C. G. Microencapsulation of oils using whey protein/gum Arabic coacervates. Journal of Microencapsulation, v. 21, n° 6, p. 667-679, 2004. WEI, Z.; HUANG, Q. Assembly of protein-polysaccharide complexes for delivery of bioactive ingredients: A perspective paper. Journal of Agricultural and Food Chemistry, 2019. DOI: 10.1021/acs.jafc.8b06063 WILSON, N.; SHAH, N.P. Microencapsulation of Vitamins. ASEAN Food Journal, v. 14, n. 1, p. 1-14, 2007. XIAO, Z.; LIU, W.; ZHU, G.; ZHOU, R.; NIU, Y. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation tecnology. Journal of the Science of Food and Agriculture, v. 94, p. 1482-1494, 2014. XING, F.; CHENG, G.; YANG, B.; MA, L. Microencapsulation of capsaicin by complex coacervation of gelatin, acacia and tannins. Journal of Applied Polymer Science, v. 91, n° 4, p. 2669-2675, 2004. XU, X.; LUO, L.; LIU, C.; MCCLEMENTS, D. J. Utilization of anionic polysaccharides to improve the stability of rice glutelin emulsions: Impact of polysaccharide type, pH, salt and temperature. Food Hydrocolloids, v.64, p. 112-122, 2017. YAN, Y.; KIZILAY, E.; SEEMAN, D.; FLANAGAN, S.; DUBIN, P. L.; BOVETTO, L.; DONATO, L.; SCHMITT, C. Heteroprotein complex coacervation: Bovine β-lactoglobulin and lactoferrin. Langmuir, 2013, v. 29, n° 50, p. 15614–15623, 2013. YE, Q.; GEORGES, N.; SELOMULYA, C. Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science & Technology, v. 78, p. 167–179, 2018. YE, A. Complexation between milk proteins and polysaccharides via electrostatic interaction: principles and applications–a review. International Journal of Food Science & Technology, v. 43, n° 3, p. 406 – 415, 2008. 83 YOUNG, S. L.; SARDA, X.; ROSEMBERG, M. Microencapsulating properties of whey proteins. 2. Combination of whey proteins with carbohydrates. Journal of Dairy Science, v. 76, n° 10, p. 2878-2885, 1993. YUAN, Y.; KONG, Z-Y.; SUN, Y-E.; ZENG, Q-Z.; YANG, X-Q. Complex coacervation of soy protein with chitosan: Constructing antioxidant microcapsule for algal oil delivery. LWT - Food Science and Technology, v. 75, p. 171-179, 2017. ZHANG, Y.; LIMA, C. F.; RODRIGUES, L. R. Anticancer effects of lactoferrin: underlying mechanisms and future trends in cancer therapy. Nutrition Reviews, v.72, n°12, p. 763–773, 2014. ZHAO, M.; WANG, Y.; HUANG, X.; GAENZLE, M.; WU, Z.; NISHINARI, K.; YANG, N.; FANG, Y. Ambient storage of microencapsulated Lactobacillus plantarum ST-III by complex coacervation of type-A gelatin and gum Arabic. Food & Function, v. 9, p. 1000-1008, 2018.https://tede.ufrrj.br/retrieve/67627/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5254Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2021-11-23T12:50:40Z No. of bitstreams: 1 2019 - Aline Cortines de Almeida Guena.pdf: 1756155 bytes, checksum: 28ad8e05bbe3c68ff74d19c1a313b711 (MD5)Made available in DSpace on 2021-11-23T12:50:41Z (GMT). No. of bitstreams: 1 2019 - Aline Cortines de Almeida Guena.pdf: 1756155 bytes, checksum: 28ad8e05bbe3c68ff74d19c1a313b711 (MD5) Previous issue date: 2019-08-08info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Aline Cortines de Almeida Guena.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/1/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2019 - Aline Cortines de Almeida Guena.pdf.txtExtracted Texttext/plain174458https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/2/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf.txt3fcf6138993427681adc45bdb5a2aa3bMD52ORIGINAL2019 - Aline Cortines de Almeida Guena.pdf2019 - Aline Cortines de Almeida Guenaapplication/pdf1756155https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/3/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf28ad8e05bbe3c68ff74d19c1a313b711MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/110062023-12-21 22:45:30.319oai:rima.ufrrj.br:20.500.14407/11006Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:45:30Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
dc.title.alternative.por.fl_str_mv Encapsulation of vitamin C by complex coacervation using xanthan gum and protein as wall material
title Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
spellingShingle Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
Guena, Aline Cortines de Almeida
Ácido ascórbico
Polissacarídeo aniônico
Lactoferrina
Gelatina de porco
Complexos coacervados
Ascorbic acid
Anionic polysaccharide
Lactoferrin
Pig gelatin
Complex coacervates
Ciência e Tecnologia de Alimentos
title_short Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
title_full Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
title_fullStr Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
title_full_unstemmed Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
title_sort Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede
author Guena, Aline Cortines de Almeida
author_facet Guena, Aline Cortines de Almeida
author_role author
dc.contributor.author.fl_str_mv Guena, Aline Cortines de Almeida
dc.contributor.advisor1.fl_str_mv Garcia Rojas, Edwin Elard
dc.contributor.advisor1ID.fl_str_mv 014.548.996-54
http://orcid.org/0000-0003-3388-8424
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1205756654416987
dc.contributor.referee1.fl_str_mv Garcia Rojas, Edwin Elard
dc.contributor.referee1ID.fl_str_mv 014.548.996-54,
http://orcid.org/0000-0003-3388-8424
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/1205756654416987
dc.contributor.referee2.fl_str_mv Machado, Mariana Teixeira da Costa
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/0032469366203941
dc.contributor.referee3.fl_str_mv Gulão, Eliana da Silva
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5986638108643018
dc.contributor.authorID.fl_str_mv 057.752.167-50
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2080689598726617
contributor_str_mv Garcia Rojas, Edwin Elard
Garcia Rojas, Edwin Elard
Machado, Mariana Teixeira da Costa
Gulão, Eliana da Silva
dc.subject.por.fl_str_mv Ácido ascórbico
Polissacarídeo aniônico
Lactoferrina
Gelatina de porco
Complexos coacervados
topic Ácido ascórbico
Polissacarídeo aniônico
Lactoferrina
Gelatina de porco
Complexos coacervados
Ascorbic acid
Anionic polysaccharide
Lactoferrin
Pig gelatin
Complex coacervates
Ciência e Tecnologia de Alimentos
dc.subject.eng.fl_str_mv Ascorbic acid
Anionic polysaccharide
Lactoferrin
Pig gelatin
Complex coacervates
dc.subject.cnpq.fl_str_mv Ciência e Tecnologia de Alimentos
description A microencapsulação é utilizada no setor alimentício para a proteção de compostos bioativos suscetíveis à degradação durante o processamento, como o ácido ascórbico, que é uma vitamina com propriedades antioxidantes, mas altamente instável. Biopolímeros vem sendo empregados como materiais de revestimento devido a sua influência na formação e estabilização de microcápsulas através da técnica de coacervação complexa. A microencapsulação do ácido ascórbico o protege, possibilitando a sua aplicação em novos alimentos e prevenindo alterações sensoriais indesejáveis no produto aplicado. O objetivo deste trabalho foi a produção de microcápsulas de ácido ascórbico formadas por emulsificação dupla seguida de coacervação complexa da goma xantana com duas proteínas diferentes: lactoferrina ou gelatina tipo A. Os complexos coacervados tiveram sua formação avaliada em relação ao pH e à razão dos biopolímeros por potencial zeta e turbidimetria. Os coacervados formados entre a proteína e o polissacarídeo na proporção de 6 : 1 em pH 5,0 para o sistema contendo lactoferrina e na proporção de 2 : 1 em pH 4,0 para o sistema com gelatina, foram os que apresentaram os melhores rendimentos, assim, foram aplicados para a microencapsulação usando diferentes proporções de núcleo e material de parede. Foi feita a caracterização morfológica, de estabilidade e térmica, por TGA e DSC, das microcápsulas contendo 75% de núcleo em relação à concentração de biopolímeros no material de parede formado pelo complexo coacervado entre a goma xantana e proteínas, as quais apresentaram as melhores eficiências de encapsulação neste estudo, de 83,19 ± 0,37 % para a lactoferrina e 73,60 ± 0,71%, para a gelatina. Embora uma maior eficiência de encapsulação tenha sido obtida pelo sistema contendo a lactoferrina, o melhor desempenho geral do estudo foi alcançado pelas microcápsulas contendo gelatina, que apresentaram melhor estabilidade e propriedades térmicas, proporcionando uma melhor proteção do ácido ascórbico durante pelo menos 30 dias, mantidas em temperatura ambiente. Em ambos os sistemas de microcápsulas avaliados, houve aumento da estabilidade térmica, em comparação ao ácido ascórbico não encapsulado, através da coacervação complexa entre os biopolímeros, o que possibilitaria sua aplicação em produtos alimentícios submetidos ao aquecimento, como pães, biscoitos ou hamburguers
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-08
dc.date.accessioned.fl_str_mv 2023-12-22T01:45:30Z
dc.date.available.fl_str_mv 2023-12-22T01:45:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GUENA, Aline Cortines de Almeida. Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede. 2019.83 f.. Dissertação( Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/11006
identifier_str_mv GUENA, Aline Cortines de Almeida. Encapsulação da vitamina C por coacervação complexa empregando goma xantana e proteína como material de parede. 2019.83 f.. Dissertação( Mestrado em Ciência e Tecnologia de Alimentos) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/11006
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABBAS, S.; WEI, C. D.; HAYAT, K.; XIAOMING, Z. Ascorbic Acid: Microencapsulation Techniques and Trends - A Review. Food Reviews International, v. 28, n. 4, p. 343–374, 2012. ACH, D.; BRIANÇON, S.; BROZE, G.; PUEL, F.; RIVOIRE, A.; GALVAN, J-M. Formation of microcapsules by complex coacervation. The Canadian Journal of Chemical Engineering, v.93, p. 183-191, 2015. ADAL, E.; SADEGHPOUR, A.; CONNELL, S.; RAPPOLT, M.; IBANOGLU, E.; SARKAR, A. Heteroprotein complex formation of bovine lactoferrin and pea protein isolate: A multiscale structural analysis. Biomacromolecules, v.18, n° 2, p. 625–635, 2017. ADITYA, N. P.; ADITYA, S.; YANG, H.; KIM, H. W.; PARK, S. O.; KO, S. Co-delivery of hydrophobic curcumin and hydrophilic catechin by a water-in-oil-in-water double emulsion. Food Chemistry, v. 173, p.7–13, 2015. ADITYA, N. P.; ESPINOSA, Y. G.; NORTON, I. T. Encapsulation systems for the delivery of hydrophilic nutraceuticals: Food application. Biotechnology Advances, v. 35, p.450-457, 2017. AGNIHOTRI, N.; MISHRA, R.; GODA, C.; ARORA, M. Microencapsulation – a novel approach in drug delivery: A review. Indo Global Journal of Pharmaceutical Sciences, v. 2, n° 1, p. 1- 20, 2012. ALOYS, H.; KORMA, S. A.; ALICE, T. M.; CHANTAL, N.; ALI, A. H.; ABED, S. M.; ILDEPHONSE, H. Microencapsulation by complex coacervation: methods, techniques, benefits, and applications – a review. American Journal of Food Science and Nutrition Research, v. 3, n° 6, p. 188 – 192, 2016. ALVIM, I. D.; STEIN, M. A.; KOURY, I. P.; DANTAS, F. B. H.; CRUZ, C. L. C. V. Comparison between the spray drying and spray chilling microparticles contain ascorbic acid in baked product application. LWT – Food Science and Technology, v. 65, p. 689 – 694, 2016. ANAL, A. K.; SHRESTHA, S.; SADIQ, M. B. Biopolymeric-based emulsions and their effects during processing, digestibility and bioaccessibility of bioactive compounds in food systems. Food Hydrocolloids, v. 87, p. 691-702, 2019. AOAC. Official methods of analysis of AOAC International, Arlington, 16 th ed, v.2, p.3-5, 1984. ARGIN-SOYSAL, S.; KOFINAS, P.; LO, Y. M. Effect of complexation conditions on xanthan–chitosan polyelectrolyte complex gels. Food Hydrocolloids, v. 23, n°1, p. 202 -209, 2009. BAMBA, B. S. B.; SHI, J.; TRANCHANT, C. C.; XUE, S. J.; FORNEY, C. F.; LIM, L. T.; XU, W.; XU, G. Coencapsulation of polyphenols and anthocyanins from blueberry pomace by double emulsion stabilized by whey proteins: Effect of homogenization parameters. Molecules, v. 23, p. 2525-2544, 2018. 67 BASTOS, L. P. H.; DE CARVALHO, C. W. P.; GARCIA-ROJAS, E. E. Formation and characterization of the complex coacervates obtained between lactoferrin and sodium alginate. International Journal of Biological Macromolecules, v. 120, p. 332-338, 2018. BENASSI, M. D. T.; ANTUNES, A. J. A. A comparison of methaphosphoric and oxalic acids as extractants solutions for the determination of vitamin C in selected vegetables. Arquivos de Biologia e Tecnologia, v. 31, n. 4, p. 507 – 513, 1988. BENGOECHEA, C.; JONES, O. G.; GUERRERO, A.; MCCLEMENTS, D. J. Formation and characterization of lactoferrin/pectin electrostatic complexes: Impact of composition, pH and thermal treatment. Food Hydrocolloids, v. 25, n°5, p. 1227-1232, 2011. BENICHOU, A.; ASERIN, A.; GARTI, N. W/O/W double emulsions stabilized with WPI-polysaccharide complexes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 294, p. 20-32, 2007. BHAT, V.; SHIVAKUMAR, H. R.; SHESHAPPA, R. K.; SANJEEV, G. Preparation and study on miscibility, thermal behavior of biocompatible polymer blends of xanthan gum-polyacrylamide. International Journal of Plastic Technology, v. 18, n° 2, p. 183 – 191, 2014. BOKKHIM, H.; BANSAL,N.; GRØNDAHL, L.; BHANDARI, B. Physico-chemical properties of different forms of bovine lactoferrin. Food Chemistry, v. 141, n°3, p. 3007-3013, 2013. BOSNEA, L. A.; MOSCHAKIS, T.; BILIADERIS, C. G. Microencapsulated cells of Lactobacillus paracasei subsp. paracasei in biopolymer complex coacervates and their function in a yogurt matrix. Food & Function, v. 8, p. 554-562, 2017. BOURBON, A. I.; CERQUEIRA, M. A.; VICENTE, A. A. Encapsulation and controlled release of bioactive compounds in lactoferrin-glycomacropeptide nanohydrogels: Curcumin and caffeine as model compounds. Journal of Food Engineering, v. 180, p. 110-119, 2016. BOURGANIS, V.; KARAMANIDOU, T.; KAMMONA, O.; KIPARISSIDES, C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, v. 111, p. 44-60, 2017. BRUNCHI, C. E.; BERCEA, M.; MORARIU, S.; DASCALU, M. Some properties of xanthan gum in aqueous solutions: effect of temperature and pH. Journal of Polymer Research, v. 23:123, 2016. CADDEO, C.; NÁCHER, A.; DÍEZ-SALES, O.; MERINO-SANJUÁN, M.; FADDA, A. M.; MANCONI, M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. Journal of Microencapsulation, v. 31, n° 7, p. 694 – 699, 2014. 68 CAI, X.; DU, X.; CUI, D.; WANG, X.; YANG, Z.; ZHU, G. Improvement of stability of blueberry anthocyanins by carboxymethyl starch/xanthan gum combinations microencapsulation. Food Hydrocolloids, v. 91, p. 238-245, 2019. CALDERÓN-OLIVER, M.; PEDROZA-ISLAS, R.; ESCALONA-BUENDÍA, H. B.; PEDRAZA-CHAVERRI, J.; PONCE-ALQUICIRA, E. Comparative study of the microencapsulation by complex coacervation of nisin in combination with na avocado antioxidante extract. Food Hydrocolloids, v. 62, p. 49-57, 2017. CARNEIRO, H. C. F.; TONON, R. V.; GROSSO, C. R. F.; HUBINGER, M. D. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using diferente combinations of wall materials. Journal of Food Engineering, v. 115, p. 443-451, 2013. CARVALHO, I. T.; ESTEVINHO, B. N.; SANTOS, L. Application of microencapsulated essential oils in cosmetic and personal healthcare products – a review. International Journal of Cosmetic Science, v. 38, p. 109 – 119, 2016. CARVALHO, J. D. S.; ORIANI, V. B.; OLIVEIRA, G. M.; HUBINGER, M. D. Characterization of ascorbic acid microencapsulated by the spray chilling technique using palm oil and fully hydrogenated palm oil. LWT- Food Science and Technology, v. 101, p. 306-314, 2019. CASAS, J. A.; SANTOS, V. E.; GARCIA-OCHOA, F. Xanthan gum production under several operational conditions: molecular structure and rheological properties. Enzyme and Microbial Technology, v. 26, n° 2 – 4, p. 282- 291, 2000. CAZÓN, P.; VELAZQUEZ, G.; RAMÍREZ, J. A.; VAZQUEZ, M. Polysaccharide-based films and coatings for food packaging: A review. Food Hydrocolloids, v. 68, p.136-148, 2017. CHAPEAU, A. L.; TAVARES, G. M.; HAMON, P.; CROGUENNEC, T. A, B, DENIS PONCELET, D.; BOUHALLAB, S. Spontaneous co-assembly of lactoferrin and b-lactoglobulin as a promising biocarrier for vitamin B9. Food Hydrocolloids, v. 57, p. 280-290, 2016. CHAWDA, P. J.; SHI, J.; XUE, S.; QUEK, S. Y. Co-encapsulation of bioactives for food applications. Food Quality and Safety, v. 1, n° 4, p. 302-309, 2017. CHEN, H.; YUE, X.; LIU, S.; YIN, L. Complex coacervation of proteins and sugar beet pectin: stabilizing oil-in-water emulsions. International Agricultural Engineering Journal, v. 27, n° 1, p. 227- 236, 2018. CHEN, X.; MCCLEMENTS, D. J.; WANG, J.; ZOU, L.; DENG, S.; LIU, W.; YAN, C.; ZHU, Y.; CHENG, C.; LIU, C. Co-encapsulation of (-)-Epigallocatechin-3-gallate and quercetin in particle-stabilized W/O/W emulsion gels: Controlled release and bioaccessibility. Journal of Agricultural and Food Chemistry, v. 66, n° 14, p. 3691-3699, 2018. COMUNIAN, T. A.; NOGUEIRA, M.; SCOLARO, B.; THOMAZINI, M.; FERRO-FURTADO, R.; DE CASTRO, I. A.; FAVARO-TRINDADE, C. S. Enhancing stability of echium seed oil and beta-sitosterol by their coencapsulation by complex coacervation 69 using diferente combinations of wall materials and crosslinkers. Food Chemistry, v. 252, p. 277-284, 2018. COMUNIAN, T. A.; THOMAZINI, M.; ALVES, A. J. G.; DE MATOS JUNIOR, F. E.; BALIEIRO, J. C. C.; FAVARO-TRINDADE, C. S. Microencapsulation of ascorbic acid by complex coacervation: Protection and controlled release. Food Research International, v. 52, p. 373–379, 2013. COMUNIAN, T. A.; ABBASPOURRAD, A.; FAVARO-TRINDADE, C. S.; WEITZ, D. A. Fabrication of solid lipid microcapsules containing ascorbic acid using a microfluidic technique. Food Chemistry, v.152, p. 271–275, 2014a COMUNIAN, T. A.; FAVARO-TRINDADE, C. S. Microencapsulation using biopolymers as an alternative to produce food enhanced with phytosterols and omega-3 fatty acids: A review. Food Hydrocolloids, v. 61, p. 442-457, 2016. COMUNIAN, T. A.; THOMAZINI, M.; GAMBAGORTE, V. F.; TRINDADE, M. A.; FAVARO-TRINDADE, C. S. Effect of Incorporating Free or Encapsulated Ascorbic Acid in Chicken Frankfurters on Physicochemical and Sensory Stability. Journal of Food Science and Engineering, v. 4, p. 167-175, 2014b COOK, M. T. ; TZORTZIS, G.; CHARALAMPOPOULOS, D.; KHUTORYANSKIY, V.V. Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release, v. 162 , p. 56–67, 2012. DA CRUZ, M. C. R.; ANDREOTTI DAGOSTIN, J. L.; PERUSSELLO, C. A.; MASSON, M. L. Assessment of physicochemical characteristics, thermal stability and release profile of ascorbic acid microcapsules obtained by complex coacervation. Food Hydrocolloids, v. 87, p. 71-82, 2019. DA CRUZ, M. C. R.; PERUSSELLO, C. A.; MASSON, M. L. Microencapsulated ascorbic acid: Development, characterization, and release profile in simulated gastrointestinal fluids. Journal of Food Process Engineering, v. 41, e12922, 2018. http://doi.org/10.1111/jfpe.12922 DAMODARAN, S.; PARKIN, K. L.; FENNEMA, O. R. Química de alimentos de Fennema. 4. ed. Porto Alegre: Artmed, 900 p, 2010. DA SILVA, T. M.; RODRIGUES, L. Z.; NUNES, G. L.; CODEVILLA, C. F.; DA SILVA, C. B.; DE MENEZES, C. R. Encapsulação de compostos bioativos por coacervação complexa. Ciência e Natura, Santa Maria, Ed. Especial-Nano e Microencapsulação de compostos bioativos e probióticos em alimentos. Dez. v.37, p. 56 – 64, 2015 DE SOUZA, C. A. G.; SIQUEIRA, S. M. C.; AMORIM, A. F. V. ; MORAIS, S. M.; GONÇALVES, T.; GOMES, R. N.; CUNHA, A. P.; RICARDO, N. M. P. S. Encapsulação do ácido L-ascórbico no biopolímero natural galactomanana por spray-drying: preparação, caracterização e atividade antioxidante. Química Nova, v. 38, no. 7, p. 877-883, 2015. DE SOUZA, V. B.; THOMAZINI, M.; BARRIENTOS, M. A. E.; NALIN, C. M.; FERRO-FURTADO, R.; GENOVESE, M. I.; FAVARO-TRINDADE, C. M. Functional properties and encapsulation of a proanthocyanidin-rich cinnamon extract (Cinnamon 70 zeylanicum) by complex coacervation using gelatina and different polysaccharides. Food Hydrocolloids, v. 77, p. 297-306, 2018. DEVI, N.; KAKATI, D. K. Smart porous microparticles based on gelatin/sodium alginate polyelectrolyte complex. Journal of Food Engineering, v. 117, n° 2, p. 193-204, 2013. DEVI, N.; SARMAH, M.; KHATUN, B.; MAJI, T. K. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in Colloid and Interface Science, v. 239, p.136–145, 2017. DIARRASSOUBA, F.; REMONDETTO, G.; GARRAIT, G.; ALVAREZ, P.; BEYSSAC, E.; SUBIRADE, M. Self-assembly of b-lactoglobulin and egg white lysozyme as a potentialcarrier for nutraceuticals. Food Chemistry, v. 173 , p. 203–209, 2015. DICKINSON, E. Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends in Food Science & Technology, v. 24, n°1, p. 4-12, 2012. DONHOWE, E. G.; FLORES, F. P.; KERR, W. L.; WICKER, L.;KONG, F. Characterization and in vitro bioavailability of b-carotene: Effects of microencapsulation method and food matrix. LWT - Food Science and Technology, v. 57, p. 42-48, 2014. DOUBLIER, J. L.; GARNIER, C.; RENARD, D.; SANCHEZ, C. Protein-polysaccharide interactions. Current Opinion in Colloid & Interface , v. 5, p. 202-214, 2000. DRUSCH, S.; BERG, S.; SCAMPICCHIO, M.; SERFERT, Y.; SOMOZA, V.; MANNINO, S.; SCHWARZ, K. Role of glycated caseinate in stabilisation of microencapsulated lipophilic functional ingredients. Food Hydrocolloids, v. 23, p. 942-948, 2009. EGHBAL, N.; CHOUDHARY, R. Complex coacervation: Encapsulation and controlled release of active agents in food systems. LWT- Food Science and Technology, v. 90, p. 254-264, 2018. ERATTE, D.; DOWLING, K.; BARROW, C. J.; ADHIKARI, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends in Food Science & Technology, v. 71, p. 121-131, 2018. ERATTE, D.; MCKNIGHT, S.; GENGENBACH, T. R.; DOWLING, K.; BARROW, C. J.; ADHIKARI,B. P. Co-encapsulation and characterisation of omega-3 fatty acids and probiotic bacteria in whey protein isolate-gum arabic complex coacervates. Journal of Functional Foods, v. 19, p. 882–892, 2015. ESTÉVEZ, M.; GÜELL, C.; DE LAMO-CASTELLVÍ, S.; FERRANDO, M. Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers: Evaluation of their stability and release. Food Chemistry, v. 272, p. 478-487, 2019. 71 EVANS, M.; RATCIIFFE, I.; WILLIAMS, P. A. Emulsion stabilization using polysaccharide-protein complexes. Current Opinion in Colloid & Interface Science, v.18, p. 272-282, 2013. FAREEZ, I. M.; LIM, S. M.; MISHRA, R. K.; RAMASAMY, K. Chitosan coated alginate–xanthan gum bead enhanced pH andthermotolerance of Lactobacillus plantarum LAB12. International Journal of Biological Macromolecules, v. 72, p. 1419-1428, 2015. FARHANG, B.; KAKUDA, Y.; CORREDIG, M. Encapsulation of ascorbic acid in liposomes prepared with milk fat globule membrane-derived phospholipids. Dairy Science & Technology., v. 92, p. 353–366, 2012. FARIAS, M. D. P.; ALBUQUERQUE, P. B. S.; SOARES, P. A.G.; DE SÁ, D. M. A. T.; VICENTE, A. A.; CARNEIRO-DA-CUNHA, M.G. Xyloglucan from Hymenaea courbaril seeds as encapsulating agente of L-ascorbic acid. International Journal of Biological Macromolecules, v. 107, parte B, p. 1559-1566, 2018. FARIA, S.; PETKOWICZ, C. L. O.; DE MORAIS, S. A. L.; TERRONES, M. G. H.; DE REZENDE, M. M.; DE FRANÇA, F. P.; CARDOSO, V. L. Characterization of xanthan gum produced from sugar cane broth. Carbohydrate Polymers, v. 86, n° 2, p. 469 – 476, 2011. FERRÁNDIZ, M.; CAPABLANCA, L.; FRANCO, E.; MIRA, E. Microencapsulation of L-ascorbic acid by spray drying using sodium alginate as wall material. Journal of Encapsulation and Adsorption Sciences, v. 6, p.1-8, 2016. FLANAGAN, S. E.; MALANOWSKI, A. J.; KIZILAY, E.; SEEMAN, D.; DUBIN, P. L.; DONATO-CAPEL, L.; BOVETTO, L.; SCHMITT, C. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin. Langmuir, v. 31, n° 5, p. 1776-1783, 2015. FROTA, H. B. M. ; MENEZES, J. E. S. A.; SIQUEIRA, S. M. C. ; RICARDO, N. M. P.; ARAÚJO, T. G. ; SOUZA, C. A. G.; BANDEIRA, P. N.; DOS SANTOS, H. S.Preparação, caracterização físico-química e liberação controlada de micropartículas de galactomanana contendo alantoína. Química Nova, v. 41, n° 5, p. 544-549, 2018. FU, D.; DENG, S.; MCCLEMENTS, D. J.; ZHOU, L.; ZOU, L.; YI, J.; LIU, C.; LIU, W. Encapsulation of β-carotene in wheat gluten nanoparticle-xanthan gum-stabilized Pickering emulsions: Enhancement of carotenoid stability and bioaccessibility. Food Hydrocolloids, v. 89, p.80-89, 2019. GHAYEMPOUR, S.; MONTAZER, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. Journal of Microencapsulation, v. 33, n° 6, p. 497- 510, 2016. GHARSALLAOUI, A.; ROUDAUT, G.; CHAMBIN, O.; VOILLEY, A.; SAUREl, R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, v. 40, p.1107–1121, 2007. GHAYEMPOUR, S.; MONTAZER, M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. Journal of Microencapsulation, v. 33, n° 6, p. 497- 510, 2016. 72 GIRARD, M.; TURGEON, S. L.; GAUTHIER, S. F. Thermodynamic parameters of β-lactoglobulin-pectin complexes assessed by isothermal titration calorimetry. Journal of Agricultural and Food Chemistry, v. 51, p. 4450 – 4455, 2003 GÓMEZ-GUILLÉN, M. C.; GIMÉNEZ, B.; LÓPEZ-CABALLERO, M. E.; MONTERO, M. P. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, v. 25, p. 1813-1827, 2011. GÓMEZ-MASCARAQUE, L. G.; MARTÍNEZ-SANZ, M.; FABRA, M. J.; LÓPEZ-RUBIO, A. Development of gelatin-coated ι-carrageenan hydrogel capsules by electric field-aided extrusion. Impact of phenolic compounds on their performance. Food Hydrocolloids, v. 90, p. 523 – 533, 2019. GONZÁLEZ-CHÁVEZ, S. A.; ARÉVALO-GALLEGOS, S.; RASCÓN-CRUZ, Q. Lactoferrin: structure, function and applications. International Journal of Antimicrobial Agents, v.33, n. 4, p. 301.e1–301.e8, 2009. GOSWAMI, S.; NAIK, S. Natural gums and its pharmaceutical application. Journal of Scientific and Innovative Research, v. 3, n° 1, p. 112-121, 2014. GUILLEN, C.; MCINNES, I. B.; VAUGHAN, D.; SPEEKENBRINK , A. B. J.; BROCK, J. H. The effects of local administration of lactoferrin on inflammation in murine autoimmune and infectious arthritis. Arthritis & rheumatism, v. 43, n° 9, p. 2073–2080, 2000. GULÃO, E. S.; SOUZA, C. J. F.; DA COSTA, A. R.; ROCHA-LEÃO, M. H. M.; GARCIA-ROJAS, E. E. Stability and rheological behavior of coconut oil-in-water emulsions formed by biopolymers. Polímeros, v. 28, n° 5, p. 413-421, 2018. GULÃO, E. D. S.; SOUZA, C. J. F.; DA SILVA, F. A. S.; COIMBRA, J.S. R. , GARCIA-ROJAS, E. E. Complex coacervates obtained from lactoferrin and gum arabic: Formation and characterization. Food Research International, v. 65, p 367-374, 2014. GULÃO, E. D. S.; SOUZA, C. J. F.; ANDRADE, C. T.; GARCIA-ROJAS, E. E. Complex coacervates obtained from peptide leucine and gum arabic: Formation and characterization. Food Chemistry, v. 194, p 680-686, 2016. HASANVAND, E.; RAFE, A. Development of vanillin/β-cyclodexterin inclusion microcapsules using flax seed gum-rice bran protein complex coacervates. International Journal of Biological Macromolecules, v. 131, p. 60-66, 2019. HATTREM, M. N.; DILLE, M. J.; SETERNES, T.; DRAGET, K. I. Macro- vs. micromolecular stabilisation of W/O/W-emulsions. Food Hydrocolloids, v. 37, p. 77- 85, 2014. HO, L. Y.; LIM, Y. Y.; TAN, C. P.; SIOW, L. F. Comparison of physicochemical properties and aqueous solubility of xanthone prepared via oil-in-water emulsion and complex coacervation techniques. International Journal of Food Properties, v. 21, n° 1, p. 784-798, 2018. 73 HOLKEM, A. T.; RADDATZ, G. C.; BARIN, J. S.; FLORES, E. M. M.; MULLER, E. I.; CODEVILLA, C. F.; JACOB-LOPES, E.; GROSSO, C. R. F.; DE MENEZES, C. R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT - Food Science and Technology, v. 76, p. 216-222, 2017. HOYOS-LEYVA, J. D. ; CHAVEZ-SALAZAR, A.; CASTELLANOS-GALEANO, F.; BELLO-PEREZ, L. A.; ALVAREZ-RAMIREZ, J. Physical and chemical stability of l-ascorbic acid microencapsulated into taro starch spherical aggregates by spray drying. Food Hydrocolloids, v. 83, p. 143-152, 2018. HU, Y.-T.; TING, Y.; HU, J.-Y.; HSIEH, S.-C. Techniques and methods to study functional characteristics of emulsion systems. Journal of Food and Drug Analysis, v. 25, p.16-26, 2017. IGE, O. O.; UMORU, L. E.; ARIBO, S. Natural Products: A minefield of biomaterials. International Scholarly Research Network Materials Science, v. 2012, p.1-20, 2012. JACKSON, L. S.; LEE, K. Microencapsulation and the food industry. Lebensmittelwissenschaft und Technologie, v. 24, p. 289-297, 1991. JAIN, A.; THAKUR, D.; GHOSHAL, G.; KATARE, O. P.; SHIVHARE, U. S. Microencapsulation by complex coacervation using whey protein isolates and gum acacia: An approach to preserve the functionality and controlled release of β-carotene. Food and Bioprocess Technology, v. 8, n° 8, p. 1635-1644, 2015. JAMEKHORSHID, A.; SADRAMELI, S. M.; FARID, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renewable and Sustainable Energy Reviews, v.31, p. 531-542, 2014. JANNASARI, N.; FATHI, M.; MOSHTAGHIAN, S. J.; ABBASPOURRAD, A. Microencapsulation of vitamin D using gelatin and cress seed mucilage: Production, characterization and in vivo study. International Journal of Biological Macromolecules, v. 129, p. 972- 979, 2019. JIMÉNEZ-ALVARADO, R.; BERISTAIN, C. I.; MEDINA-TORRES, L.; ROMÁN-GUERRERO, A.; VERNON-CARTER, E. J. Ferrous bisglycinate contente and release in W1/O/W2 emulsions stabilized by protein-polysaccharide complexes. Food Hydrocolloids, v. 23, p. 2425-2433, 2009. JIMÉNES-COLMENERO, F. Emulsiones multiples; compostos bioactivos y alimentos funcionales. Nutricion Hospitalaria, v. 28, n.5, p.1413-1421, 2013. JIN, R.; YIN, H.; WANG, H.; ZHANG, D.; CAO, K.; YUAN, C. Preparation and characterization of squalene microcapsules by complex coacervation. Journal of Food Process Engineering, v. 41, n°6, e12847, 2018. JOYE, I. J.; MCCLEMETS, D. J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, v. 19, n° 5, p. 417- 427, 2014. 74 KALOGIANNIS, S.; IAKOVIDOU, G.; LIAKOPOULOU-KYRIAKIDES, M.; KIRIAKIDIS, D. A.; SKARACIS, G. N. Optimization of xanthan gum production by Xanthomonas capestris grown in molasses. Process Biochemistry, v. 39, p. 249 -256, 2003. KARIM, A. A.; BHAT, R. Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids, v. 23, p. 563-576, 2009. KARIM, F. T.; GHAFOOR, K.; FERDOSH, S.; AL-JUHAIMI, F.; ALI, E.; YUNUS, K. B.; HAMED, M. H.; ISLAM, A.; ASIF, M.; SARKER, M. Z. I.; Microencapsulation using supercritical antisolvent process. Journal of Food and Drug Analysis, v. 25, p. 654 - 666, 2017. KATOUZIAN, I.; JAFARI, S. M. Nano-encapsulation as promising approach for targeted delivery and controlled release of vitamins. Trends in Food Science & Technology, v. 53, p. 34-48, 2016. KHAN, B. A.; AKHTAR, N.; KHAN, H. M. S.; WASEEM, K.; MAHMOOD, T.; IQBAL, M.; KHAN, H. Basics of pharmaceutical emulsions: A review. African Journal of Pharmacy and Pharmacology, v. 5, n° 25, p. 2715-2725, 2011. KOUPANTIS, T.; PAVLIDOU, E.; PARASKEVOPOULOU, A. Glycerol and tannic acid as applied in the preparation of milk proteins – CMC complex coacervates for flavor encapsulation. Food Hydrocolloids, v. 57, p. 62-71, 2016. KUROIWA, T.; · HORIKOSHI, K.; SUZUKI, A.; NEVES, M. A.; KOBAYASHI, I.; UEMURA, K.; NAKAJIMA, M.; KANAZAWA, A.; ICHIKAWA, S. Efficient encapsulation of a water-soluble molecule into lipid vesicles using W/O/W multiple emulsions via solvent evaporation. Journal of the American Oil Chemists' Society, v. 93, p. 421- 430, 2016. KIM, Y. D.; MORR, C. V.; SCHENZ, T. V. Microencapsulation properties of gum Arabic and several food proteins: Liquid orange oil emulsion particles. Journal of Agricultural and Food Chemistry, v. 44, p. 1308-1313, 1996. KOIDA,Y.; KOBAYASHI, M.; HIRATA, G. Studies on Microcapsules. III. Influence of molecular weight of polyisobutylene in the microencapsulation of ascorbic acid, Chemical and Pharmaceutical Bulletin, v. 32, n°12, p. 4971 - 4978, 1984. KUMAR, A.; RAO, K. M.; HAN, S. S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers, v. 180, p. 128-144, 2018. LAM, P.-L.; KOK, S. H.-L.; BIAN, Z.-X.; LAM, K.-H.; GAMBARI, R.; LEE, K. K.-H.; CHUI, C.-H. Microencapsulaion-protected L-ascorbic acid for the application of human epithelial HaCaT cell proliferation. Journal of Microencapsulation, v. 31, n° 8, p. 754 – 758, 2014. LANEUVILLE, S. I.; PAQUIN, P.; TURGEON, S. L.. Effect of preparation conditions on the characteristics of whey protein-xanthan gum complexes. Food Hydrocolloids, v.14, p. 305–314, 2000. LESMES, U.; SANDRA, S.; DECKER, E. A.; MCCLEMENTS, D. J. Impact of surface deposition of lactoferrin on physical and chemical stability of ômega-3 rich lipid droplets stabilised by caseinate. Food Chemistry, v. 123, n°1, p. 99-106, 2010. 75 LII, C. Y.; LIAW, S. C.; LAI,V. M. F.; TOMASIK, P. Xanthan gum–gelatin complexes. European Polymer Journal, v. 38, n7, p. 1377-1381, 2002. LIU, W.; WANG, J.; MCCLEMENTS, D. J.; ZOU, L. Encapsulation of β-carotene-loaded oil droplets in caseinate/alginate microparticles: Enhancement of carotenoid stability and bioaccessibility. Journal of Functional Foods, v.40, p. 527-535, 2018. LIU, F.; ZHANG, S.; LI, J.; MCCLEMENTS, D. J.; LIU, X. Recent development of lactoferrin-based vehicles for the delivery of bioactive compounds: Complexes, emulsions, and nanoparticles. Trends in Food Science & Technology , v.79, p. 67–77, 2018. LU, W.; KELLY, A. L.; MIAO, S. Emulsion-based encapsulation and delivery systems for polyphenols. Trends in Food Science & Technology , v.47, p. 1-9, 2016. MA, T.; ZHAO, H.; WANG, J.; SUN, B. Effect of processing conditions on the morphology and oxidative stability of lipid microcapsules during complex coacervation. Food Hydrocolloids, v. 87, p. 637-643, 2019. MADHAMUTHANALLI, C. V.; BANGALORE, S. A. Rheological and physico-chemical properties of GE extracted from the skin of a few species of freshwater carp. International Journal of Food Science & Technology, v. 49, p. 1758 – 1764, 2014. MAJI, T. K.; HOUSSAIN, R. Microencapsulation of Zanthoxylum limonella oil (ZLO) in genipin crosslinked chitosan–gelatin complex for mosquito repellent application. Journal of Applied Polymer Science, v. 111, n° 2, p. 779-785, 2009. MANELA-AZULAY, M.; LACERDA, C. A. M.; PEREZ, M. A.; FILGUEIRA, A. L.; CUZZI, T. Vitamin C. Anais Brasileiros de Dermatologia, Rio de Janeiro, v. 78, n. 3, p. 265-274, maio/jun. 2003. MARIOD, A. A.; ADAM, H. F. Review: Gelatin, source, extraction and industrial applications. Acta Scientiarum Polonorum Technologia Alimentaria, v. 12, n° 2, p. 135 -147, 2013. MARTINS, I. M.; RODRIGUES, S. N.; BARREIRO, F.; RODRIGUES, A. E. Microencapsulation of thyme oil by coacervation. Journal of Microencapsulation, v. 26, p. 667 - 675, 2009. MARK, J. E. Polymer Data Handbook. Gelatin. Oxford University Press, p. 120- 129, 1 Edição, 1999. MARSANASCO, M.; MÁRQUEZ, A. L.; WAGNER, J. R.; ALONSO, S. V., CHIARAMONI, N. S. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Research International, v. 44, p. 3039–3046, 2011. MARSHALL, K. Therapeutic Applications of Whey Protein. Alternative Medicine Review, v. 9, n. 2, 2004. MATOS-JR, F. E.; COMUNIAN, T. A.; THOMAZINI, M.; FAVARO-TRINDADE, C. S. Effect of feed preparation on the properties and stability of ascorbic acid microparticles produced by spray chilling. LWT - Food Science and Technology, v. 75, p. 251-260, 2017. 76 MATOS-JR, F. E.; DI SABATINO, M.; PASSERINI, N.,CARMEN SÍLVIA FAVARO-TRINDADE, C. S.; ALBERTINI, B. Development and characterization of solid lipid microparticles loaded with ascorbic acid and produced by spray congealing. Food Research International, v.67, p.52–59, 2015. MASUELLI, M. A. Mark-Houwink parameters for aqueous-soluble polymers and biopolymers at various temperatures. Journal of Polymer and Biopolymer Physics Chemistry, v. 2, n° 2, p. 37- 43, 2014. MCCLEMENTS, D. J.; DECKER, E. A.; WEISS, J. Emulsion-based delivery systems for lipophilic bioactive components. Journal of Food Science R: Concise Reviews/ Hypotheses in Food Science, v. 72, n° 8, p. 109- 124, 2007. MCCLEMENTS, D. J. Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle systems: A review. Advances in Colloid and Interface Science, v. 253, p. 1-22, 2018. MENDANHA, D. V. ; ORTIZ, S. E. M. ; FAVARO-TRINDADE, C. S. ; MAURI, A. ; MONTERREY-QUINTERO, E. S. ; THOMAZINI, M. Microencapsulation of casein hydrolysate by complex coacervation with SPI/pectin. Food Research International, v.42, no8, p.1099-1104, 2009. MOSCHAKIS, T.; BILIADERIS, C. G. Biopolymer-based coacervates: Structures, functionality and applications in food products. Current Opinion in Colloid & Interface Science, v. 28, p. 96-109, 2017. MUHOZA, B.; XIA, S.; CAI, J.; ZHANG, X.; DUHORANIMANA, E., SU, J. Gelatin and pectin complex coacervates as carriers for cinnamaldehyde: Effect of pectin esterification degree on coacervate formation, and enhanced termal stability. Food Hydrocolloids, v. 87, p. 712-722, 2019. MUN, S.; CHO, Y.; DECKER, E. A.; MCCLEMENTS; D. J. Utilization of polysaccharide coatings to improve freeze-thaw and freeze-dry stability of protein-coated lipid droplets. Food Engineering, v. 86, p. 508- 518, 2007. MUTALIYEVA, B.; GRIGORIEV, D.; MADYBEKOVA, G.; SHARIPOVA, A. AIDAROVA, S.; SAPARBEKOVA, A.; MILLER, R. Microencapsulation of insulin and its release using w/o/w double emulsion method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, v. 521, p. 147-152, 2017. MUYONGA, J. H.; COLE, C. G. B.; DUODU, K. G. Characterisation of acid soluble collagen from skins of young and adult Nile perch (Lates niloticus). Food Chemistry, v. 85, p. 81–89, 2004. NAZZARO, F.; ORLANDO, P.; FRATIANNI, F.; COPPOLA, R. Microencapsulation in food science and biotechnology. Current Opinion in Biotechnology, v. 23, p. 182–186, 2012. NESTERENKO, A.; ALRIC, I.; SILVESTRE, F.; DURRIEU, V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products, v. 42, p. 469 - 479, 2013. 77 NEUMANN, S. M.; VAN DER SCHAAF, U. S.; KARBSTEIN, H. P. Investigations on the relationship between interfacial and single droplet experiments to describe instability mechanisms in double emulsions. Colloids and Surfaces A, v. 553, p. 464- 471, 2018. OUTUKI, P. M.; DE FRANCISCO, L. M. B.; HOSCHEID, J.; BONIFÁCIO, K. L.; BARBOSA, D. S.; CARDOSO, M. L. C. Development of arabic and xanthan gum microparticles loaded with an extra
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/1/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/2/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/3/2019%20-%20Aline%20Cortines%20de%20Almeida%20Guena.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11006/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
3fcf6138993427681adc45bdb5a2aa3b
28ad8e05bbe3c68ff74d19c1a313b711
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107861092532224