Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/9056 |
Resumo: | Deficiência por nitrogênio (N) é um estresse abiótico a que plantas de arroz estão susceptíveis ao longo do ciclo de cultivo, devido sobretudo à grande demanda por N apresentada por essa cultura e, também, pela fácil perda desse nutriente no solo. A metilação do DNA é um mecanismo epigenético que afeta o desempenho das plantas frente a diversos estresses ambientais. Os objetivos dessa pesquisa foram: 1) verificar se plantas de arroz submetidas ao estresse pelo baixo fornecimento de N modificam o perfil de metilação do DNA; 2) verificar possíveis alterações no perfil de metilação do DNA, modificações morfo-fisiológicas, metabólicas, e expressão gênica em plantas de arroz submetidas a diferentes ciclos de cultivo com baixo N ; 3) estabelecer relações entre modificações na metilação do DNA e alterações morfo-fisiológicas e metabólicas; 4) determinar se a exposição a ciclos de cultivo com baixo N resulta em plantas melhor adaptadas a essa condição. Para isso, as variedades de arroz Esmeralda (melhorada), Manteiga e Piauí (tradicionais do estado do Maranhão), foram submetidas aos seguintes tratamentos: Controle – plantas cultivadas com N-suficiente (60 kg N ha-1) durante três ciclos de cultivo sucessivos; NS1 – plantas cultivadas com baixo N (10 kg N ha-1) somente no último ciclo de cultivo (primeira exposição ao estresse); NS2 – plantas cultivadas com baixo N no primeiro e terceiro ciclo de cultivo (estresse intermitente); NS3 – plantas cultivadas com baixo N durante três ciclos sucessivos (estresse recorrente). Foi verificado em plantas da variedade Esmeralda uma redução na metilação total do DNA cultivadas com baixo N em comparação ao controle. Plantas submetidas aos tratamentos de baixo N apresentaram maior redução no número de bandas hemi-metiladas em detrimento de bandas totalmente metiladas. A redução mais severa no número de bandas hemi-metiladas foi verificada em plantas submetidas ao tratamento NS2, o que foi acompanhado por um aumento mais expressivo no número de bandas totalmente metiladas. Essa modificação no padrão de metilação do DNA observado em NS2 foi seguido por uma redução na produção de grãos, na eficiência fotossintética e nos parâmetros relacionados a eficiência de uso de N. As variedades Manteiga e Piauí apresentaram um aumento expressivo no número total de bandas metiladas quando submetidas aos tratamentos de estresse por baixo N em comparação ao controle. Esse resultado deveu-se, sobretudo, ao forte aumento no número de bandas totalmente metiladas. Plantas submetidas aos tratamentos NS2 e NS3 tiveram aumento mais expressivo no número de bandas totalmente metiladas, e uma redução no número de bandas hemi-metiladas. Essa modificação no padrão de metilação foi acompanhada por maior rendimento de grãos, melhor eficiência fotossintética, aumento na eficiência de uso de N e alterações na expressão gênica. Os resultados mostram que a exposição ao baixo N altera o padrão de metilação do DNA, e que o tipo e a intensidade dessa alteração dependem tanto da duração do estresse quanto das variedades em estudo. As alterações no padrão de metilação DNA são acompanhadas por modificações morfo-fisiológicas, metabólicas e na expressão gênica. A exposição ao estresse intermitente e recorrente melhora o desempenho das variedades Manteiga e Piauí, enquanto o estresse intermitente é prejudicial a variedade Esmeralda. |
id |
UFRRJ-1_bb583f669f2886acfa59f55ab9721fc9 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/9056 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Pereira, Erinaldo GomesFernandes, Manlio Silvestre002.180.573-34https://orcid.org/0000-0001-5329-6122http://lattes.cnpq.br/6269004387821466Santos, Leandro Azevedohttps://orcid.org/0000-0002-2595-9432http://lattes.cnpq.br/4704465400011358Fernandes, Manlio Silvestrehttps://orcid.org/0000-0001-5329-6122http://lattes.cnpq.br/6269004387821466Calderín García, Andréshttps://orcid.org/0000-0001-5963-3847http://lattes.cnpq.br/8896375232574274Santos, André Marques doshttp://lattes.cnpq.br/3428935182333406Matos, Clicia Grativol Gaspar dehttp://lattes.cnpq.br/3181149120291303Vidal, Márcia Soareshttp://lattes.cnpq.br/3036544314910366112.516.576-64https://orcid.org/0000-0002-9052-091Xhttp://lattes.cnpq.br/36372098010056752023-12-21T18:33:58Z2023-12-21T18:33:58Z2022-11-25PEREIRA, Erinaldo Gomes. Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio. 2022. 80 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022.https://rima.ufrrj.br/jspui/handle/20.500.14407/9056Deficiência por nitrogênio (N) é um estresse abiótico a que plantas de arroz estão susceptíveis ao longo do ciclo de cultivo, devido sobretudo à grande demanda por N apresentada por essa cultura e, também, pela fácil perda desse nutriente no solo. A metilação do DNA é um mecanismo epigenético que afeta o desempenho das plantas frente a diversos estresses ambientais. Os objetivos dessa pesquisa foram: 1) verificar se plantas de arroz submetidas ao estresse pelo baixo fornecimento de N modificam o perfil de metilação do DNA; 2) verificar possíveis alterações no perfil de metilação do DNA, modificações morfo-fisiológicas, metabólicas, e expressão gênica em plantas de arroz submetidas a diferentes ciclos de cultivo com baixo N ; 3) estabelecer relações entre modificações na metilação do DNA e alterações morfo-fisiológicas e metabólicas; 4) determinar se a exposição a ciclos de cultivo com baixo N resulta em plantas melhor adaptadas a essa condição. Para isso, as variedades de arroz Esmeralda (melhorada), Manteiga e Piauí (tradicionais do estado do Maranhão), foram submetidas aos seguintes tratamentos: Controle – plantas cultivadas com N-suficiente (60 kg N ha-1) durante três ciclos de cultivo sucessivos; NS1 – plantas cultivadas com baixo N (10 kg N ha-1) somente no último ciclo de cultivo (primeira exposição ao estresse); NS2 – plantas cultivadas com baixo N no primeiro e terceiro ciclo de cultivo (estresse intermitente); NS3 – plantas cultivadas com baixo N durante três ciclos sucessivos (estresse recorrente). Foi verificado em plantas da variedade Esmeralda uma redução na metilação total do DNA cultivadas com baixo N em comparação ao controle. Plantas submetidas aos tratamentos de baixo N apresentaram maior redução no número de bandas hemi-metiladas em detrimento de bandas totalmente metiladas. A redução mais severa no número de bandas hemi-metiladas foi verificada em plantas submetidas ao tratamento NS2, o que foi acompanhado por um aumento mais expressivo no número de bandas totalmente metiladas. Essa modificação no padrão de metilação do DNA observado em NS2 foi seguido por uma redução na produção de grãos, na eficiência fotossintética e nos parâmetros relacionados a eficiência de uso de N. As variedades Manteiga e Piauí apresentaram um aumento expressivo no número total de bandas metiladas quando submetidas aos tratamentos de estresse por baixo N em comparação ao controle. Esse resultado deveu-se, sobretudo, ao forte aumento no número de bandas totalmente metiladas. Plantas submetidas aos tratamentos NS2 e NS3 tiveram aumento mais expressivo no número de bandas totalmente metiladas, e uma redução no número de bandas hemi-metiladas. Essa modificação no padrão de metilação foi acompanhada por maior rendimento de grãos, melhor eficiência fotossintética, aumento na eficiência de uso de N e alterações na expressão gênica. Os resultados mostram que a exposição ao baixo N altera o padrão de metilação do DNA, e que o tipo e a intensidade dessa alteração dependem tanto da duração do estresse quanto das variedades em estudo. As alterações no padrão de metilação DNA são acompanhadas por modificações morfo-fisiológicas, metabólicas e na expressão gênica. A exposição ao estresse intermitente e recorrente melhora o desempenho das variedades Manteiga e Piauí, enquanto o estresse intermitente é prejudicial a variedade Esmeralda.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorNitrogen (N) deficiency is an abiotic stress to which rice plants are susceptible to throughout the crop cycle, mainly due to the high demand for N presented by this crop and also because of the easy loss of this nutrient in the soil. DNA methylation is an epigenetic mechanism that affects plant performance in the face of various environmental stresses. The objectives of this research were: 1) to verify if rice plants submitted to low N stress modify their DNA methylation profile; 2) to verify possible alterations in the DNA methylation profile, morpho- physiological, metabolic changes, and gene expression in rice plants submitted to different crop cycles with low N; 3) to establish relationships between DNA methylation modifications and morpho-physiological and metabolic changes; 4) to determine if exposure to low N cycles results in plants better adapted to this condition. For this, the rice varieties Esmeralda (improved), Manteiga and Piauí (traditional from Maranhão state), were subjected to the following treatments: Control - plants grown with N-sufficient (60 kg N ha-1) for three successive crop cycles; NS1 - plants grown with low N (10 kg N ha-1) only in the last crop cycle (first stress exposure); NS2 - plants grown with low N in the first and third crop cycle (intermittent stress); NS3 - plants grown with low N for three successive cycles (recurrent stress). A reduction in total DNA methylation was verified in plants of the Esmeralda variety grown with low N compared to the control. Plants submitted to the low N treatments showed a greater reduction in the number of hemi-methylated bands at the expense of fully methylated bands. The most severe reduction in the number of hemi-methylated bands was seen in plants submitted to the NS2 treatment, which was accompanied by a more significant increase in the number of fully methylated bands. This modification in the DNA methylation pattern observed in NS2 was followed by a reduction in grain yield, photosynthetic efficiency, and N use efficiency related parameters. The varieties Manteiga and Piauí showed a significant increase in the total number of methylated bands when subjected to the low N stress treatments compared to the control. This result was mainly due to a strong increase in the number of fully methylated bands. Plants subjected to the NS2 and NS3 treatments had a more significant increase in the number of fully methylated bands, and a decrease in the number of hemi-methylated bands. This modification in methylation pattern was accompanied by higher grain yield, improved photosynthetic efficiency, increased N use efficiency, and changes in gene expression. The results show that exposure to low N alters the DNA methylation pattern, and that the type and intensity of this alteration depend on both the duration of stress and the varieties under study. Changes in the DNA methylation pattern are accompanied by morpho-physiological, metabolic, and gene expression modifications. Exposure to intermittent and recurrent stress improves the performance of the varieties Manteiga and Piauí, whereas intermittent stress is detrimental to the variety Esmeralda.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaArrozNitrogênioEstresseEpigenéticaMetilaçãoDesmetilaçãoRiceNitrogenStressEpigeneticMethylationDemethylationAgronomiaContribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênioContribution of variations in DNA methylation profile and metabolic and physiological changes to adaptation of rice (Oryza sativa L.) plants to low- nitrogen cropping systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisBAULCOMBE, D. C.; DEAN, C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol v. 6, n. 9, pp. a019471, 2014. BHATTARAI, K.; BHATTARAI, B.; STUDIES, A. Mechanism of DNA methylation and its role in biotic and abiotic stress response in plants: A review. Farming Manag v. 6, pp. 39-46, 2021. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem v. 72, pp. 248–254, 1976. CHANG, Y. N.; ZHU, C.; JIANG, J., ZHANG, H., ZHU, J. K., DUAN, C. G. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol v. 62, n. 5, pp. 563-580, 2020. COELHO, C. P.; SANTOS, L. A.; RANGEL, R. P.; SPERANDIO, M. V. L.; BUCHER, C. A.; DE SOUZA, S. R.; FERNANDES, M. S. Rice varieties exhibit different mechanisms for Nitrogen Use Efficiency (NUE). Aust J Crop Sci v. 10, n. 3, pp. 342-352, 2016. CUADROS-INOSTROZA, Á.; CALDANA, C.; REDESTIG, H.; KUSANO, M.; LISEC, J.; PEÑA-CORTÉS, H.; WILLMITZER, L.; HANNAH, M.A. TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics v. 10, n. 1, pp. 1-12, 2009. DO AMARAL, M. N.; AULER, P. A.; ROSSATTO, T.; BARROS, P. M.; OLIVEIRA, M. M.; BRAGA, E. J. B. Long-term somatic memory of salinity unveiled from physiological, biochemical and epigenetic responses in two contrasting rice genotypes. Physiol Plant v. 170, n. 2, pp. 248-268, 2020. DOLL, H.; ANDERSEN, B. Preparation of barley storage protein, hordein, for analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry v. 115, pp. 61–66, 1981. EVANS, J. R.; CLARKE, V. C. The nitrogen cost of photosynthesis. J Exp Bot v. 70, n. 1, pp. 7-15, 2019. FAGODIYA, R. K.; PATHAK, H.; BHATIA, A.; JAIN, N.; KUMAR, A.; MALYAN, S.K. Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon Manag v. 11, n. 3, pp. 291-301, 2020. FAN, X.; LIU, L.; QIAN, K.; CHEN, J.; ZHANG, Y.; XIE, P.; XU, M.; HU, Z.; YAN, W.; WU, Y.; XU, G.; FAN, X. Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice BMC plant biol v. 21, n. 1, pp. 1-18, 2021. FANG, Z.; WU, B.; JI, Y. The Amino Acid Transporter OsAAP4 Contributes to Rice Tillering and Grain Yield by Regulating Neutral Amino Acid Allocation through Two Splicing Variants. Rice v. 14, n. 1, pp. 1-17, 2021. FERREIRA, L. M.; TAVARES, O. C. H.; DE OLIVEIRA, C. M.; DE SOUZA, S. R.; FERNANDES, M. S.; SANTOS, L. A. Morphological and physiological responses to drought stress in a set of Brazilian traditional upland rice varieties in post-anthesis stage. Aust J Crop Sci v. 14, n. 1, 2020. 58 FREIRE, L. R.; BAILIEIRO, F.; ZONTA, E., ANJOS, L. H. C.; PEREIRA, M. G.; LIMA, E.; GUERRA, J. G. M.; FERREIRA, M. B. C.; LEAL, M. A. A.; CAMPOS, D. V. B.; POLIDORO, J. C. Manual De Calagem E Adubação Do Estado Do Rio De Janeiro, Embrapa, 2013. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and Purification of Functional Total RNA from Blue- grained Wheat Endosperm Tissues Containing High Levels of Starches and Flavonoids. Plant Mol Biol Report v. 19, n. 2, pp. 185-186, 2001. HIRASAWA, T.; OZAWA, S.; TAYLARAN, R. D.; OOKAWA, T. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod Sci v. 13, n. 1, pp. 53-57, 2010. JULIANO, B. O. Structure, chemistry, and function of the rice grain and its fractions. Cereal Foods World v. 37, n. 10, pp. 772-779, 1992. KHUSH, G. S. Green revolution: the way forward. Nat Rev Genet v. 2, n. 10, pp. 815-822, 2001 KOU, H. P.; LI, Y.; SONG, X. X.; OU, X. F.; XING, S. C.; MA, J.; VON WETTSTEIN, D.; LIU, B. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol n. 14, pp. 1685-1693, 2011. KUMAR, S. Epigenomics of Nutrient Use Efficiency in Plant Epigenomics of Nutrient Use Efficiency in Plant. Division of Biochemistry, IARI, New Delhi, 2019. KUMAR, S. Epigenetic Memory of Stress Responses in Plants Epigenetic Memory of Stress Responses in Plants. J Phytochem Biochem v. 2, n. 1, 2018. LI, A.; HU, B.; CHU, C. Epigenetic regulation of nitrogen and phosphorus responses in plants. J Plant Physiol v. 258, pp. 153363, 2021a. LI, A.; HU, B.; CHU, C. Epigenetic regulation of nitrogen and phosphorus responses in plants. J Plant Physiol v. 258, pp. 153363, 2021b. LISEC, J.; SCHAUER, N.; KOPKA, J.; WILLMITZER, L.; FERNIE, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc v. 1, pp. 387–396. LIU, Y.; WANG, H.; JIANG, Z.; WANG, W.; XU, R.; WANG, Q.; ZHANG, Z.; LI, A.; LIANG, Y.; OU, S.; LIU, X.; CAO, S.; TONG, H.; WANG, Y.; ZHOU, F.; LIAO, H.; HU, B.; CHU, C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, v. 590, n. 7847, pp. 600-605, 2021. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real- time quantitative PCR and the 2-∆∆CT method. Methods v. 25, pp. 402–408, 2001. MAGER, S., LUDEWIG, U. Massive loss of DNA methylation in nitrogen-, but not in phosphorus-deficient Zea mays roots is poorly correlated with gene expression differences. Front Plant Sci v. 9, pp. 1–14, 2018. MURRAY, M.; THOMPSON, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, v. 8, n. 19, pp. 4321-4326, 1980. 59 NEVES, D. M.; ALMEIDA, L. A. D. H.; SANTANA-VIEIRA, D. D. S.; FRESCHI, L.; FERREIRA, C. F.; SOARES FILHO, W. D. S.; COSTA, M. G. C.; MICHELI, F., COELHO FILHO, M. A.; GESTEIRA, A. D. S. Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci Rep v. 7, n. 1, pp. 1-11, 2017. NIEHRS, C. Active DNA demethylation and DNA repair. Differentiation v. 77, pp. 1–11, 2009. PENG, B.; KONG, H.; LI, Y.; WANG, L.; ZHONG, M.; SUN, L.; GAO, G.; ZHANG, Q.; LUO, L.; WANG, G.; XIE, W.; CHEN, J.; YAO, W.; PENG, Y.; LEI, L.; LIAN, X.; XIAO, J.; XU, C.; LI, X.; HE, Y. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun v. 5, pp. 1–12, 2014. PEREIRA, E. G.; FERREIRA, L. M.; FERNANDES, E. C.; LIMA, B. R.; SANTOS, L. A.; FERNANDES, M. S. Root morphology and ammonium uptake kinetics in two traditional rice varieties submitted to different doses of ammonium nutrition. J Plant Nutr v. 44, n. 18, pp. 2715-2728, 2021. PEREIRA, E.G., SPERANDIO, M.V.L., SANTOS, L.A., BUCHER, C.A., COELHO, C.P., FERNANDES, M.S. Rice varieties with contrasting nitrogen use efficiency present different expression of amino acid transporters and ammonium transporters. Arch Agron Soil Sci pp. 1-15, 2022. R CORE TEAM. R: a language and environment for statistical computing. Vienna (Austria): RFoundation for Statistical Computing. https://www.R-project.org/, 2019. SADDHE, A. A.; MANUKA, R.; PENNA, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol Plant v. 171, pp. 739–755, 2021. SANTANA-VIEIRA, D. D. S.; FRESCHI, L.; DA HORA ALMEIDA, L. A.; MORAES, D. H. S.; NEVES, D. M.; DOS SANTOS, L. M.; BERTOLDE, F. Z.; SOARES FILHO, W. D. S.; COELHO FILHO, M. A.; GESTEIRA, A. D. S. Survival strategies of citrus rootstocks subjected to drought. Sci Rep v. 6, pp. 1–12, 2016. SECCO, D.; WANG, C.; SHOU, H.; SCHULTZ, M. D.; CHIARENZA, S.; NUSSAUME, L.; ECKER, J. R.; WHELAN, J.; LISTER, R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife v. 4, pp. e09343, 2015. SHAN, X.; WANG, X.; YANG, G.; WU, Y.; SU, S.; LI, S.; LIU, H.; YUAN, Y. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation- sensitive amplified polymorphisms. J Plant Biol v. 56, pp. 32–38, 2013. SHI, H.; JIANG, C.; YE, T.; TAN, D. X.; REITER, R. J.; ZHANG, H.; LIU, R.; CHAN, Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot v. 66, pp. 681–694, 2015. SRIKANT, T.; DROST, H. G. How Stress Facilitates Phenotypic Innovation Through Epigenetic Diversity. Front Plant Sci v. 11, pp. 1–14, 2021. TANG, X. M.; TAO, X.; WANG, Y.; MA, D. W.; LI, D.; YANG, H.; MA, X. R. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Genet Genomics v. 289, n. 6, pp. 1075- 1084, 2014. 60 TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS S. J. Análise de solo, plantas e outros materiais. 2.ed. Porto Alegre, Universidade Federal do Rio Grande do Sul, 174p, 1995. TSIMILLI-MICHAEL, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica v. 58, pp. 275– 292, 2020. TSIMILLI-MICHAEL, M.; STRASSER, R. J. In vivo assessment of stress impact on plant’s vitality: Applications in detecting and evaluating the beneficial role of mycorrhization on host plants. Mycorrhiza pp. 679–703, 2008. TURLEY, R. H.; CHING, T. M. Storage Protein Accumulation in ‘Scio’Barley Seed as Affected by late Foliar Applications of Nitrogen 1. Crop Science v. 26, n. 4, pp. 778-782, 1986. WOO, H. R.; DITTMER, T. A.; RICHARDS, E. J. Three SRA-domain methylcytosine- binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in arabidopsis. PLoS Genet v. 4, n. 8, pp. e1000156, 2008. WU, K.; WANG S.; SONG, W.; ZHANG, J.; WANG, Y.; LIU, Q.; YU, J.; YE, Y.; LI, S.; CHEN, J.; ZHAO, Y.; WANG, J.; WU, X.; WANG, M.; ZHANG, Y.; LIU, B.; WU, Y.; HARBERD, N. P.; FU, X. Enhanced sustainable green revolution yield via nitrogen- responsive chromatin modulation in rice. Science v. 367, pp. 2046, 2020. XIONG, Q.; TANG, G.; ZHONG, L.; HE, H.; CHEN, X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in Plant Science v. 9, pp. 1–14, 2018. XU, Y.; ZENG, X.; WU, J.; ZHANG, F.; LI, C.; JIANG, J.; WANG, Y.; SUN, W. Itraq-based quantitative proteome revealed metabolic changes in winter turnip rape (Brassica rapa l.) under cold stress. Int J Mol Sci v. 19, n. 11, pp. 3346, 2018. YONG-VILLALOBOS, L.; GONZÁLEZ-MORALES, S. I.; WROBEL, K.; GUTIÉRREZ- ALANIS, D.; CERVANTES-PERÉZ, S.A.; HAYANO-KANASHIRO, C.; OROPEZA- ABURTO, A.; CRUZ-RAMÍREZ, A.; MARTÍNEZ, O.; HERRERA-ESTRELLAA, L. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc Natl Acad Sci v. 112, n. 52, pp. E7293- E7302, 2015. YULONG, Y.; QINGFENG, M.; HAO, Y.; QINGSONG, Z.; YE, L.; CUI, Z. Climate change increases nitrogen concentration in rice with low nitrogen use efficiency. Earth’s Futur v. 9, n. 9, p. e2020EF001878, 2021. ZHANG, Z.; GAO, S.; CHU, C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theor Appl Genet v. 133, pp. 1365–1384, 2020. ZHAO, X.; WANG, W.; XIE, Z.; GAO, Y.; WANG, C. Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low- nitrogen stress. Crop J v. 6, pp. 464–474, 2018a. ZHAO, X.; WANG, W.; XIE, Z.; GAO, Y.; WANG, C.; RASHID, M.M.; ISLAM, M.R.; FU, B.; LI, Z. Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress. Crop J v. 6, n. 5, p. 464-474, 2018b. 61 ZHAO, Y.; ZHOU, D. X. Epigenomic Modification and Epigenetic Regulation in Rice. J Geneti Genomics v. 39, pp. 307–315, 2012. ZHENG, X.; CHEN, L.; XIA, H.; WEI, H.; LOU, Q.; LI, M.; LI, T.; LUO, L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep v. 7, n. 1, p. 1-13, 2017.https://tede.ufrrj.br/retrieve/74677/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6904Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-09-04T15:52:48Z No. of bitstreams: 1 2022 - Erinaldo Gomes Pereira.Pdf: 1655214 bytes, checksum: 3e18019c1e39c0212744f742718badb5 (MD5)Made available in DSpace on 2023-09-04T15:52:48Z (GMT). No. of bitstreams: 1 2022 - Erinaldo Gomes Pereira.Pdf: 1655214 bytes, checksum: 3e18019c1e39c0212744f742718badb5 (MD5) Previous issue date: 2022-11-25info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2022 - Erinaldo Gomes Pereira.Pdf.jpgGenerated Thumbnailimage/jpeg4956https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/1/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf.jpga0f8538b8cf05c3ed7e4a2cca2bc8f2fMD51TEXT2022 - Erinaldo Gomes Pereira.Pdf.txtExtracted Texttext/plain204939https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/2/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf.txt2d03dd0d241dcd8a1f68251447be14edMD52ORIGINAL2022 - Erinaldo Gomes Pereira.Pdf2022 - Erinaldo Gomes Pereiraapplication/pdf1655214https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/3/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf3e18019c1e39c0212744f742718badb5MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/90562023-12-21 15:33:58.625oai:rima.ufrrj.br:20.500.14407/9056Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:33:58Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
dc.title.alternative.eng.fl_str_mv |
Contribution of variations in DNA methylation profile and metabolic and physiological changes to adaptation of rice (Oryza sativa L.) plants to low- nitrogen cropping systems |
title |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
spellingShingle |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio Pereira, Erinaldo Gomes Arroz Nitrogênio Estresse Epigenética Metilação Desmetilação Rice Nitrogen Stress Epigenetic Methylation Demethylation Agronomia |
title_short |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
title_full |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
title_fullStr |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
title_full_unstemmed |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
title_sort |
Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio |
author |
Pereira, Erinaldo Gomes |
author_facet |
Pereira, Erinaldo Gomes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Pereira, Erinaldo Gomes |
dc.contributor.advisor1.fl_str_mv |
Fernandes, Manlio Silvestre |
dc.contributor.advisor1ID.fl_str_mv |
002.180.573-34 https://orcid.org/0000-0001-5329-6122 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6269004387821466 |
dc.contributor.advisor-co1.fl_str_mv |
Santos, Leandro Azevedo |
dc.contributor.advisor-co1ID.fl_str_mv |
https://orcid.org/0000-0002-2595-9432 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4704465400011358 |
dc.contributor.referee1.fl_str_mv |
Fernandes, Manlio Silvestre |
dc.contributor.referee1ID.fl_str_mv |
https://orcid.org/0000-0001-5329-6122 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6269004387821466 |
dc.contributor.referee2.fl_str_mv |
Calderín García, Andrés |
dc.contributor.referee2ID.fl_str_mv |
https://orcid.org/0000-0001-5963-3847 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/8896375232574274 |
dc.contributor.referee3.fl_str_mv |
Santos, André Marques dos |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/3428935182333406 |
dc.contributor.referee4.fl_str_mv |
Matos, Clicia Grativol Gaspar de |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/3181149120291303 |
dc.contributor.referee5.fl_str_mv |
Vidal, Márcia Soares |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/3036544314910366 |
dc.contributor.authorID.fl_str_mv |
112.516.576-64 https://orcid.org/0000-0002-9052-091X |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3637209801005675 |
contributor_str_mv |
Fernandes, Manlio Silvestre Santos, Leandro Azevedo Fernandes, Manlio Silvestre Calderín García, Andrés Santos, André Marques dos Matos, Clicia Grativol Gaspar de Vidal, Márcia Soares |
dc.subject.por.fl_str_mv |
Arroz Nitrogênio Estresse Epigenética Metilação Desmetilação |
topic |
Arroz Nitrogênio Estresse Epigenética Metilação Desmetilação Rice Nitrogen Stress Epigenetic Methylation Demethylation Agronomia |
dc.subject.eng.fl_str_mv |
Rice Nitrogen Stress Epigenetic Methylation Demethylation |
dc.subject.cnpq.fl_str_mv |
Agronomia |
description |
Deficiência por nitrogênio (N) é um estresse abiótico a que plantas de arroz estão susceptíveis ao longo do ciclo de cultivo, devido sobretudo à grande demanda por N apresentada por essa cultura e, também, pela fácil perda desse nutriente no solo. A metilação do DNA é um mecanismo epigenético que afeta o desempenho das plantas frente a diversos estresses ambientais. Os objetivos dessa pesquisa foram: 1) verificar se plantas de arroz submetidas ao estresse pelo baixo fornecimento de N modificam o perfil de metilação do DNA; 2) verificar possíveis alterações no perfil de metilação do DNA, modificações morfo-fisiológicas, metabólicas, e expressão gênica em plantas de arroz submetidas a diferentes ciclos de cultivo com baixo N ; 3) estabelecer relações entre modificações na metilação do DNA e alterações morfo-fisiológicas e metabólicas; 4) determinar se a exposição a ciclos de cultivo com baixo N resulta em plantas melhor adaptadas a essa condição. Para isso, as variedades de arroz Esmeralda (melhorada), Manteiga e Piauí (tradicionais do estado do Maranhão), foram submetidas aos seguintes tratamentos: Controle – plantas cultivadas com N-suficiente (60 kg N ha-1) durante três ciclos de cultivo sucessivos; NS1 – plantas cultivadas com baixo N (10 kg N ha-1) somente no último ciclo de cultivo (primeira exposição ao estresse); NS2 – plantas cultivadas com baixo N no primeiro e terceiro ciclo de cultivo (estresse intermitente); NS3 – plantas cultivadas com baixo N durante três ciclos sucessivos (estresse recorrente). Foi verificado em plantas da variedade Esmeralda uma redução na metilação total do DNA cultivadas com baixo N em comparação ao controle. Plantas submetidas aos tratamentos de baixo N apresentaram maior redução no número de bandas hemi-metiladas em detrimento de bandas totalmente metiladas. A redução mais severa no número de bandas hemi-metiladas foi verificada em plantas submetidas ao tratamento NS2, o que foi acompanhado por um aumento mais expressivo no número de bandas totalmente metiladas. Essa modificação no padrão de metilação do DNA observado em NS2 foi seguido por uma redução na produção de grãos, na eficiência fotossintética e nos parâmetros relacionados a eficiência de uso de N. As variedades Manteiga e Piauí apresentaram um aumento expressivo no número total de bandas metiladas quando submetidas aos tratamentos de estresse por baixo N em comparação ao controle. Esse resultado deveu-se, sobretudo, ao forte aumento no número de bandas totalmente metiladas. Plantas submetidas aos tratamentos NS2 e NS3 tiveram aumento mais expressivo no número de bandas totalmente metiladas, e uma redução no número de bandas hemi-metiladas. Essa modificação no padrão de metilação foi acompanhada por maior rendimento de grãos, melhor eficiência fotossintética, aumento na eficiência de uso de N e alterações na expressão gênica. Os resultados mostram que a exposição ao baixo N altera o padrão de metilação do DNA, e que o tipo e a intensidade dessa alteração dependem tanto da duração do estresse quanto das variedades em estudo. As alterações no padrão de metilação DNA são acompanhadas por modificações morfo-fisiológicas, metabólicas e na expressão gênica. A exposição ao estresse intermitente e recorrente melhora o desempenho das variedades Manteiga e Piauí, enquanto o estresse intermitente é prejudicial a variedade Esmeralda. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-11-25 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:33:58Z |
dc.date.available.fl_str_mv |
2023-12-21T18:33:58Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
PEREIRA, Erinaldo Gomes. Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio. 2022. 80 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9056 |
identifier_str_mv |
PEREIRA, Erinaldo Gomes. Contribuição de variações no perfil de metilação do DNA e alterações metabólicas e fisiológicas para adaptação de plantas de arroz (Oryza sativa L.) a sistemas de cultivo com baixo teor de nitrogênio. 2022. 80 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2022. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/9056 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
BAULCOMBE, D. C.; DEAN, C. Epigenetic regulation in plant responses to the environment. Cold Spring Harb Perspect Biol v. 6, n. 9, pp. a019471, 2014. BHATTARAI, K.; BHATTARAI, B.; STUDIES, A. Mechanism of DNA methylation and its role in biotic and abiotic stress response in plants: A review. Farming Manag v. 6, pp. 39-46, 2021. BRADFORD, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem v. 72, pp. 248–254, 1976. CHANG, Y. N.; ZHU, C.; JIANG, J., ZHANG, H., ZHU, J. K., DUAN, C. G. Epigenetic regulation in plant abiotic stress responses. J Integr Plant Biol v. 62, n. 5, pp. 563-580, 2020. COELHO, C. P.; SANTOS, L. A.; RANGEL, R. P.; SPERANDIO, M. V. L.; BUCHER, C. A.; DE SOUZA, S. R.; FERNANDES, M. S. Rice varieties exhibit different mechanisms for Nitrogen Use Efficiency (NUE). Aust J Crop Sci v. 10, n. 3, pp. 342-352, 2016. CUADROS-INOSTROZA, Á.; CALDANA, C.; REDESTIG, H.; KUSANO, M.; LISEC, J.; PEÑA-CORTÉS, H.; WILLMITZER, L.; HANNAH, M.A. TargetSearch - a Bioconductor package for the efficient preprocessing of GC-MS metabolite profiling data. BMC Bioinformatics v. 10, n. 1, pp. 1-12, 2009. DO AMARAL, M. N.; AULER, P. A.; ROSSATTO, T.; BARROS, P. M.; OLIVEIRA, M. M.; BRAGA, E. J. B. Long-term somatic memory of salinity unveiled from physiological, biochemical and epigenetic responses in two contrasting rice genotypes. Physiol Plant v. 170, n. 2, pp. 248-268, 2020. DOLL, H.; ANDERSEN, B. Preparation of barley storage protein, hordein, for analytical sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analytical Biochemistry v. 115, pp. 61–66, 1981. EVANS, J. R.; CLARKE, V. C. The nitrogen cost of photosynthesis. J Exp Bot v. 70, n. 1, pp. 7-15, 2019. FAGODIYA, R. K.; PATHAK, H.; BHATIA, A.; JAIN, N.; KUMAR, A.; MALYAN, S.K. Global warming impacts of nitrogen use in agriculture: an assessment for India since 1960. Carbon Manag v. 11, n. 3, pp. 291-301, 2020. FAN, X.; LIU, L.; QIAN, K.; CHEN, J.; ZHANG, Y.; XIE, P.; XU, M.; HU, Z.; YAN, W.; WU, Y.; XU, G.; FAN, X. Plant DNA methylation is sensitive to parent seed N content and influences the growth of rice BMC plant biol v. 21, n. 1, pp. 1-18, 2021. FANG, Z.; WU, B.; JI, Y. The Amino Acid Transporter OsAAP4 Contributes to Rice Tillering and Grain Yield by Regulating Neutral Amino Acid Allocation through Two Splicing Variants. Rice v. 14, n. 1, pp. 1-17, 2021. FERREIRA, L. M.; TAVARES, O. C. H.; DE OLIVEIRA, C. M.; DE SOUZA, S. R.; FERNANDES, M. S.; SANTOS, L. A. Morphological and physiological responses to drought stress in a set of Brazilian traditional upland rice varieties in post-anthesis stage. Aust J Crop Sci v. 14, n. 1, 2020. 58 FREIRE, L. R.; BAILIEIRO, F.; ZONTA, E., ANJOS, L. H. C.; PEREIRA, M. G.; LIMA, E.; GUERRA, J. G. M.; FERREIRA, M. B. C.; LEAL, M. A. A.; CAMPOS, D. V. B.; POLIDORO, J. C. Manual De Calagem E Adubação Do Estado Do Rio De Janeiro, Embrapa, 2013. GAO, J.; LIU, J.; LI, B.; LI, Z. Isolation and Purification of Functional Total RNA from Blue- grained Wheat Endosperm Tissues Containing High Levels of Starches and Flavonoids. Plant Mol Biol Report v. 19, n. 2, pp. 185-186, 2001. HIRASAWA, T.; OZAWA, S.; TAYLARAN, R. D.; OOKAWA, T. Varietal differences in photosynthetic rates in rice plants, with special reference to the nitrogen content of leaves. Plant Prod Sci v. 13, n. 1, pp. 53-57, 2010. JULIANO, B. O. Structure, chemistry, and function of the rice grain and its fractions. Cereal Foods World v. 37, n. 10, pp. 772-779, 1992. KHUSH, G. S. Green revolution: the way forward. Nat Rev Genet v. 2, n. 10, pp. 815-822, 2001 KOU, H. P.; LI, Y.; SONG, X. X.; OU, X. F.; XING, S. C.; MA, J.; VON WETTSTEIN, D.; LIU, B. Heritable alteration in DNA methylation induced by nitrogen-deficiency stress accompanies enhanced tolerance by progenies to the stress in rice (Oryza sativa L.). J Plant Physiol n. 14, pp. 1685-1693, 2011. KUMAR, S. Epigenomics of Nutrient Use Efficiency in Plant Epigenomics of Nutrient Use Efficiency in Plant. Division of Biochemistry, IARI, New Delhi, 2019. KUMAR, S. Epigenetic Memory of Stress Responses in Plants Epigenetic Memory of Stress Responses in Plants. J Phytochem Biochem v. 2, n. 1, 2018. LI, A.; HU, B.; CHU, C. Epigenetic regulation of nitrogen and phosphorus responses in plants. J Plant Physiol v. 258, pp. 153363, 2021a. LI, A.; HU, B.; CHU, C. Epigenetic regulation of nitrogen and phosphorus responses in plants. J Plant Physiol v. 258, pp. 153363, 2021b. LISEC, J.; SCHAUER, N.; KOPKA, J.; WILLMITZER, L.; FERNIE, A. R. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat Protoc v. 1, pp. 387–396. LIU, Y.; WANG, H.; JIANG, Z.; WANG, W.; XU, R.; WANG, Q.; ZHANG, Z.; LI, A.; LIANG, Y.; OU, S.; LIU, X.; CAO, S.; TONG, H.; WANG, Y.; ZHOU, F.; LIAO, H.; HU, B.; CHU, C. Genomic basis of geographical adaptation to soil nitrogen in rice. Nature, v. 590, n. 7847, pp. 600-605, 2021. LIVAK, K. J.; SCHMITTGEN, T. D. Analysis of relative gene expression data using real- time quantitative PCR and the 2-∆∆CT method. Methods v. 25, pp. 402–408, 2001. MAGER, S., LUDEWIG, U. Massive loss of DNA methylation in nitrogen-, but not in phosphorus-deficient Zea mays roots is poorly correlated with gene expression differences. Front Plant Sci v. 9, pp. 1–14, 2018. MURRAY, M.; THOMPSON, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res, v. 8, n. 19, pp. 4321-4326, 1980. 59 NEVES, D. M.; ALMEIDA, L. A. D. H.; SANTANA-VIEIRA, D. D. S.; FRESCHI, L.; FERREIRA, C. F.; SOARES FILHO, W. D. S.; COSTA, M. G. C.; MICHELI, F., COELHO FILHO, M. A.; GESTEIRA, A. D. S. Recurrent water deficit causes epigenetic and hormonal changes in citrus plants. Sci Rep v. 7, n. 1, pp. 1-11, 2017. NIEHRS, C. Active DNA demethylation and DNA repair. Differentiation v. 77, pp. 1–11, 2009. PENG, B.; KONG, H.; LI, Y.; WANG, L.; ZHONG, M.; SUN, L.; GAO, G.; ZHANG, Q.; LUO, L.; WANG, G.; XIE, W.; CHEN, J.; YAO, W.; PENG, Y.; LEI, L.; LIAN, X.; XIAO, J.; XU, C.; LI, X.; HE, Y. OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun v. 5, pp. 1–12, 2014. PEREIRA, E. G.; FERREIRA, L. M.; FERNANDES, E. C.; LIMA, B. R.; SANTOS, L. A.; FERNANDES, M. S. Root morphology and ammonium uptake kinetics in two traditional rice varieties submitted to different doses of ammonium nutrition. J Plant Nutr v. 44, n. 18, pp. 2715-2728, 2021. PEREIRA, E.G., SPERANDIO, M.V.L., SANTOS, L.A., BUCHER, C.A., COELHO, C.P., FERNANDES, M.S. Rice varieties with contrasting nitrogen use efficiency present different expression of amino acid transporters and ammonium transporters. Arch Agron Soil Sci pp. 1-15, 2022. R CORE TEAM. R: a language and environment for statistical computing. Vienna (Austria): RFoundation for Statistical Computing. https://www.R-project.org/, 2019. SADDHE, A. A.; MANUKA, R.; PENNA, S. Plant sugars: Homeostasis and transport under abiotic stress in plants. Physiol Plant v. 171, pp. 739–755, 2021. SANTANA-VIEIRA, D. D. S.; FRESCHI, L.; DA HORA ALMEIDA, L. A.; MORAES, D. H. S.; NEVES, D. M.; DOS SANTOS, L. M.; BERTOLDE, F. Z.; SOARES FILHO, W. D. S.; COELHO FILHO, M. A.; GESTEIRA, A. D. S. Survival strategies of citrus rootstocks subjected to drought. Sci Rep v. 6, pp. 1–12, 2016. SECCO, D.; WANG, C.; SHOU, H.; SCHULTZ, M. D.; CHIARENZA, S.; NUSSAUME, L.; ECKER, J. R.; WHELAN, J.; LISTER, R. Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. Elife v. 4, pp. e09343, 2015. SHAN, X.; WANG, X.; YANG, G.; WU, Y.; SU, S.; LI, S.; LIU, H.; YUAN, Y. Analysis of the DNA methylation of maize (Zea mays L.) in response to cold stress based on methylation- sensitive amplified polymorphisms. J Plant Biol v. 56, pp. 32–38, 2013. SHI, H.; JIANG, C.; YE, T.; TAN, D. X.; REITER, R. J.; ZHANG, H.; LIU, R.; CHAN, Z. Comparative physiological, metabolomic, and transcriptomic analyses reveal mechanisms of improved abiotic stress resistance in bermudagrass [Cynodon dactylon (L). Pers.] by exogenous melatonin. J Exp Bot v. 66, pp. 681–694, 2015. SRIKANT, T.; DROST, H. G. How Stress Facilitates Phenotypic Innovation Through Epigenetic Diversity. Front Plant Sci v. 11, pp. 1–14, 2021. TANG, X. M.; TAO, X.; WANG, Y.; MA, D. W.; LI, D.; YANG, H.; MA, X. R. Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Genet Genomics v. 289, n. 6, pp. 1075- 1084, 2014. 60 TEDESCO, M. J.; GIANELLO, C.; BISSANI, C. A.; BOHNEN, H.; VOLKWEISS S. J. Análise de solo, plantas e outros materiais. 2.ed. Porto Alegre, Universidade Federal do Rio Grande do Sul, 174p, 1995. TSIMILLI-MICHAEL, M. Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica v. 58, pp. 275– 292, 2020. TSIMILLI-MICHAEL, M.; STRASSER, R. J. In vivo assessment of stress impact on plant’s vitality: Applications in detecting and evaluating the beneficial role of mycorrhization on host plants. Mycorrhiza pp. 679–703, 2008. TURLEY, R. H.; CHING, T. M. Storage Protein Accumulation in ‘Scio’Barley Seed as Affected by late Foliar Applications of Nitrogen 1. Crop Science v. 26, n. 4, pp. 778-782, 1986. WOO, H. R.; DITTMER, T. A.; RICHARDS, E. J. Three SRA-domain methylcytosine- binding proteins cooperate to maintain global CpG methylation and epigenetic silencing in arabidopsis. PLoS Genet v. 4, n. 8, pp. e1000156, 2008. WU, K.; WANG S.; SONG, W.; ZHANG, J.; WANG, Y.; LIU, Q.; YU, J.; YE, Y.; LI, S.; CHEN, J.; ZHAO, Y.; WANG, J.; WU, X.; WANG, M.; ZHANG, Y.; LIU, B.; WU, Y.; HARBERD, N. P.; FU, X. Enhanced sustainable green revolution yield via nitrogen- responsive chromatin modulation in rice. Science v. 367, pp. 2046, 2020. XIONG, Q.; TANG, G.; ZHONG, L.; HE, H.; CHEN, X. Response to nitrogen deficiency and compensation on physiological characteristics, yield formation, and nitrogen utilization of rice. Frontiers in Plant Science v. 9, pp. 1–14, 2018. XU, Y.; ZENG, X.; WU, J.; ZHANG, F.; LI, C.; JIANG, J.; WANG, Y.; SUN, W. Itraq-based quantitative proteome revealed metabolic changes in winter turnip rape (Brassica rapa l.) under cold stress. Int J Mol Sci v. 19, n. 11, pp. 3346, 2018. YONG-VILLALOBOS, L.; GONZÁLEZ-MORALES, S. I.; WROBEL, K.; GUTIÉRREZ- ALANIS, D.; CERVANTES-PERÉZ, S.A.; HAYANO-KANASHIRO, C.; OROPEZA- ABURTO, A.; CRUZ-RAMÍREZ, A.; MARTÍNEZ, O.; HERRERA-ESTRELLAA, L. Methylome analysis reveals an important role for epigenetic changes in the regulation of the Arabidopsis response to phosphate starvation. Proc Natl Acad Sci v. 112, n. 52, pp. E7293- E7302, 2015. YULONG, Y.; QINGFENG, M.; HAO, Y.; QINGSONG, Z.; YE, L.; CUI, Z. Climate change increases nitrogen concentration in rice with low nitrogen use efficiency. Earth’s Futur v. 9, n. 9, p. e2020EF001878, 2021. ZHANG, Z.; GAO, S.; CHU, C. Improvement of nutrient use efficiency in rice: current toolbox and future perspectives. Theor Appl Genet v. 133, pp. 1365–1384, 2020. ZHAO, X.; WANG, W.; XIE, Z.; GAO, Y.; WANG, C. Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low- nitrogen stress. Crop J v. 6, pp. 464–474, 2018a. ZHAO, X.; WANG, W.; XIE, Z.; GAO, Y.; WANG, C.; RASHID, M.M.; ISLAM, M.R.; FU, B.; LI, Z. Comparative analysis of metabolite changes in two contrasting rice genotypes in response to low-nitrogen stress. Crop J v. 6, n. 5, p. 464-474, 2018b. 61 ZHAO, Y.; ZHOU, D. X. Epigenomic Modification and Epigenetic Regulation in Rice. J Geneti Genomics v. 39, pp. 307–315, 2012. ZHENG, X.; CHEN, L.; XIA, H.; WEI, H.; LOU, Q.; LI, M.; LI, T.; LUO, L. Transgenerational epimutations induced by multi-generation drought imposition mediate rice plant’s adaptation to drought condition. Sci Rep v. 7, n. 1, p. 1-13, 2017. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Agronomia - Ciência do Solo |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/1/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/2/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/3/2022%20-%20Erinaldo%20Gomes%20Pereira.Pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9056/4/license.txt |
bitstream.checksum.fl_str_mv |
a0f8538b8cf05c3ed7e4a2cca2bc8f2f 2d03dd0d241dcd8a1f68251447be14ed 3e18019c1e39c0212744f742718badb5 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107988336181248 |