Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/11722 |
Resumo: | O Lúpus eritematoso sistêmico (LES) é uma doença autoimune crônica que acomete cães, gatos, cavalos, humanos e primatas. A patogênese é multifatorial, estando associado a fatores genéticos, hormonais e ambientais. O LES leva a deposição de complexos imunes em articulações e diversos órgãos resultando em manifestações clínicas. A participação dos linfócitos T e B é crucial para a patogênese da doença. Linfócitos B-1, uma subpopulação de células B, possuem características que podem contribuir com a patogênese de doenças autoimunes pois são capazes de secretar citocinas como IL-10 exercendo uma ação moduladora tanto da resposta inflamatória aguda como crônica, apresentam antígenos as células T, participam da imunidade inata e adaptativa e são as principais produtoras de anticorpos naturais. O entendimento do papel das células B-1 na imunopatogênese do LES pode abrir frentes de estudos sobre estratégias de imunoterapias que possibilitem o controle dessa doença complexa e multifatorial. O presente trabalho avaliou o papel das células B-1 na imunopatogênese do LES utilizando o modelo de indução pelo pristane. LES foi induzido em camundongos fêmeas BALB/c, XID (deficientes em B-1) e XID repopulados com B-1. Os animais foram avaliados por seis meses. Verificamos que, BALB/c pristane e XID repopulados com B-1 apresentaram sinais característicos da doença como, formação de lipogranulomas e esplenomegalia. Em destaque, BALB/c pristane também apresentou ascite, edema articular, artrite, lesão renal com deposição de imunocomplexo. No baço, os animais BALB/c tiveram maior porcentagem de células B (CD19+, IgM+), BALB/c pristane de T CD8 (CD3+,CD8+), enquanto XID pristane teve aumento T CD4 (CD3+,CD4+). No lavado peritoneal, após indução com pristane houve diminuição de células B (CD19+, IgM+) e aumento de B1a (CD19+ IgM+ CD5+) em BALB/c pristane. No sangue periférico, BALB/c apresentou maior quantidade de linfócitos, XID apresentou um perfil neutrofilico, e em todos os grupos com LES houve aumento de monócitos. As citocinas IL-10, IL-6 e IFN- foram aumentadas nos BALB/c e XID repopulados. Com base nesses resultados, sugerimos que a presença de células B-1 pode contribuir com o desenvolvimento do LES. |
id |
UFRRJ-1_c10b7a08cc82633460726878b4ededfb |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/11722 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Silva, Amanda CoutoLima, Débora Decote Ricardo de875.362.007-06http://lattes.cnpq.br/3572066508469025Lima, Célio Freire Geraldo de002.031.157-59Lima, Débora Decote Ricardo deSilva, Lucia Helena Pinto daBizarro, Heloisa D’Avila da Silva442.399.278-70https://orcid.org/0000-0003-1878-1696http://lattes.cnpq.br/68607236294698552023-12-22T01:56:32Z2023-12-22T01:56:32Z2021-09-20SILVA, Amanda Couto. Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico. 2021. 70 f. Dissertação (Mestrado em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/11722O Lúpus eritematoso sistêmico (LES) é uma doença autoimune crônica que acomete cães, gatos, cavalos, humanos e primatas. A patogênese é multifatorial, estando associado a fatores genéticos, hormonais e ambientais. O LES leva a deposição de complexos imunes em articulações e diversos órgãos resultando em manifestações clínicas. A participação dos linfócitos T e B é crucial para a patogênese da doença. Linfócitos B-1, uma subpopulação de células B, possuem características que podem contribuir com a patogênese de doenças autoimunes pois são capazes de secretar citocinas como IL-10 exercendo uma ação moduladora tanto da resposta inflamatória aguda como crônica, apresentam antígenos as células T, participam da imunidade inata e adaptativa e são as principais produtoras de anticorpos naturais. O entendimento do papel das células B-1 na imunopatogênese do LES pode abrir frentes de estudos sobre estratégias de imunoterapias que possibilitem o controle dessa doença complexa e multifatorial. O presente trabalho avaliou o papel das células B-1 na imunopatogênese do LES utilizando o modelo de indução pelo pristane. LES foi induzido em camundongos fêmeas BALB/c, XID (deficientes em B-1) e XID repopulados com B-1. Os animais foram avaliados por seis meses. Verificamos que, BALB/c pristane e XID repopulados com B-1 apresentaram sinais característicos da doença como, formação de lipogranulomas e esplenomegalia. Em destaque, BALB/c pristane também apresentou ascite, edema articular, artrite, lesão renal com deposição de imunocomplexo. No baço, os animais BALB/c tiveram maior porcentagem de células B (CD19+, IgM+), BALB/c pristane de T CD8 (CD3+,CD8+), enquanto XID pristane teve aumento T CD4 (CD3+,CD4+). No lavado peritoneal, após indução com pristane houve diminuição de células B (CD19+, IgM+) e aumento de B1a (CD19+ IgM+ CD5+) em BALB/c pristane. No sangue periférico, BALB/c apresentou maior quantidade de linfócitos, XID apresentou um perfil neutrofilico, e em todos os grupos com LES houve aumento de monócitos. As citocinas IL-10, IL-6 e IFN- foram aumentadas nos BALB/c e XID repopulados. Com base nesses resultados, sugerimos que a presença de células B-1 pode contribuir com o desenvolvimento do LES.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorSystemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects dogs, cats, horses, humans and primates. The pathogenesis is multifactorial, being associated with genetic, hormonal and environmental factors. SLE leads to deposition of immune complexes in joints and various organs, resulting in clinical manifestations. The participation of T and B lymphocytes is crucial for the pathogenesis of the disease. B-1 lymphocytes, a subpopulation of B cells, have characteristics that may contribute to the pathogenesis of autoimmune diseases through the secretion of cytokines such as IL-10 exerting a modulating action on both the acute and chronic inflammatory response, presenting antigens to T cells, participating of innate and adaptive immunity and are the main producers of natural antibodies. Understanding the role of B-1 cells in SLE immunopathogenesis may open new fronts for studies on immunotherapeutic strategies to control this complex and multifactorial disease. The present work evaluated the role of B-1 cells in the immunopathogenesis of SLE using the pristane induction model. SLE was induced in BALB/c, XID (B-1 deficient) and XID mice repopulated with B-1. The animals were evaluated for six months. We found that BALB/c pristane and XID repopulated with B-1 showed characteristic signs of the disease, such as lipogranuloma formation and splenomegaly. Notably, BALB/c pristane also presented ascites, joint edema, arthritis, kidney damage with immune complex deposition. In the spleen, animals BALB/c had a higher percentage of B cells (CD19+, IgM+), BALB/c pristane T CD8 (CD3+, CD8+), while XID pristane had increased T CD4 (CD3+,CD4+). In the peritoneal lavage, after induction with pristane, there was a decrease in B cells (CD19+, IgM+) and an increase in B1a (CD19+, IgM CD5+) in BALB/c pristane. In peripheral blood, BALB/c had a higher number of lymphocytes, XID had a neutrophilic profile, and all groups with SLE showed an increase in monocytes. The cytokines IL-10, IL-6 and IFN-γ were increased in BALB/c and XID repopulated that developed SLE. Based on these results, we suggest that the presence of B-1 cells may contribute to the development of SLE.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências VeterináriasUFRRJBrasilInstituto de VeterináriaLinfócitos B-1Lúpus eritematoso sistêmicoImunomodulaçãoAutoimunidadeB-1 lymphocytesSystemic lupus erythematosusImmunomodulation; autoimmunityMedicina VeterináriaPapel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmicoRole of B1 cells in the immunopathogenesis of systemic lupus erythematosusinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAGGARWAL, R. et al. This article is protected by copyright. All rights reserved. p. 1–14, 2015. ALBERTO, C. et al. eritematoso sistêmico em cidade do Sul do Brasil. v. 51, n. 3, p. 235–239, 2011. ANDERS, H. J. et al. Lupus nephritis. Nature Reviews Disease Primers, v. 6, n. 1, 2020. ARBUCKLE, M. R. et al. Development of Autoantibodies before the Clinical Onset of Systemic Lupus Erythematosus. New England Journal of Medicine, v. 349, n. 16, p. 1526–1533, 2003. ARINGER, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Annals of the Rheumatic Diseases, v. 78, n. 9, p. 1151–1159, 1 set. 2019. ARINGER, M. EULAR/ACR classification criteria for SLE. Seminars in Arthritis and Rheumatism, v. 49, n. 3, p. S14–S17, 1 dez. 2019. ARRIENS, C. et al. Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology (Oxford, England), v. 56, n. 1, p. i32–i45, 2017. BAIN, B. J. Diagnosis from the Blood Smear. New England Journal of Medicine, v. 353, n. 5, p. 498–507, 2005. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. v. 392, n. March, p. 245–252, 1998. BAUMGARTH, N. et al. B-1 and b-2 cell-derived immunoglobulin m antibodies are nonredundant components of the protective response to influenza virus infection. Journal of Experimental Medicine, v. 192, n. 2, p. 271–280, 2000. BAUMGARTH, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nature Reviews Immunology, v. 11, n. 1, p. 34–46, 2011. BINDER, C. J.; SILVERMAN, G. J. Natural antibodies and the autoimmunity of atherosclerosis. Springer Seminars in Immunopathology, v. 26, n. 4, p. 385–404, 2005. BLANCO, P.; PITARD, V.; TAUPIN, J. Increase in Activated CD8 ϩ T Lymphocytes Expressing Perforin and Granzyme B Correlates With Disease Activity in Patients With Systemic Lupus Erythematosus. v. 52, n. 1, p. 201–211, 2005. BORBA, E. F. et al. Consenso de lúpus eritematoso sistêmico. Revista Brasileira de Reumatologia, v. 48, n. 4, p. 196–207, 2008. BOSSALLER, L. et al. Overexpression of Membrane-Bound Fas Ligand (CD95L) Exacerbates Autoimmune Disease and Renal Pathology in Pristane-Induced Lupus. 2015. BOUTS, Y. M. et al. Apoptosis and NET formation in the pathogenesis of SLE. v. 45, n. December, p. 597–601, 2012. BRENDOLAN, A. et al. Development and function of the mammalian spleen. p. 166–177, 2007. CHOI, S.-C. et al. The Lupus Susceptibility Gene Pbx1 Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation . The Journal of 63 Immunology, v. 197, n. 2, p. 458–469, 2016. CHOU, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. Journal of Clinical Investigation, v. 119, n. 5, p. 1335–1349, 2009. CHOUSTERMAN, B. G.; SWIRSKI, F. K. Innate response activator B cells: Origins and functions. International Immunology, v. 27, n. 10, p. 537–541, 2015. CHUN, H. et al. Cytokine IL-6 and IL-10 as Biomarkers in Systemic Lupus Erythematosus. p. 461–466, 2007. COMTE, D.; KARAMPETSOU, M. P.; TSOKOS, G. C. T cells as a therapeutic target in SLE. Lupus, v. 24, n. 4–5, p. 351–363, 2015. COSTENBADER, K. H. et al. Cigarette Smoking and the Risk of Systemic Lupus Erythematosus: A Meta-Analysis. Arthritis and Rheumatism, v. 50, n. 3, p. 849–857, 2004. COSTI, L. R. et al. Artigo original Mortalidade por lúpus eritematoso sistêmico no Brasil : avaliac ¸ ão das causas de acordo com o banco de dados de saúde do governo ଝ. Revista Brasileira de Reumatologia, v. 57, n. 6, p. 574–582, 2017. DAUPHINEE, M.; TOVAR, Z.; TALAL, N. B CELLS EXPRESSING CD5 ARE INCREASED IN SJOGREN ’ S SYNDROME. n. 8, p. 642–647, [s.d.]. DEAFEN, D. et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis & Rheumatism, v. 35, n. 3, p. 311–318, 1992. DENG, J. et al. B1a cells play a pathogenic role in the development of autoimmune arthritis. v. 7, n. 15, 2016. DIANA, J. et al. Crosstalk between neutrophils , B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. n. December, 2012. DÍAZ-ZARAGOZA, M. et al. Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (Review). Oncology Reports, v. 34, n. 3, p. 1106–1114, 2015. DING, H. J.; GORDON, C. New biologic therapy for systemic lupus erythematosus. Current Opinion in Pharmacology, p. 1–8, 2013. DÖRNER, T.; FURIE, R. Novel paradigms in systemic lupus erythematosus. The Lancet, v. 393, n. 10188, 2019. DÖRNER, T.; GIESECKE, C.; LIPSKY, P. E. Mechanisms of B cell autoimmunity in SLE. p. 1–12, 2011. DORSHKIND, K.; MONTECINO-RODRIGUEZ, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology, v. 7, n. 3, p. 213–219, 2007. DUAN, B.; MOREL, L. Role of B-1a cells in autoimmunity. Autoimmunity Reviews, v. 5, n. 6, p. 403–408, 2006. DURCAN, L.; DWYER, T. O.; PETRI, M. Seminar Management strategies and future directions for systemic lupus erythematosus in adults. The Lancet, v. 393, n. 10188, p. 2332–2343, 2019. ENGHARD, P. et al. Class switching and consecutive loss of dsDNA-reactive B1a B cells from the peritoneal cavity during murine lupus development. p. 1809–1818, 2010. FAGARASAN, S.; HONJO, T. T-independent immune response: New aspects of B cell biology. Science, v. 290, n. 5489, p. 89–92, 2000. FARKAS, L. et al. Plasmacytoid Dendritic Cells ( Natural Interferon- ␣ /  -Producing Cells ) Accumulate in Cutaneous Lupus Erythematosus Lesions. The American Journal of Pathology, v. 159, n. 1, p. 237–243, 2001. FAVA, A.; PETRI, M. Systemic lupus erythematosus: Diagnosis and clinical management. Journal of Autoimmunity, v. 96, n. September, p. 1–13, 2019. FIEDLER, K. et al. Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia. v. 117, n. 4, p. 1329–1340, 2016. FLORES-MENDOZA, G. et al. Mechanisms of Tissue Injury in Lupus Nephritis. Trends in Molecular Medicine, v. xx, p. 1–15, 2018. FORTUNA, G.; BRENNAN, M. T. Systemic lupus erythematosus. Epidemiology, pathophysiology, manifestations, and management. Dental Clinics of North America, v. 57, n. 4, p. 631–655, 2013. FRANSEN, J. H. et al. The role of dendritic cells in the pathogenesis of systemic lupus erythematosus. v. 1, p. 1–8, 2010. FREITAS, E. C.; DE OLIVEIRA, M. S.; MONTICIELO, O. A. Pristane-induced lupus: considerations on this experimental model. Clinical Rheumatology, v. 36, n. 11, p. 2403–2414, 2017. FURIE, R. et al. A Phase III , Randomized , Placebo-Controlled Study of Belimumab , a Monoclonal Antibody That Inhibits B Lymphocyte Stimulator , in Patients With Systemic Lupus Erythematosus. v. 63, n. 12, p. 3918–3930, 2011. GARRA, A. O. et al. Ly-1 B ( B-1 ) cells are the main source of B cell-derived interleukin 10. p. 711–717, 1992. GEORGESCU, L. et al. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. Journal of Clinical Investigation, v. 100, n. 10, p. 2622–2633, 1997. GRIFFIN, D. O.; ROTHSTEIN, T. L. A small CD11b + human B1 cell subpopulation stimulates T cells and is expanded in lupus. v. 208, n. 13, p. 2591–2598, 2011. GRIMALDI, C. M. et al. Estrogen alters thresholds for B cell apoptosis and activation. Journal of Clinical Investigation, v. 109, n. 12, p. 1625–1633, 2002. GRÖNWALL, C.; VAS, J.; SILVERMAN, G. J. Protective roles of natural IgM antibodies. Frontiers in Immunology, v. 3, n. APR, p. 1–10, 2012. GROSSMAN, J. M.; CLINICAL, A. Best Practice & Research Clinical Rheumatology Lupus arthritis. Best Practice & Research Clinical Rheumatology, v. 23, n. 4, p. 495–506, 2009. HA, S. et al. Regulation of B1 cell migration by signals through Toll-like receptors. v. 203, n. 11, p. 2541–2550, 2006a. HA, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. Journal of Experimental Medicine, v. 203, n. 11, p. 2541–2550, 2006b. HAN, S. et al. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Research and Therapy, v. 17, n. 1, p. 1–13, 2015. HARDY, R.; HERZENBERG, L. A.; KANTOR, A. B. Debate : the nature of B-cell subpopulations B-cell lineages exist in the mouse. v. 14, n. 2, p. 79–83, 1993. HARDY, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Current Opinion in Immunology, v. 18, n. 5, p. 547–555, 2006. HAUGHTON, G. et al. debate B-I -e ! ls are made , not born. Immunology today, n. 2, p. 84–87, 1993. HAYAKAWA, B. Y. K. et al. PROGENITORS. v. 161, n. June, p. 1554–1568, 1985. HAYER, S. et al. ‘ SMASH ’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. p. 714–726, 2021. HE, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nature Medicine, v. 22, n. 9, p. 991–993, 2016. HIROSE, T. et al. PD-L1/PD-L2-expressing B-1 cells inhibit alloreactive T cells in mice. PLoS ONE, v. 12, n. 6, 2017. HOLODICK, N. E.; RODRÍGUEZ-ZHURBENKO, N.; HERNÁNDEZ, A. M. Defining natural antibodies. Frontiers in Immunology, v. 8, n. JUL, p. 2–9, 2017. HOYER, B. F.; MANZ, R. A.; RADBRUCH, A. Long-Lived Plasma Cells and Their Contribution to Autoimmunity. v. 133, p. 124–133, 2005. ISHIDA, B. H. et al. Continuous Administration of Anti-Interleukin 10 Antibodies Delays Onset of Autoimmunity in N Z B / W F1 Mice. v. 179, n. January, 1994. JAIN, S. et al. Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB . Yaa Mice. p. 1–19, 2016. JIMÉNEZ, S. et al. The Epidemiology of Systemic Lupus Erythematosus Index Entries : v. 25, 2003. KALIM, H. et al. Regulatory T cells compensation failure cause the dysregulation of immune response in pristane induced lupus mice model. Malaysian Journal of Medical Sciences, v. 25, n. 3, p. 17–26, 2018. KAMMER, G. M. et al. Abnormal T Cell Signal Transduction in Systemic Lupus Erythematosus. v. 46, n. 5, p. 1139–1154, 2002. KERNER, J. D. et al. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity, v. 3, n. 3, p. 301–312, 1995. KIMURA, J. et al. Quantitative and qualitative urinary cellular patterns correlate with progression of murine glomerulonephritis. PLoS ONE, v. 6, n. 1, 2011. KRETSCHMER, K. et al. Maintenance of Peritoneal B-1a Lymphocytes in the Absence of the Spleen. 2015. KULIK, L. et al. Pathogenic Natural Antibodies Recognizing Annexin IV Are Required to Develop Intestinal Ischemia-Reperfusion Injury. The Journal of Immunology, v. 182, n. 9, p. 5363–5373, 2009. LAFFONT, S.; SEILLET, C.; GUÉRY, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Frontiers in Immunology, v. 8, n. FEB, 2017. LAURENCE, A. et al. Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, v. 26, n. 3, p. 371–381, 2007. LEE, M. H. et al. The cytokine network type I IFN-IL-27-IL-10 is augmented in murine and human lupus. n. May 2018, p. 1–9, 2019. LEE, P. Y. et al. Type I Interferon Modulates Monocyte Recruitment and Maturation in Chronic Inflammation. v. 175, n. 5, p. 2023–2033, 2009. LEISS, H. et al. http://lup.sagepub.com/. 2014. LEWIS, M. J.; JAWAD, A. S. The SLE review series : working for a better standard of Care The effect of ethnicity and genetic ancestry on the epidemiology , clinical features and outcome of systemic lupus erythematosus. p. 1–11, 2016. LI, W.; TITOV, A. A.; MOREL, L. An update on lupus animal models. p. 1–8, 2017. LUSSON, D. et al. REPORT Circulating lupus anticoagulant systemic lupus erythematosus. Dermatology, 1999. MA, K. et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. International Journal of Molecular Sciences, v. 20, n. 23, 2019. MAGNOL, J. P.; MONIER, J. C. Canine Systemic Lupus Erythematosus . I : A Study of 75. p. 133–139, [s.d.]. MARGARIDA, A. et al. White Blood Cell Count Abnormalities and Infections in One-year Follow-up of 124 Patients with SLE. v. 107, p. 103–107, 2009. MARTIN, F.; OLIVER, A. M.; KEARNEY, J. F. Marginal Zone and B1 B Cells Unite in the Early Response against T-Independent Blood-Borne Particulate Antigens. v. 14, p. 617–629, 2001. MCCLAIN, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nature Medicine, v. 11, n. 1, p. 85–89, 2005. MCVORRAN, S.; SONG, J.; POCHINENI, V. Case Report Systemic Lupus Erythematosus Presenting with Massive Ascites : A Case of Pseudo-Pseudo Meigs Syndrome. v. 2016, n. c, p. 1–6, 2016. MENDES, E. et al. Artigo original Consenso da Sociedade Brasileira de Reumatologia para o diagnóstico , manejo e tratamento da nefrite lúpica. Revista Brasileira de Reumatologia, v. 55, n. 1, p. 1–21, 2014. MIGUEL, D. et al. Cutaneous Manifestations of Systemic Lupus Erythematosus. v. 2012, n. Figure 1, 2012. MOHAN, B. C. et al. Nucleosome : A Major Immunogen for Pathogenic. v. 177, n. May, 1993. MONTECINO-RODRIGUEZ, E. et al. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity, v. 45, n. 3, p. 527–539, 2016. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. New perspectives in B-1 B cell development and function. Trends in Immunology, v. 27, n. 9, p. 428–433, 2006. MOON, H. et al. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. Journal of Korean Medical Science, v. 27, n. 1, p. 27–35, 2012. MOORE, K. W. et al. I NTERLEUKIN -10 AND THE I NTERLEUKIN -10. v. 1, p. 683–765, 2001. MOREL, L. et al. Murine models of systemic lupus erythematosus. Journal of Biomedicine and Biotechnology, v. 2011, 2011. MOULTON, V. R.; TSOKOS, G. C. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. v. 125, n. 6, 2015. MUNROE, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type i interferon activity prior to systemic lupus erythematosus classification. Annals of the Rheumatic Diseases, v. 75, n. 11, p. 2014–2021, 2016. MURAKAMI, M. et al. Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. [s.l: s.n.]. NACIONALES, D. C. et al. Type I Interferon Production by Tertiary Lymphoid Tissue Developing in Response to. v. 168, n. 4, p. 1227–1240, 2006. NACIONALES, D. C. et al. Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis and Rheumatism, v. 56, n. 11, p. 3770–3783, 2007. NISITANI, S. et al. Administration of interleukin ‐5 or ‐10 activates peritoneal B‐1 cells and induces autoimmune hemolytic anemia in anti‐erythrocyte autoantibody‐transgenic mice. European Journal of Immunology, v. 25, n. 11, p. 3047–3052, 1995. OCAMPO-PIRAQUIVE, V. et al. Expert Review of Clinical Immunology Mortality in systemic lupus erythematosus : causes , predictors and interventions. Expert Review of Clinical Immunology, v. 14, n. 12, p. 1043–1053, 2018. ODENDAHL, M. et al. Disturbed Peripheral B Lymphocyte Homeostasis in Systemic Lupus Erythematosus. The Journal of Immunology, v. 165, n. 10, p. 5970–5979, 2000. OKE, V. et al. High levels of circulating interferons type I , type II and type III associate with distinct clinical features of active systemic lupus erythematosus. p. 1–11, 2019. PALUMBO, P. et al. Incidência das dermatopatias auto-imunes em cães e gatos e estudo retrospectivo de 40 casos de lupus eritematoso discóide atendidos no serviço de dermatologia da Faculdade de Medicina Veterinária e Zootecnia da UNESP – Botucatu Incidence of the autoimmune. 2010. PANNU, N.; BHATNAGAR, A. Oxidative stress and immune complexes: Pathogenic mechanisms in pristane induced murine model of lupus. Immunobiology, v. 225, n. 1, p. 0–1, 2020. PARKS, C. G. et al. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: A population-based, case-control study in the southeastern United States. Arthritis and Rheumatism, v. 46, n. 7, p. 1840–1850, 2002. PENG, H. et al. Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. p. 1255–1266, 2013. PETRI, M. et al. Derivation and Validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus. v. 64, n. 8, p. 2677–2686, 2012. POLLARD, K. M. et al. Interferon-γ and systemic autoimmunity. Discovery medicine, v. 16, n. 87, p. 123–31, 2013. RICHARDS, B. H. B. et al. Interleukin 6 Dependence of Anti-DNA Antibody Production : Evidence for Two Pathways of Autoantibody Formation in Pristane-induced Lupus. v. 188, n. 5, p. 985–990, 1998. RICHARDS, H. B. et al. Interferon-γ is required for lupus nephritis in mice treated with the hydrocarbon oil pristane. Kidney International, v. 60, n. 6, p. 2173–2180, 2001. RÖNNBLOM, L.; ELORANTA, M. L.; ALM, G. V. The type I interferon system in systemic lupus erythematosus. Arthritis and Rheumatism, v. 54, n. 2, p. 408–420, 2006. ROSEN, L. A. C.; ANHAH, G.; ROSEN, A. Autoantigens targeted in systemic lupus erythematmus are clustered in two populations of surface structures on apoptotic keratinocytes. Journal of Experimental Medicine, v. 179, n. 4, p. 1317–1330, 1994. ROWLAND, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. Journal of Experimental Medicine, v. 211, n. 10, p. 1977–1991, 2014. RUCHAKORN, N. et al. Performance of cytokine models in predicting SLE activity. Arthritis Research and Therapy, v. 21, n. 1, p. 1–11, 2019. RYFFEL, B. et al. Interleukin-6 Exacerbates Glomerulonephritis in ( NZBxNZW ) F1 Mice. p. 927–937, 1994. SANG, A. et al. in lupus. n. 2018, [s.d.]. SATO, T. et al. Aberrant B1 cell migration into the thymus results in activation of CD4 T cells through its potent antigen-presenting activity in the development of murine lupus. p. 3346–3358, 2004. SATOH, M. et al. An Evaluation on the 1982 Revised Criteria for the Classification of Systemic Lupus Erythematosus. Japanese Journal of Clinical Immunology, v. 10, n. 2, p. 186–193, 1987. SATOH, M. et al. X-linked immunodeficient mice spontaneously produce lupus-related anti-RNA helicase A autoantibodies, by are resistant to pristane-induced lupus. International Immunology, v. 15, n. 9, p. 1117–1124, 2003. SATOH, M.; REEVES, W. H. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. Journal of Experimental Medicine, v. 180, n. 6, p. 2341–2346, 1994. SATTERTHWAITE, A. B.; LI, Z.; WITTE, O. N. Btk function in B cell development and responsee. Seminars in Immunology, v. 10, n. 4, p. 309–316, 1998. SAUMA, D. et al. Adoptive transfer of autoimmune splenic dendritic cells to lupus-prone mice triggers a B lymphocyte humoral response. Immunologic Research, v. 65, n. 4, p. 957–968, 2017. SCAPINI, P. et al. B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 41, p. 16873–16874, 2011. SCOFIELD, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: Support for the notion of a gene-dose effect from the X chromosome. Arthritis and Rheumatism, v. 58, n. 8, p. 2511–2517, 2008. SHAH, D. et al. Soluble granzyme B and cytotoxic T lymphocyte activity in the pathogenesis of systemic lupus erythematosus. Cellular Immunology, v. 269, n. 1, p. 16–21, 2011. SHARABI, A.; KASPER, I. R.; TSOKOS, G. C. The serine/threonine protein phosphatase 2A controls autoimmunity. Clinical Immunology, v. 186, p. 38–42, 2018. SHAW, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. Journal of Clinical Investigation, v. 105, n. 12, p. 1731–1740, 2000. SHELLY, S.; BOAZ, M.; ORBACH, H. Prolactin and autoimmunity. Autoimmunity Reviews, v. 11, n. 6–7, p. A465–A470, 2012. SMITH-BOUVIER, D. L. et al. ARTICLE A role for sex chromosome complement in the female bias in autoimmune disease. v. 205, n. 5, p. 1099–1108, 2008. SMITH, F. L.; BAUMGARTH, N. B-1 cell responses to infections. Current Opinion in Immunology, v. 57, p. 23–31, 2019. SOUZA, D. C. C. et al. Mortality Profile Related to Systemic Lupus Erythematosus : A Multiple Cause-of-death Analysis. p. 496–503, 2012. STEINMETZ, O. M. et al. CXCR3 Mediates Renal Th1 and Th17 Immune Response in Murine Lupus Nephritis. The Journal of Immunology, v. 183, n. 7, p. 4693–4704, 2009. TEDDE-FILHO, G.; NUNES, M. S. Internações hospitalares e mortalidade em pacientes com lúpus eritematoso sistêmico no Brasil Hospital admissions and mortality in patients with systemic lupus erythematosus in Brazil. p. 54091–54100, 2021. TEICHMANN, L. L. et al. Article Dendritic Cells in Lupus Are Not Required for Activation of T and B Cells but Promote Their Expansion , Resulting in Tissue Damage. Immunity, v. 33, n. 6, p. 967–978, 2010. TEL, J. et al. Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis. v. 68, n. 2, p. 462–472, 2016. THONG, B.; OLSEN, N. J. Systemic lupus erythematosus diagnosis and management. Rheumatology (United Kingdom), v. 56, n. October, p. i3–i13, 2017. TSOKOS, G. C. et al. New insights into the immunopathogenesis of systemic lupus erythematosus. Nature Reviews Rheumatology, v. 12, n. 12, p. 716–730, 2016. TSOKOS, G. C. Autoimmunity and organ damage in systemic lupus erythematosus. Nature Immunology, v. 21, n. 6, p. 605–614, 2020. TUNG, J. W. et al. Identification of B-Cell Subsets. v. 271, [s.d.]. UZRAIL, A. H.; ASSAF, A. M.; ABDALLA, S. S. Correlations of Expression Levels of a Panel of Genes ( IRF5 , Erythematosus Outcomes in Jordanian Patients. v. 2019, 2019. VAIOPOULOS, A. G. et al. Case Report Diffuse Calcifications of the Spleen in a Woman with Systemic Lupus Erythematosus. v. 2015, n. February 2013, p. 9–12, 2015. VEDOVE, C. D. et al. Drug-induced lupus erythematosus. Archives of Dermatological Research, v. 301, n. 1, p. 99–105, 2009. VELO-GARCÍA, A.; GUERREIRO, S.; ISENBERG, D. A. The diagnosis and management of the haematologic manifestations of lupus. 2016. VILAR, M. J. P.; SATO, E. I. in a tropical region ( Natal , Brazil ). 2002. WAHREN-HERLENIUS, M.; DÖRNER, T. Immunopathogenic mechanisms of systemic autoimmune disease. The Lancet, v. 382, n. 9894, p. 819–831, 2013. WHITE, S. D. DISEASES OF THE NASAL. Veterinary Clinics of North America: Small Animal Practice, v. 24, n. 5, p. 887–895, [s.d.]. YANG, Y. et al. Division and differentiation of natural antibody-producing cells in mouse spleen. Proceedings of the National Academy of Sciences of the United States of America, v. 104, n. 11, p. 4542–4546, 2007. YULIASIH, Y.; RAHMAWATI, L. D.; PUTRI, R. M. Th17/Treg ratio and disease activity in systemic lupus erythematosus. Caspian Journal of Internal Medicine, v. 10, n. 1, p. 65–72, 2019. YUNG, R. et al. MECHANISMS OF DRUG-INDUCED LUPUS 111 . Sex-Specific Differences in T Cell Homing May Explain Increased Disease Severity in Female Mice. v. 40, n. 7, p. 1334–1343, 1997. YURASOV, S. et al. Persistent expression of autoantibodies in SLE patients in remission. Journal of Experimental Medicine, v. 203, n. 10, p. 2255–2261, 2006. ZAMANSKY, G. B. Sunlight-induced pathogenesis in systemic lupus erythematosus. Journal of Investigative Dermatology, v. 85, n. 3, p. 179–180, 1985. ZHONG, X. et al. Reciprocal generation of Th1/Th17 and Treg cells by B1 and B2 B cells. European Journal of Immunology, v. 37, n. 9, p. 2400–2404, 2007. Zollinger HU, Mihatsch MJ. Renal pathology in biopsy. Light, electron an immunofluorescent microscopy and clinical aspects. Chapter 3. Renal biopsy management and processing by the pathologist. Springer Verlag, Berlin, 1978, p. 8-20.https://tede.ufrrj.br/retrieve/70439/2021%20-%20Amanda%20Couto%20Silva.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5917Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-08-23T18:28:15Z No. of bitstreams: 1 2021 - Amanda Couto Silva.pdf: 6176891 bytes, checksum: e6a055b3b998e552f2a73e44fe35ea72 (MD5)Made available in DSpace on 2022-08-23T18:28:15Z (GMT). No. of bitstreams: 1 2021 - Amanda Couto Silva.pdf: 6176891 bytes, checksum: e6a055b3b998e552f2a73e44fe35ea72 (MD5) Previous issue date: 2021-09-20info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Amanda Couto Silva.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/1/2021%20-%20Amanda%20Couto%20Silva.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Amanda Couto Silva.pdf.txtExtracted Texttext/plain153521https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/2/2021%20-%20Amanda%20Couto%20Silva.pdf.txtd261803f8b11a9c5e33e8363586b2201MD52ORIGINAL2021 - Amanda Couto Silva.pdfapplication/pdf6176891https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/3/2021%20-%20Amanda%20Couto%20Silva.pdfe6a055b3b998e552f2a73e44fe35ea72MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/117222023-12-21 22:56:32.071oai:rima.ufrrj.br:20.500.14407/11722Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:56:32Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
dc.title.alternative.eng.fl_str_mv |
Role of B1 cells in the immunopathogenesis of systemic lupus erythematosus |
title |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
spellingShingle |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico Silva, Amanda Couto Linfócitos B-1 Lúpus eritematoso sistêmico Imunomodulação Autoimunidade B-1 lymphocytes Systemic lupus erythematosus Immunomodulation; autoimmunity Medicina Veterinária |
title_short |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
title_full |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
title_fullStr |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
title_full_unstemmed |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
title_sort |
Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico |
author |
Silva, Amanda Couto |
author_facet |
Silva, Amanda Couto |
author_role |
author |
dc.contributor.author.fl_str_mv |
Silva, Amanda Couto |
dc.contributor.advisor1.fl_str_mv |
Lima, Débora Decote Ricardo de |
dc.contributor.advisor1ID.fl_str_mv |
875.362.007-06 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3572066508469025 |
dc.contributor.advisor-co1.fl_str_mv |
Lima, Célio Freire Geraldo de |
dc.contributor.advisor-co1ID.fl_str_mv |
002.031.157-59 |
dc.contributor.referee1.fl_str_mv |
Lima, Débora Decote Ricardo de |
dc.contributor.referee2.fl_str_mv |
Silva, Lucia Helena Pinto da |
dc.contributor.referee3.fl_str_mv |
Bizarro, Heloisa D’Avila da Silva |
dc.contributor.authorID.fl_str_mv |
442.399.278-70 https://orcid.org/0000-0003-1878-1696 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6860723629469855 |
contributor_str_mv |
Lima, Débora Decote Ricardo de Lima, Célio Freire Geraldo de Lima, Débora Decote Ricardo de Silva, Lucia Helena Pinto da Bizarro, Heloisa D’Avila da Silva |
dc.subject.por.fl_str_mv |
Linfócitos B-1 Lúpus eritematoso sistêmico Imunomodulação Autoimunidade |
topic |
Linfócitos B-1 Lúpus eritematoso sistêmico Imunomodulação Autoimunidade B-1 lymphocytes Systemic lupus erythematosus Immunomodulation; autoimmunity Medicina Veterinária |
dc.subject.eng.fl_str_mv |
B-1 lymphocytes Systemic lupus erythematosus Immunomodulation; autoimmunity |
dc.subject.cnpq.fl_str_mv |
Medicina Veterinária |
description |
O Lúpus eritematoso sistêmico (LES) é uma doença autoimune crônica que acomete cães, gatos, cavalos, humanos e primatas. A patogênese é multifatorial, estando associado a fatores genéticos, hormonais e ambientais. O LES leva a deposição de complexos imunes em articulações e diversos órgãos resultando em manifestações clínicas. A participação dos linfócitos T e B é crucial para a patogênese da doença. Linfócitos B-1, uma subpopulação de células B, possuem características que podem contribuir com a patogênese de doenças autoimunes pois são capazes de secretar citocinas como IL-10 exercendo uma ação moduladora tanto da resposta inflamatória aguda como crônica, apresentam antígenos as células T, participam da imunidade inata e adaptativa e são as principais produtoras de anticorpos naturais. O entendimento do papel das células B-1 na imunopatogênese do LES pode abrir frentes de estudos sobre estratégias de imunoterapias que possibilitem o controle dessa doença complexa e multifatorial. O presente trabalho avaliou o papel das células B-1 na imunopatogênese do LES utilizando o modelo de indução pelo pristane. LES foi induzido em camundongos fêmeas BALB/c, XID (deficientes em B-1) e XID repopulados com B-1. Os animais foram avaliados por seis meses. Verificamos que, BALB/c pristane e XID repopulados com B-1 apresentaram sinais característicos da doença como, formação de lipogranulomas e esplenomegalia. Em destaque, BALB/c pristane também apresentou ascite, edema articular, artrite, lesão renal com deposição de imunocomplexo. No baço, os animais BALB/c tiveram maior porcentagem de células B (CD19+, IgM+), BALB/c pristane de T CD8 (CD3+,CD8+), enquanto XID pristane teve aumento T CD4 (CD3+,CD4+). No lavado peritoneal, após indução com pristane houve diminuição de células B (CD19+, IgM+) e aumento de B1a (CD19+ IgM+ CD5+) em BALB/c pristane. No sangue periférico, BALB/c apresentou maior quantidade de linfócitos, XID apresentou um perfil neutrofilico, e em todos os grupos com LES houve aumento de monócitos. As citocinas IL-10, IL-6 e IFN- foram aumentadas nos BALB/c e XID repopulados. Com base nesses resultados, sugerimos que a presença de células B-1 pode contribuir com o desenvolvimento do LES. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-09-20 |
dc.date.accessioned.fl_str_mv |
2023-12-22T01:56:32Z |
dc.date.available.fl_str_mv |
2023-12-22T01:56:32Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, Amanda Couto. Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico. 2021. 70 f. Dissertação (Mestrado em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/11722 |
identifier_str_mv |
SILVA, Amanda Couto. Papel dos linfócitos B-1 na imunopatogênese do Lúpus eritematoso sistêmico. 2021. 70 f. Dissertação (Mestrado em Ciências Veterinárias) - Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/11722 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
AGGARWAL, R. et al. This article is protected by copyright. All rights reserved. p. 1–14, 2015. ALBERTO, C. et al. eritematoso sistêmico em cidade do Sul do Brasil. v. 51, n. 3, p. 235–239, 2011. ANDERS, H. J. et al. Lupus nephritis. Nature Reviews Disease Primers, v. 6, n. 1, 2020. ARBUCKLE, M. R. et al. Development of Autoantibodies before the Clinical Onset of Systemic Lupus Erythematosus. New England Journal of Medicine, v. 349, n. 16, p. 1526–1533, 2003. ARINGER, M. et al. 2019 European League Against Rheumatism/American College of Rheumatology classification criteria for systemic lupus erythematosus. Annals of the Rheumatic Diseases, v. 78, n. 9, p. 1151–1159, 1 set. 2019. ARINGER, M. EULAR/ACR classification criteria for SLE. Seminars in Arthritis and Rheumatism, v. 49, n. 3, p. S14–S17, 1 dez. 2019. ARRIENS, C. et al. Systemic lupus erythematosus biomarkers: the challenging quest. Rheumatology (Oxford, England), v. 56, n. 1, p. i32–i45, 2017. BAIN, B. J. Diagnosis from the Blood Smear. New England Journal of Medicine, v. 353, n. 5, p. 498–507, 2005. BANCHEREAU, J.; STEINMAN, R. M. Dendritic cells and the control of immunity. v. 392, n. March, p. 245–252, 1998. BAUMGARTH, N. et al. B-1 and b-2 cell-derived immunoglobulin m antibodies are nonredundant components of the protective response to influenza virus infection. Journal of Experimental Medicine, v. 192, n. 2, p. 271–280, 2000. BAUMGARTH, N. The double life of a B-1 cell: Self-reactivity selects for protective effector functions. Nature Reviews Immunology, v. 11, n. 1, p. 34–46, 2011. BINDER, C. J.; SILVERMAN, G. J. Natural antibodies and the autoimmunity of atherosclerosis. Springer Seminars in Immunopathology, v. 26, n. 4, p. 385–404, 2005. BLANCO, P.; PITARD, V.; TAUPIN, J. Increase in Activated CD8 ϩ T Lymphocytes Expressing Perforin and Granzyme B Correlates With Disease Activity in Patients With Systemic Lupus Erythematosus. v. 52, n. 1, p. 201–211, 2005. BORBA, E. F. et al. Consenso de lúpus eritematoso sistêmico. Revista Brasileira de Reumatologia, v. 48, n. 4, p. 196–207, 2008. BOSSALLER, L. et al. Overexpression of Membrane-Bound Fas Ligand (CD95L) Exacerbates Autoimmune Disease and Renal Pathology in Pristane-Induced Lupus. 2015. BOUTS, Y. M. et al. Apoptosis and NET formation in the pathogenesis of SLE. v. 45, n. December, p. 597–601, 2012. BRENDOLAN, A. et al. Development and function of the mammalian spleen. p. 166–177, 2007. CHOI, S.-C. et al. The Lupus Susceptibility Gene Pbx1 Regulates the Balance between Follicular Helper T Cell and Regulatory T Cell Differentiation . The Journal of 63 Immunology, v. 197, n. 2, p. 458–469, 2016. CHOU, M. Y. et al. Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. Journal of Clinical Investigation, v. 119, n. 5, p. 1335–1349, 2009. CHOUSTERMAN, B. G.; SWIRSKI, F. K. Innate response activator B cells: Origins and functions. International Immunology, v. 27, n. 10, p. 537–541, 2015. CHUN, H. et al. Cytokine IL-6 and IL-10 as Biomarkers in Systemic Lupus Erythematosus. p. 461–466, 2007. COMTE, D.; KARAMPETSOU, M. P.; TSOKOS, G. C. T cells as a therapeutic target in SLE. Lupus, v. 24, n. 4–5, p. 351–363, 2015. COSTENBADER, K. H. et al. Cigarette Smoking and the Risk of Systemic Lupus Erythematosus: A Meta-Analysis. Arthritis and Rheumatism, v. 50, n. 3, p. 849–857, 2004. COSTI, L. R. et al. Artigo original Mortalidade por lúpus eritematoso sistêmico no Brasil : avaliac ¸ ão das causas de acordo com o banco de dados de saúde do governo ଝ. Revista Brasileira de Reumatologia, v. 57, n. 6, p. 574–582, 2017. DAUPHINEE, M.; TOVAR, Z.; TALAL, N. B CELLS EXPRESSING CD5 ARE INCREASED IN SJOGREN ’ S SYNDROME. n. 8, p. 642–647, [s.d.]. DEAFEN, D. et al. A revised estimate of twin concordance in systemic lupus erythematosus. Arthritis & Rheumatism, v. 35, n. 3, p. 311–318, 1992. DENG, J. et al. B1a cells play a pathogenic role in the development of autoimmune arthritis. v. 7, n. 15, 2016. DIANA, J. et al. Crosstalk between neutrophils , B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. n. December, 2012. DÍAZ-ZARAGOZA, M. et al. Natural and adaptive IgM antibodies in the recognition of tumor-associated antigens of breast cancer (Review). Oncology Reports, v. 34, n. 3, p. 1106–1114, 2015. DING, H. J.; GORDON, C. New biologic therapy for systemic lupus erythematosus. Current Opinion in Pharmacology, p. 1–8, 2013. DÖRNER, T.; FURIE, R. Novel paradigms in systemic lupus erythematosus. The Lancet, v. 393, n. 10188, 2019. DÖRNER, T.; GIESECKE, C.; LIPSKY, P. E. Mechanisms of B cell autoimmunity in SLE. p. 1–12, 2011. DORSHKIND, K.; MONTECINO-RODRIGUEZ, E. Fetal B-cell lymphopoiesis and the emergence of B-1-cell potential. Nature Reviews Immunology, v. 7, n. 3, p. 213–219, 2007. DUAN, B.; MOREL, L. Role of B-1a cells in autoimmunity. Autoimmunity Reviews, v. 5, n. 6, p. 403–408, 2006. DURCAN, L.; DWYER, T. O.; PETRI, M. Seminar Management strategies and future directions for systemic lupus erythematosus in adults. The Lancet, v. 393, n. 10188, p. 2332–2343, 2019. ENGHARD, P. et al. Class switching and consecutive loss of dsDNA-reactive B1a B cells from the peritoneal cavity during murine lupus development. p. 1809–1818, 2010. FAGARASAN, S.; HONJO, T. T-independent immune response: New aspects of B cell biology. Science, v. 290, n. 5489, p. 89–92, 2000. FARKAS, L. et al. Plasmacytoid Dendritic Cells ( Natural Interferon- ␣ /  -Producing Cells ) Accumulate in Cutaneous Lupus Erythematosus Lesions. The American Journal of Pathology, v. 159, n. 1, p. 237–243, 2001. FAVA, A.; PETRI, M. Systemic lupus erythematosus: Diagnosis and clinical management. Journal of Autoimmunity, v. 96, n. September, p. 1–13, 2019. FIEDLER, K. et al. Neutrophil development and function critically depend on Bruton tyrosine kinase in a mouse model of X-linked agammaglobulinemia. v. 117, n. 4, p. 1329–1340, 2016. FLORES-MENDOZA, G. et al. Mechanisms of Tissue Injury in Lupus Nephritis. Trends in Molecular Medicine, v. xx, p. 1–15, 2018. FORTUNA, G.; BRENNAN, M. T. Systemic lupus erythematosus. Epidemiology, pathophysiology, manifestations, and management. Dental Clinics of North America, v. 57, n. 4, p. 631–655, 2013. FRANSEN, J. H. et al. The role of dendritic cells in the pathogenesis of systemic lupus erythematosus. v. 1, p. 1–8, 2010. FREITAS, E. C.; DE OLIVEIRA, M. S.; MONTICIELO, O. A. Pristane-induced lupus: considerations on this experimental model. Clinical Rheumatology, v. 36, n. 11, p. 2403–2414, 2017. FURIE, R. et al. A Phase III , Randomized , Placebo-Controlled Study of Belimumab , a Monoclonal Antibody That Inhibits B Lymphocyte Stimulator , in Patients With Systemic Lupus Erythematosus. v. 63, n. 12, p. 3918–3930, 2011. GARRA, A. O. et al. Ly-1 B ( B-1 ) cells are the main source of B cell-derived interleukin 10. p. 711–717, 1992. GEORGESCU, L. et al. Interleukin-10 promotes activation-induced cell death of SLE lymphocytes mediated by Fas ligand. Journal of Clinical Investigation, v. 100, n. 10, p. 2622–2633, 1997. GRIFFIN, D. O.; ROTHSTEIN, T. L. A small CD11b + human B1 cell subpopulation stimulates T cells and is expanded in lupus. v. 208, n. 13, p. 2591–2598, 2011. GRIMALDI, C. M. et al. Estrogen alters thresholds for B cell apoptosis and activation. Journal of Clinical Investigation, v. 109, n. 12, p. 1625–1633, 2002. GRÖNWALL, C.; VAS, J.; SILVERMAN, G. J. Protective roles of natural IgM antibodies. Frontiers in Immunology, v. 3, n. APR, p. 1–10, 2012. GROSSMAN, J. M.; CLINICAL, A. Best Practice & Research Clinical Rheumatology Lupus arthritis. Best Practice & Research Clinical Rheumatology, v. 23, n. 4, p. 495–506, 2009. HA, S. et al. Regulation of B1 cell migration by signals through Toll-like receptors. v. 203, n. 11, p. 2541–2550, 2006a. HA, S. A. et al. Regulation of B1 cell migration by signals through Toll-like receptors. Journal of Experimental Medicine, v. 203, n. 11, p. 2541–2550, 2006b. HAN, S. et al. Maintenance of autoantibody production in pristane-induced murine lupus. Arthritis Research and Therapy, v. 17, n. 1, p. 1–13, 2015. HARDY, R.; HERZENBERG, L. A.; KANTOR, A. B. Debate : the nature of B-cell subpopulations B-cell lineages exist in the mouse. v. 14, n. 2, p. 79–83, 1993. HARDY, R. R. B-1 B cells: development, selection, natural autoantibody and leukemia. Current Opinion in Immunology, v. 18, n. 5, p. 547–555, 2006. HAUGHTON, G. et al. debate B-I -e ! ls are made , not born. Immunology today, n. 2, p. 84–87, 1993. HAYAKAWA, B. Y. K. et al. PROGENITORS. v. 161, n. June, p. 1554–1568, 1985. HAYER, S. et al. ‘ SMASH ’ recommendations for standardised microscopic arthritis scoring of histological sections from inflammatory arthritis animal models. p. 714–726, 2021. HE, J. et al. Low-dose interleukin-2 treatment selectively modulates CD4+ T cell subsets in patients with systemic lupus erythematosus. Nature Medicine, v. 22, n. 9, p. 991–993, 2016. HIROSE, T. et al. PD-L1/PD-L2-expressing B-1 cells inhibit alloreactive T cells in mice. PLoS ONE, v. 12, n. 6, 2017. HOLODICK, N. E.; RODRÍGUEZ-ZHURBENKO, N.; HERNÁNDEZ, A. M. Defining natural antibodies. Frontiers in Immunology, v. 8, n. JUL, p. 2–9, 2017. HOYER, B. F.; MANZ, R. A.; RADBRUCH, A. Long-Lived Plasma Cells and Their Contribution to Autoimmunity. v. 133, p. 124–133, 2005. ISHIDA, B. H. et al. Continuous Administration of Anti-Interleukin 10 Antibodies Delays Onset of Autoimmunity in N Z B / W F1 Mice. v. 179, n. January, 1994. JAIN, S. et al. Interleukin 6 Accelerates Mortality by Promoting the Progression of the Systemic Lupus Erythematosus-Like Disease of BXSB . Yaa Mice. p. 1–19, 2016. JIMÉNEZ, S. et al. The Epidemiology of Systemic Lupus Erythematosus Index Entries : v. 25, 2003. KALIM, H. et al. Regulatory T cells compensation failure cause the dysregulation of immune response in pristane induced lupus mice model. Malaysian Journal of Medical Sciences, v. 25, n. 3, p. 17–26, 2018. KAMMER, G. M. et al. Abnormal T Cell Signal Transduction in Systemic Lupus Erythematosus. v. 46, n. 5, p. 1139–1154, 2002. KERNER, J. D. et al. Impaired expansion of mouse B cell progenitors lacking Btk. Immunity, v. 3, n. 3, p. 301–312, 1995. KIMURA, J. et al. Quantitative and qualitative urinary cellular patterns correlate with progression of murine glomerulonephritis. PLoS ONE, v. 6, n. 1, 2011. KRETSCHMER, K. et al. Maintenance of Peritoneal B-1a Lymphocytes in the Absence of the Spleen. 2015. KULIK, L. et al. Pathogenic Natural Antibodies Recognizing Annexin IV Are Required to Develop Intestinal Ischemia-Reperfusion Injury. The Journal of Immunology, v. 182, n. 9, p. 5363–5373, 2009. LAFFONT, S.; SEILLET, C.; GUÉRY, J. C. Estrogen receptor-dependent regulation of dendritic cell development and function. Frontiers in Immunology, v. 8, n. FEB, 2017. LAURENCE, A. et al. Interleukin-2 Signaling via STAT5 Constrains T Helper 17 Cell Generation. Immunity, v. 26, n. 3, p. 371–381, 2007. LEE, M. H. et al. The cytokine network type I IFN-IL-27-IL-10 is augmented in murine and human lupus. n. May 2018, p. 1–9, 2019. LEE, P. Y. et al. Type I Interferon Modulates Monocyte Recruitment and Maturation in Chronic Inflammation. v. 175, n. 5, p. 2023–2033, 2009. LEISS, H. et al. http://lup.sagepub.com/. 2014. LEWIS, M. J.; JAWAD, A. S. The SLE review series : working for a better standard of Care The effect of ethnicity and genetic ancestry on the epidemiology , clinical features and outcome of systemic lupus erythematosus. p. 1–11, 2016. LI, W.; TITOV, A. A.; MOREL, L. An update on lupus animal models. p. 1–8, 2017. LUSSON, D. et al. REPORT Circulating lupus anticoagulant systemic lupus erythematosus. Dermatology, 1999. MA, K. et al. Multiple functions of B cells in the pathogenesis of systemic lupus erythematosus. International Journal of Molecular Sciences, v. 20, n. 23, 2019. MAGNOL, J. P.; MONIER, J. C. Canine Systemic Lupus Erythematosus . I : A Study of 75. p. 133–139, [s.d.]. MARGARIDA, A. et al. White Blood Cell Count Abnormalities and Infections in One-year Follow-up of 124 Patients with SLE. v. 107, p. 103–107, 2009. MARTIN, F.; OLIVER, A. M.; KEARNEY, J. F. Marginal Zone and B1 B Cells Unite in the Early Response against T-Independent Blood-Borne Particulate Antigens. v. 14, p. 617–629, 2001. MCCLAIN, M. T. et al. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nature Medicine, v. 11, n. 1, p. 85–89, 2005. MCVORRAN, S.; SONG, J.; POCHINENI, V. Case Report Systemic Lupus Erythematosus Presenting with Massive Ascites : A Case of Pseudo-Pseudo Meigs Syndrome. v. 2016, n. c, p. 1–6, 2016. MENDES, E. et al. Artigo original Consenso da Sociedade Brasileira de Reumatologia para o diagnóstico , manejo e tratamento da nefrite lúpica. Revista Brasileira de Reumatologia, v. 55, n. 1, p. 1–21, 2014. MIGUEL, D. et al. Cutaneous Manifestations of Systemic Lupus Erythematosus. v. 2012, n. Figure 1, 2012. MOHAN, B. C. et al. Nucleosome : A Major Immunogen for Pathogenic. v. 177, n. May, 1993. MONTECINO-RODRIGUEZ, E. et al. Distinct Genetic Networks Orchestrate the Emergence of Specific Waves of Fetal and Adult B-1 and B-2 Development. Immunity, v. 45, n. 3, p. 527–539, 2016. MONTECINO-RODRIGUEZ, E.; DORSHKIND, K. New perspectives in B-1 B cell development and function. Trends in Immunology, v. 27, n. 9, p. 428–433, 2006. MOON, H. et al. LPS-induced migration of peritoneal B-1 cells is associated with upregulation of CXCR4 and increased migratory sensitivity to CXCL12. Journal of Korean Medical Science, v. 27, n. 1, p. 27–35, 2012. MOORE, K. W. et al. I NTERLEUKIN -10 AND THE I NTERLEUKIN -10. v. 1, p. 683–765, 2001. MOREL, L. et al. Murine models of systemic lupus erythematosus. Journal of Biomedicine and Biotechnology, v. 2011, 2011. MOULTON, V. R.; TSOKOS, G. C. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. v. 125, n. 6, 2015. MUNROE, M. E. et al. Altered type II interferon precedes autoantibody accrual and elevated type i interferon activity prior to systemic lupus erythematosus classification. Annals of the Rheumatic Diseases, v. 75, n. 11, p. 2014–2021, 2016. MURAKAMI, M. et al. Prevention of autoimmune symptoms in autoimmune-prone mice by elimination of B-1 cells. [s.l: s.n.]. NACIONALES, D. C. et al. Type I Interferon Production by Tertiary Lymphoid Tissue Developing in Response to. v. 168, n. 4, p. 1227–1240, 2006. NACIONALES, D. C. et al. Deficiency of the type I interferon receptor protects mice from experimental lupus. Arthritis and Rheumatism, v. 56, n. 11, p. 3770–3783, 2007. NISITANI, S. et al. Administration of interleukin ‐5 or ‐10 activates peritoneal B‐1 cells and induces autoimmune hemolytic anemia in anti‐erythrocyte autoantibody‐transgenic mice. European Journal of Immunology, v. 25, n. 11, p. 3047–3052, 1995. OCAMPO-PIRAQUIVE, V. et al. Expert Review of Clinical Immunology Mortality in systemic lupus erythematosus : causes , predictors and interventions. Expert Review of Clinical Immunology, v. 14, n. 12, p. 1043–1053, 2018. ODENDAHL, M. et al. Disturbed Peripheral B Lymphocyte Homeostasis in Systemic Lupus Erythematosus. The Journal of Immunology, v. 165, n. 10, p. 5970–5979, 2000. OKE, V. et al. High levels of circulating interferons type I , type II and type III associate with distinct clinical features of active systemic lupus erythematosus. p. 1–11, 2019. PALUMBO, P. et al. Incidência das dermatopatias auto-imunes em cães e gatos e estudo retrospectivo de 40 casos de lupus eritematoso discóide atendidos no serviço de dermatologia da Faculdade de Medicina Veterinária e Zootecnia da UNESP – Botucatu Incidence of the autoimmune. 2010. PANNU, N.; BHATNAGAR, A. Oxidative stress and immune complexes: Pathogenic mechanisms in pristane induced murine model of lupus. Immunobiology, v. 225, n. 1, p. 0–1, 2020. PARKS, C. G. et al. Occupational exposure to crystalline silica and risk of systemic lupus erythematosus: A population-based, case-control study in the southeastern United States. Arthritis and Rheumatism, v. 46, n. 7, p. 1840–1850, 2002. PENG, H. et al. Role of interleukin-10 and interleukin-10 receptor in systemic lupus erythematosus. p. 1255–1266, 2013. PETRI, M. et al. Derivation and Validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus. v. 64, n. 8, p. 2677–2686, 2012. POLLARD, K. M. et al. Interferon-γ and systemic autoimmunity. Discovery medicine, v. 16, n. 87, p. 123–31, 2013. RICHARDS, B. H. B. et al. Interleukin 6 Dependence of Anti-DNA Antibody Production : Evidence for Two Pathways of Autoantibody Formation in Pristane-induced Lupus. v. 188, n. 5, p. 985–990, 1998. RICHARDS, H. B. et al. Interferon-γ is required for lupus nephritis in mice treated with the hydrocarbon oil pristane. Kidney International, v. 60, n. 6, p. 2173–2180, 2001. RÖNNBLOM, L.; ELORANTA, M. L.; ALM, G. V. The type I interferon system in systemic lupus erythematosus. Arthritis and Rheumatism, v. 54, n. 2, p. 408–420, 2006. ROSEN, L. A. C.; ANHAH, G.; ROSEN, A. Autoantigens targeted in systemic lupus erythematmus are clustered in two populations of surface structures on apoptotic keratinocytes. Journal of Experimental Medicine, v. 179, n. 4, p. 1317–1330, 1994. ROWLAND, S. L. et al. Early, transient depletion of plasmacytoid dendritic cells ameliorates autoimmunity in a lupus model. Journal of Experimental Medicine, v. 211, n. 10, p. 1977–1991, 2014. RUCHAKORN, N. et al. Performance of cytokine models in predicting SLE activity. Arthritis Research and Therapy, v. 21, n. 1, p. 1–11, 2019. RYFFEL, B. et al. Interleukin-6 Exacerbates Glomerulonephritis in ( NZBxNZW ) F1 Mice. p. 927–937, 1994. SANG, A. et al. in lupus. n. 2018, [s.d.]. SATO, T. et al. Aberrant B1 cell migration into the thymus results in activation of CD4 T cells through its potent antigen-presenting activity in the development of murine lupus. p. 3346–3358, 2004. SATOH, M. et al. An Evaluation on the 1982 Revised Criteria for the Classification of Systemic Lupus Erythematosus. Japanese Journal of Clinical Immunology, v. 10, n. 2, p. 186–193, 1987. SATOH, M. et al. X-linked immunodeficient mice spontaneously produce lupus-related anti-RNA helicase A autoantibodies, by are resistant to pristane-induced lupus. International Immunology, v. 15, n. 9, p. 1117–1124, 2003. SATOH, M.; REEVES, W. H. Induction of lupus-associated autoantibodies in BALB/c mice by intraperitoneal injection of pristane. Journal of Experimental Medicine, v. 180, n. 6, p. 2341–2346, 1994. SATTERTHWAITE, A. B.; LI, Z.; WITTE, O. N. Btk function in B cell development and responsee. Seminars in Immunology, v. 10, n. 4, p. 309–316, 1998. SAUMA, D. et al. Adoptive transfer of autoimmune splenic dendritic cells to lupus-prone mice triggers a B lymphocyte humoral response. Immunologic Research, v. 65, n. 4, p. 957–968, 2017. SCAPINI, P. et al. B cell-derived IL-10 suppresses inflammatory disease in Lyn-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, v. 108, n. 41, p. 16873–16874, 2011. SCOFIELD, R. H. et al. Klinefelter’s syndrome (47,XXY) in male systemic lupus erythematosus patients: Support for the notion of a gene-dose effect from the X chromosome. Arthritis and Rheumatism, v. 58, n. 8, p. 2511–2517, 2008. SHAH, D. et al. Soluble granzyme B and cytotoxic T lymphocyte activity in the pathogenesis of systemic lupus erythematosus. Cellular Immunology, v. 269, n. 1, p. 16–21, 2011. SHARABI, A.; KASPER, I. R.; TSOKOS, G. C. The serine/threonine protein phosphatase 2A controls autoimmunity. Clinical Immunology, v. 186, p. 38–42, 2018. SHAW, P. X. et al. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. Journal of Clinical Investigation, v. 105, n. 12, p. 1731–1740, 2000. SHELLY, S.; BOAZ, M.; ORBACH, H. Prolactin and autoimmunity. Autoimmunity Reviews, v. 11, n. 6–7, p. A465–A470, 2012. SMITH-BOUVIER, D. L. et al. ARTICLE A role for sex chromosome complement in the female bias in autoimmune disease. v. 205, n. 5, p. 1099–1108, 2008. SMITH, F. L.; BAUMGARTH, N. B-1 cell responses to infections. Current Opinion in Immunology, v. 57, p. 23–31, 2019. SOUZA, D. C. C. et al. Mortality Profile Related to Systemic Lupus Erythematosus : A Multiple Cause-of-death Analysis. p. 496–503, 2012. STEINMETZ, O. M. et al. CXCR3 Mediates Renal Th1 and Th17 Immune Response in Murine Lupus Nephritis. The Journal of Immunology, v. 183, n. 7, p. 4693–4704, 2009. TEDDE-FILHO, G.; NUNES, M. S. Internações hospitalares e mortalidade em pacientes com lúpus eritematoso sistêmico no Brasil Hospital admissions and mortality in patients with systemic lupus erythematosus in Brazil. p. 54091–54100, 2021. TEICHMANN, L. L. et al. Article Dendritic Cells in Lupus Are Not Required for Activation of T and B Cells but Promote Their Expansion , Resulting in Tissue Damage. Immunity, v. 33, n. 6, p. 967–978, 2010. TEL, J. et al. Circulating Apoptotic Microparticles in Systemic Lupus Erythematosus Patients Drive the Activation of Dendritic Cell Subsets and Prime Neutrophils for NETosis. v. 68, n. 2, p. 462–472, 2016. THONG, B.; OLSEN, N. J. Systemic lupus erythematosus diagnosis and management. Rheumatology (United Kingdom), v. 56, n. October, p. i3–i13, 2017. TSOKOS, G. C. et al. New insights into the immunopathogenesis of systemic lupus erythematosus. Nature Reviews Rheumatology, v. 12, n. 12, p. 716–730, 2016. TSOKOS, G. C. Autoimmunity and organ damage in systemic lupus erythematosus. Nature Immunology, v. 21, n. 6, p. 605–614, 2020. TUNG, J. W. et al. Identification of B-Cell Subsets. v. 271, [s.d.]. UZRAIL, A. H.; ASSAF, A. M.; ABDALLA, S. S. Correlations of Expression Levels of a Panel of Genes ( IRF5 , Erythematosus Outcomes in Jordanian Patients. v. 2019, 2019. VAIOPOULOS, A. G. et al. Case Report Diffuse Calcifications of the Spleen in a Woman with Systemic Lupus Erythematosus. v. 2015, n. February 2013, p. 9–12, 2015. VEDOVE, C. D. et al. Drug-induced lupus erythematosus. Archives of Dermatological Research, v. 301, n. 1, p. 99–105, 2009. VELO-GARCÍA, A.; GUERREIRO, S.; ISENBERG, D. A. The diagnosis and management of the haematologic manifestations of lupus. 2016. VILAR, M. J. P.; SATO, E. I. in a tropical region ( Natal , Brazil ). 2002. WAHREN-HERLENIUS, M.; DÖRNER, T. Immunopathogenic mechanisms of systemic autoimmune disease. The Lancet, v. 382, n. 9894, p. 819–831, 2013. WHITE, S. D. DISEASES OF THE NASAL. Veterinary Clinics of North America: Small Animal Practice, v. 24, n. 5, p. 887–895, [s.d.]. YANG, Y. et al. Division and differentiation of natural antibody-producing cells in mouse spleen. Proceedings of the National Academy of Sciences of the United States of America, v. 104, n. 11, p. 4542–4546, 2007. YULIASIH, Y.; RAHMAWATI, L. D.; PUTRI, R. M. Th17/Treg ratio and disease activity in systemic lupus erythematosus. Caspian Journal of Internal Medicine, v. 10, n. 1, p. 65–72, 2019. YUNG, R. et al. MECHANISMS OF DRUG-INDUCED LUPUS 111 . Sex-Specific Differences in T Cell Homing May Explain Increased Disease Severity in Female Mice. v. 40, n. 7, p. 1334–1343, 1997. YURASOV, S. et al. Persistent expression of autoantibodies in SLE patients in remission. Journal of Experimental Medicine, v. 203, n. 10, p. 2255–2261, 2006. ZAMANSKY, G. B. Sunlight-induced pathogenesis in systemic lupus erythematosus. Journal of Investigative Dermatology, v. 85, n. 3, p. 179–180, 1985. ZHONG, X. et al. Reciprocal generation of Th1/Th17 and Treg cells by B1 and B2 B cells. European Journal of Immunology, v. 37, n. 9, p. 2400–2404, 2007. Zollinger HU, Mihatsch MJ. Renal pathology in biopsy. Light, electron an immunofluorescent microscopy and clinical aspects. Chapter 3. Renal biopsy management and processing by the pathologist. Springer Verlag, Berlin, 1978, p. 8-20. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Ciências Veterinárias |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Veterinária |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/1/2021%20-%20Amanda%20Couto%20Silva.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/2/2021%20-%20Amanda%20Couto%20Silva.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/3/2021%20-%20Amanda%20Couto%20Silva.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/11722/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 d261803f8b11a9c5e33e8363586b2201 e6a055b3b998e552f2a73e44fe35ea72 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810107914755506176 |