Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/10173 |
Resumo: | As PDEs4 são enzimas do tipo fosdodiesterases descritas na literatura como reguladoras dos níveis de AMPc no meio e estão, diretamente, envolvidas na modulação de processos inflamatórios no organismo humano. Esta característica tornou a PDE4 um alvo bastante atraente para o desenvolvimento de fármacos com atividade anti-inflamatória e diversos inibidores da enzima foram descritos, como as N-metil-N-acilidrazonas (N-metil-NAHs). Desta forma, este trabalho tem como objetivo geral a síntese, a caracterização e a avaliação farmacológica de compostos inéditos derivados da série N-metil-NAH planejados como inibidores da enzima PDE4, visando a determinação da influência de substituintes em diferentes posições desta classe de compostos para: 1- a obtenção de possíveis moléculas híbridas (séries A, B e C) para o tratamento da DPOC (doença pulmonar obstrutiva crônica) a partir da hibridação molecular do salmeterol, fármaco referência agonista dos receptores β2, e compostos N-metil-NAH, descritas por nosso grupo como potentes inibidores da PDE4; e 2- para a obtenção de novos derivados N-arilados (série D) visando modulações de propriedades físico-químicas. Todas as modificações foram planejadas a partir de estudos de modelagem molecular com o protótipo N-metil-NAH. A síntese das moléculas finais das séries A, B e C foi realizada de forma convergente após a obtenção dos dois principais blocos de construção reacional, do salmeterol e das N-metil-NAHs. A síntese do bloco das N-metil-NAHs das séries A e B foi realizada após cinco etapas reacionais, com rendimentos que variaram entre 40-99%. Para a série C foi necessária a utilização de uma rota sintética alternativa, que contou com quatro etapas reacionais e apresentou rendimentos que variaram entre 54-99%. A síntese do bloco do salmeterol foi realizada após três etapas reacionais com rendimentos que variaram na faixa de 51-96%. Por fim, a reação para a união dos dois blocos de construção foi avaliada utilizando diferentes metodologias. Entretanto, não houve êxito na obtenção dos compostos híbridos das séries A, B e C. Ainda assim, testes de atividade inibitória da PDE4 foram realizados para os compostos sintetizados no bloco das N-metil-NAHs, similares em termos estéricos com os derivados finais propostos. Os resultados observados demonstraram que o composto avaliado da série C apresentou excelente atividade, com inibição de 97,4% da enzima PDE4 à concentração de 10μM, como previsto por experimentos de docking, onde este se comportava como o protótipo N-metil-NAH. Todavia, para os compostos das séries A e B os resultados observados de atividade inibitória (0% e 84,3% à 10μM, respectivamente) diferiram dos estudos teórico, que previu uma correta interação para a série A e não para B. A síntese da série D foi planejada em duas etapas principais: a primeira consistiu na obtenção de um derivado N-metil-N-acilidrazônico bromado, sintetizado em quatro etapas com rendimentos que variaram na faixa de 70-92%; e a segunda na reação de acoplamento cruzado propriamente dita entre o haleto obtido e diferentes aminas, onde após diversos testes o acoplamento de Buchwald-Hartwig utilizando Pd2(dba)3 como fonte de paládio, XPhos como ligante, K3PO4 como base e dioxano como solvente, à 100°C por 3 horas se mostrou a mais promissora. Foram sintetizadas e caracterizadas 14 diferentes N-metil-N-acilidrazonas com rendimentos variando entre 40-90%. Após a síntese dos compostos da série D, alguns foram selecionados de acordo com suas características físico-químicas para a avaliação biológica, onde os resultados observados foram excelentes, com inibição da PDE4 variando na faixa de 80,3-100,0% à 10μM. Cabe ressaltar que, este fato corroborou com os resultados obtidos pelos experimentos de docking, onde as interações essenciais com a enzima alvo foram mantidas. |
id |
UFRRJ-1_c9afe7758c1cc7bf3944155a3758d24f |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/10173 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Azevedo, Luciana Luiz deKümmerle, Arthur Eugen053.978.487-78http://lattes.cnpq.br/5598000938584486121.086.357-00http://lattes.cnpq.br/54066571705727112023-12-21T18:58:27Z2023-12-21T18:58:27Z2018-12-27AZEVEDO, Luciana Luiz de. Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4. 2018. 240 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018.https://rima.ufrrj.br/jspui/handle/20.500.14407/10173As PDEs4 são enzimas do tipo fosdodiesterases descritas na literatura como reguladoras dos níveis de AMPc no meio e estão, diretamente, envolvidas na modulação de processos inflamatórios no organismo humano. Esta característica tornou a PDE4 um alvo bastante atraente para o desenvolvimento de fármacos com atividade anti-inflamatória e diversos inibidores da enzima foram descritos, como as N-metil-N-acilidrazonas (N-metil-NAHs). Desta forma, este trabalho tem como objetivo geral a síntese, a caracterização e a avaliação farmacológica de compostos inéditos derivados da série N-metil-NAH planejados como inibidores da enzima PDE4, visando a determinação da influência de substituintes em diferentes posições desta classe de compostos para: 1- a obtenção de possíveis moléculas híbridas (séries A, B e C) para o tratamento da DPOC (doença pulmonar obstrutiva crônica) a partir da hibridação molecular do salmeterol, fármaco referência agonista dos receptores β2, e compostos N-metil-NAH, descritas por nosso grupo como potentes inibidores da PDE4; e 2- para a obtenção de novos derivados N-arilados (série D) visando modulações de propriedades físico-químicas. Todas as modificações foram planejadas a partir de estudos de modelagem molecular com o protótipo N-metil-NAH. A síntese das moléculas finais das séries A, B e C foi realizada de forma convergente após a obtenção dos dois principais blocos de construção reacional, do salmeterol e das N-metil-NAHs. A síntese do bloco das N-metil-NAHs das séries A e B foi realizada após cinco etapas reacionais, com rendimentos que variaram entre 40-99%. Para a série C foi necessária a utilização de uma rota sintética alternativa, que contou com quatro etapas reacionais e apresentou rendimentos que variaram entre 54-99%. A síntese do bloco do salmeterol foi realizada após três etapas reacionais com rendimentos que variaram na faixa de 51-96%. Por fim, a reação para a união dos dois blocos de construção foi avaliada utilizando diferentes metodologias. Entretanto, não houve êxito na obtenção dos compostos híbridos das séries A, B e C. Ainda assim, testes de atividade inibitória da PDE4 foram realizados para os compostos sintetizados no bloco das N-metil-NAHs, similares em termos estéricos com os derivados finais propostos. Os resultados observados demonstraram que o composto avaliado da série C apresentou excelente atividade, com inibição de 97,4% da enzima PDE4 à concentração de 10μM, como previsto por experimentos de docking, onde este se comportava como o protótipo N-metil-NAH. Todavia, para os compostos das séries A e B os resultados observados de atividade inibitória (0% e 84,3% à 10μM, respectivamente) diferiram dos estudos teórico, que previu uma correta interação para a série A e não para B. A síntese da série D foi planejada em duas etapas principais: a primeira consistiu na obtenção de um derivado N-metil-N-acilidrazônico bromado, sintetizado em quatro etapas com rendimentos que variaram na faixa de 70-92%; e a segunda na reação de acoplamento cruzado propriamente dita entre o haleto obtido e diferentes aminas, onde após diversos testes o acoplamento de Buchwald-Hartwig utilizando Pd2(dba)3 como fonte de paládio, XPhos como ligante, K3PO4 como base e dioxano como solvente, à 100°C por 3 horas se mostrou a mais promissora. Foram sintetizadas e caracterizadas 14 diferentes N-metil-N-acilidrazonas com rendimentos variando entre 40-90%. Após a síntese dos compostos da série D, alguns foram selecionados de acordo com suas características físico-químicas para a avaliação biológica, onde os resultados observados foram excelentes, com inibição da PDE4 variando na faixa de 80,3-100,0% à 10μM. Cabe ressaltar que, este fato corroborou com os resultados obtidos pelos experimentos de docking, onde as interações essenciais com a enzima alvo foram mantidas.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorPDEs4 are described in the literature as phosphodiesterase enzymes wich acts in the regulation of cAMP levels and are directly involved in inflammatory processes control in the human body. This characteristic has made this enzyme a very attractive target for development of anti-inflammatory drugs and numerous PDE4 inhibitors have been described, such as N-methyl-N-acylhydrazones (N-methyl-NAHs). Therefore, this work aim at the synthesis, characterization and pharmacological evaluation of novel compounds N-methyl-NAH derivatives as inhibitors of the PDE4 enzyme, to determine the influence of substituents in different positions for: 1- obtaining hybrid molecules (series A, B and C) for the chronic obstructive pulmonary disease’s treatment (COPD), from the molecular hybridization of salmeterol, a β2 agonist and N-methyl-NAH compounds, described by our group as potent inhibitors of PDE4; and 2- to obtain new N-aryl derivatives (series D) for modulations of physico-chemical properties. All modifications were planned from molecular modeling studies with the N-methyl-NAH prototype. Final molecules of A, B and C series were synthesized in convergent route after obtaining the two main building blocks, salmeterol and N-methyl-NAHs. The synthesis of the N-methyl-NAHs block of A and B series was performed after five steps, presenting yields ranging from 40-99%. For the C series synthesis it was necessary to use an alternative synthetic route, which was performed after four steps and presented yields ranging from 54-99%. The salmeterol block synthesis was performed after three steps in yields ranging from 51-96%. Finally, the reaction for the union of the two building blocks was evaluated testing several reaction conditions. However, there was no success in obtaining the hybrid compounds of A, B and C series. Despite, PDE4 inhibitory activity tests were performed for compounds synthesized in the N-methyl-NAHs block, similar in steric to the proposed final derivatives. It was observed an excellent activity for the C-labeled compound, with 97.4% inhibition of the PDE4 at the concentration of 10μM, as predicted by docking experiments, where it behaved like the N-methyl-NAH prototype. However, for the A and B series the observed results of inhibitory activity (0% and 84.3% at 10 μM, respectively) diverged from the theoretical studies, which predicted a correct interaction for the A series, but ain't for B. The D series synthesis was designed in two main steps: the first one was the synthesis of brominated N-methyl-N-acylhydrazonic derivative after four steps, with yields ranged from 70-92%; and the second one was the cross-coupling reaction itself between the halide and different amines. After several tests with Buchwald-Hartwig coupling reaction, the methodology using Pd2(dba)3 as source of palladium, XPhos as binder, K3PO4 as base and dioxane as solvent, at 100 ° C for 3 hours proved to be the most promising. 14 different N-methyl-N-acylhydrazones were synthesized and characterized, in yields ranging from 40-90%. After the D series synthesis, some were selected according to their physico-chemical characteristics for the biological evaluation, and the results were excellent, with PDE4 inhibition varying in the range of 80.3-100.0% at 10μM . Furthermore, the biological activitie of the D series validate the results observed by the docking experiments, which demonstrated that the essential interactions between ligand and the target enzyme are still there.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Ciências ExatasPDE4N-metil-N-acilidrazonasDPOCN-methyl-N-acylhydrazonesCOPDQuímicaPlanejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisBANNER, K. H.; PAGE, C. P. Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. The European Respiratory Journal 1995, 8, 996. BARCO, A.; BENETTI, S.; POLLINI, G. P. A Facile Alkylation of Ethyl 2-Oxocyclopentanecarboxylate. Synthesis-Stuttgart 1973, 5, 316. BARNES, P. J. The role of anticholinergics in chronic obstructive pulmonary disease. The American Journal of Medicine 2004, 20, 24. BARNES, P. J. Theophylline in chronic obstructive pulmonary disease: new horizons. Proceedings of the American Thoracic Society 2005, 2, 334. BARNES, P. J. Mechanisms and resistance in glucocorticoid control of inflammation. The Journal of Steroid Biochemistry and Molecular Biology 2010, 120, 76. BARNES, P. J. Development of new drugs for DPOC. Current Medicinal Chemistry 2013, 20, 1531. BARREIRO, E. J. Estratégia de simplificação molecular no planejamento racional de fármacos: a Descoberta de novo agente cardioativo. Química Nova 2002, 25, 1172. BARREIRO, E. J.; KÜMMERLE, A. E.; FRAGA, C. A. M. The methylation effect in medicinal chemistry. Chemical Reviews 2011, 111 , 5215. BEAVO, J. A. Ciclic Nucleotide Phosphodiesterases: Functional implications of multiple isoforms. Physiological Reviews 1995, 75, 725. BENDER, A. T.; BEAVO, J. A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacological Reviews 2006, 58, 488. BENSTEAD, D. J.; HULME, A. N.; MCNAB, H.; WIGHT, P. An efficient synthesis of substituted hydrazides. Synlett 2005, 10, 1571 BETHKE, T. D.; BOHMER, G. M.; HERMANN, R.; HAUNS, B.; FUX, R.; MORIKE, K. Doseproportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. The Journal of Clinical Pharmacology 2007, 47, 26. BLAAZER, A. R.; SINGH, A. K.; DE HEUVEL, E.; EDINK, E.; ORRLING, K. M.; VEERMAN, J. J. N.; VAN DEN BERGH, T.; JANSEN, C.; BALASUBRAMANIAM, E.; MOOIJ, W. J.; CUSTERS, H.; SIJM, M.; TAGOE, D. N. A.; KALEJAIYE, T. D.; MUNDAY, J. C.; TENOR, H.; MATHEEUSSEN, A.; WIJTMANS, M.; SIDERIUS, M.; DE GRAAF, C.; MAES, L.; DE KONING, H. P.; BAILEY, D. S.; STERK, G. J.; DE ESCH, I. J. 166 P.; BROWN, D. G.; LEURS, R. Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. Journal of Medicinal Chemistry 2018, 61, 3870. BOLGER, G. B. Molecular biology of the cyclic AMP-specific cyclicnucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal 1994, 6, 851. BOLGER, G. B. Em Cyclic Nucleotide Phosphodiesterases in Health and Disease; Beavo, J. A.; Francis, S. H.; Houslay, M. D. CRC Press: Boca Raton 2006, cap. 2. BRULLO, C.; RICCIARELLI, R.; PRICKAERTS, J.; ARANCIO, O.; MASSA, M.; ROTOLO, C.; ROMUSSI, A.; REBOSIO, C.; MARENGO, B.; PRONZATO, M. A.; VAN HAGEN, B. T. J.; VAN GOETHEM, N. P.; D'URSI, P.; ORRO, A.; MILANESI, L.; GUARIENTO, S.; CICHERO, E.; FOSSA, P.; FEDELE, E.; BRUNO, O. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl)oxime (GEBR-7b) structural development and promising activities to restore memory impairment. European Journal of Medicinal Chemistry 2016, 124, 82. BRUNTON, L. L.; CHABNER, E.; A.; KNOLLMANN, B .C. As Bases Farmacológicas da Terapêutica de Goodman & Gilman. 12ª Edição. Nova Iorque: Editora McGraw Hill, 2012, 2112p. BUTCHER, R. W.; SUTHERLAND, E. W. Adenosine 3’,5’-phosphate in biologicals materials. The Journal of Biological Chemistry 1962, 237, 1244. CALVERLEY, P. M.; SANCHEZ-TORIL, F.; MCIVOR, A.; TEICHMANN, P.; BREDENBROEKER, D.; FABBRI, L. M. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2007, 176, 154. CARD, G. L.; ENGLAND, B. P.; SUZUKI, Y.; FONG, D.; POWELL, B.; LEE, B.; LUU, C.; TABRIZIZAD, M.; GILLETTE, S.; IBRAHIM, P. N.; ARTIS, D. R.; BOLLAG, G.; MILBURN, M. V.; KIM, S. H.; SCHLESSINGER, J.; ZHANG, K. Y. Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases. Structure 2004, 12, 2233. CAZZOLA, M.; MOLIMARD, M. The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in DPOC. Pulmonary Pharmacology & Therapeutics 2010, 23, 257. CELLI, B.; VESTBO, J.; JENKINS, C. R.; JONES, P. W.; FERGUSON, G. T.; CALVERLEY, P. M.; YATES, J. C.; ANDERSON, J. A.; WILLITS, L. R.; WISE, R. A. Sex differences in mortality and clinical expressions of patients with chronic obstructive pulmonary disease. The TORCH experience. American Journal of Respiratory and Critical Care Medicine 2011, 183, 317. 167 CEREP. Eurofins CEREP SA. Disponível em: <https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/PDE4B1-Human-Phosphodiesterase-Enzymatic-Assay-Cerep/4076#additionalInfo>. Acesso em: 02 agosto 2018. CESARI, N.; BIANCALANI, C.; VERGELLI, C.; PIAZ, V.; GRAZIANO, V.; BIAGINI, P.; GHELARDINI, C.; GALEOTTI, N.; GIOVANNONI, M. P. Arylpiperazinylalkylpyridazinones and analogues as potent and orally active antinociceptive agents: synthesis and studies on mechanism of action. Journal of Medicinal Chemistry 2006, 49, 7826. CLAVEAU, D.; CHEN, S. L.; O’KEEFE, S.; ZALLER, D. M.; STYHLER, A.; LIU, S.; HUANG, Z.; NICHOLSON, D. W.; MANCINI, J. A. Preferential inhibition of T helper 1, but not T helper 2, cytokines in vitro by L-826,141 [4-[2-(3,4-Bisdifluromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxy-propan-2-yl) phenyl]-ethyl]3-methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor. The Journal of Pharmacology and Experimental Therapeutics 2004, 310, 752. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. 2ª Edição. Oxford: Oxford University Press, 2012. 1264p. CLINICALTRIALS.GOV. Disponível em: <https://www.clinicaltrials.gov/ct2/home>. Acesso em: 09 julho 2018. COELHO, L. P.; SERRA, M. F.; PIRES, A. L. A.; CORDEIRO, R. S. B.; SILVA, P. M. R.; SANTOS, M. H.; MARTINS, M. A. 7-Epiclusianone, a Tetraprenylated Benzophenone, Relaxes Airway Smooth Muscle through Activation of the Nitric Oxide-cGMP Pathway. Journal of Pharmacology and Experimental Therapeutics 2008, 327, 206. CONTI, M.; BEAVO, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annual Review of Biochemistry 2007, 76, 481. COSTA, P.; PINHEIRO, S.; PILLI, R.; VASCONCELLOS, M. Substâncias carboniladas e derivados. 1ª Edição. Porto Alegre: Artmed, 2003. 412p. DAL-PIAZ, V.; GIOVANNONI, M. P. Phosphodiesterase 4 inhibitors, structurally unrelated to rolipram, as promising agents for the treatment of asthma and other pathologies. European Journal of Medicinal Chemistry 2000, 35, 463. DENT, G.; GIEMBYCZ, M. A.; EVANS, P. M.; RABE, K. F.; BARNES, P. J. Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. The Journal of Pharmacology and Experimental Therapeutics 1994, 271, 1167. DIAMANT, Z.; SPINA, D. PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease. Pulmonary Pharmacology & Therapeutics 2011, 24, 353. 168 DONG, C.; VIRTUCIO, C.; ZEMSKA, O.; BALTAZAR, G.; ZHOU, Y.; BAIA, D.; JONES-IATAURO, S.; SEXTON, H.; MARTIN, S.; DEE, J.; MAK, Y.; MEEWAN, M.; ROCK, F.; AKAMA, T.; JARNAGIN, K. Treatment of Skin Inflammation with Benzoxaborole Phosphodiesterase Inhibitors: Selectivity, Cellular Activity, and Effect on Cytokines Associated with Skin Inflammation and Skin Architecture Changes. The Journal of Pharmacology and Experimental Therapeutics 2016, 358, 413. DOURADO, V. Z.; TANNI S. E.; VALE, S. A.; FAGANELLO, M. M.; SANCHEZ, F. F.; GODOY, I. J. Manifestações sistêmicas na doença pulmonar obstrutiva crônica. Jornal Brasileiro de Pneumologia 2006, 32, 161. ERTL, P.; ROHDE, B.; SELZER, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry 2000, 43, 3714. FALA, L. Otezla (Apremilast), an Oral PDE-4 Inhibitor, Receives FDA Approval for the Treatment of Patients with Active Psoriatic Arthritis and Plaque Psoriasis. American Health & Drug Benefits 2015, 8, 105. FELDING, J.; SØRENSEN, M. D.; POULSEN, T. D.; LARSEN, J.; ANDERSSON, C.; REFER, P.; ENGELL, K.; LADEFOGED, L. G.; THORMANN, T.; VINGGAARD, A. M.; HEGARDT, P.; SØHOEL, A.; NIELSEN, S. F. Discovery and early clinical development of 2-{6-[2-(3,5-dichloro-4-pyridyl)acetyl]-2,3-dimethoxyphenoxy}-N-propylacetamide (LEO 29102), a soft-drug inhibitor of phosphodiesterase 4 for topical treatment of atopic dermatitis. Journal of Medicinal Chemistry 2014, 57, 5893. FOX 3RD, D.; BURGIN, A. B.; GURNEY, M. E. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cellular Signalling 2014, 26, 657. FREUND, Y. R.; AKAMA, T.; ALLEY, M. R.; ANTUNES, J.; DONG, C.; JARNAGIN, K.; KIMURA, R.; NIEMAN, J. A.; MAPLES, K. R.; PLATTNER, J. J.; ROCK, F.; SHARMA, R.; SINGH, R.; SANDERS, V.; ZHOU, Y. Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center. FEBS Letters 2012, 586, 3410. FURUE, M.; KADONO, T.; TSUJI, G.; NAKAHARA, T. Topical E6005/RVT-501, a novel phosphodiesterase 4 inhibitor, for the treatment of atopic dermatitis. Expert Opinion on Investigational Drugs 2017, 26, 1403. GIEMBYCZ, M. A. Cilomilast: a second generation phosphodiesterase 4 inhibitor for asthma and chronic obstructive pulmonary disease. Expert Opinion on Investigational Drugs 2001, 10, 1361. GIEMBYCZ, M. A. 4D or not 4D: the emetogenic basis of PDE4 inhibitors uncovered? Trends in Pharmacological Sciences 2002, 23, 548. GIEMBYCZ, M. A.; CORRIGAN, C. J.; SEYBOLD, J.; NEWTON, R.; BARNES, P. J. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T- 169 lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. British Journal of Pharmacology 1996, 118, 1945. GIEMBYCZ, M. A.; FIELD, S. K. Roflumilast: The first in class phosphodiesterase 4 inhibitor approved for the treatment of DPOC. Journal of Drug Design, Development and Therapy 2010, 4, 147. GIEMBYCZ, M. A.; NEWTON, R. Beyond the dogma: novel beta2-adrenoceptor signalling in the airways. European Respiratory Journal 2006, 27, 1286. GOODMAN, A. D.; GYANG, T.; SMITH III, A. D.; Ibudilast for the treatment of multiple sclerosis. Expert Opinion on Investigational Drugs 2016, 25, 1231. GOTO, T.; SHIINA, A.; MURATA, T.; TOMII, M.; YAMAZAKI, T.; YOSHIDA, K.; YOSHINO, T.; SUZUKI, O.; SOGAWA,Y.; MIZUKAMI, K.; TAKAGI, N.; YOSHITOMI, T.; ETORI,M.; TSUCHIDA, H.; MIKKAICHI, T.; NAKAO, N.; TAKAHASHI, M.; TAKAHASHI, H.; SASAKI, S. Identification of the 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d] pyrimidine derivatives as highly selective PDE4B inhibitors. Bioorganic & Medicinal Chemistry Letters 2014, 24, 893. GUAY, D.; BOULET, L.; FRIESEN, R. W.; GIRARD, M.; HAMEL, P.; HUANG, Z.; LALIBERTÉ, F.; LALIBERTÉ, S.; MANCINI, J. A.; MUISE, E.; PON D.; STYHLER, A. Optimization and structure–activity relationship of a series of 1-phenyl-1,8-naphthyridin-4-one-3-carboxamides: Identification of MK-0873, a potent and effective PDE4 inhibitor. Bioorganic & Medicinal Chemistry Letters 2008, 18, 5554. GURAM, A. S.; BUCHWALD, S. L. Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes. Jounal of American Chemical Society 1994, 116, 7901. HALPIN, D. M. G. ABCD of the phosphodiesterase family: interaction and differential activity in DPOC. International Journal of DPOC 2008, 3, 543. HATZELMANN, A; SCHUDT, C. Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. The Journal of Pharmacology and Experimental Therapeutics 2001, 297, 267. HATZELMANN, A.; MORCILLO, E. J.; LUNGARELLA, G.; ADNOT, S.; SANJAR, S.; BEUME, R.; SCHUDT, C.; TENOR, H. The preclinical pharmacology of roflumilast e A selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2010, 23, 235. HERAVI, M. M.; KHEILKORDI, Z.; ZADSIRJAN, V.; HEYDARI, M.; MALMIR, M. Buchwald-Hartwig reaction: An overview. Journal of Organometallic Chemistry 2018, 861, 17. 170 HOUSLAY, M. D. PDE4 cAMP-specific phosphodiesterases. Progress in Nucleic Acid Research and Molecular Biology 2001, 69, 249. HOUSLAY, M. D.; ADAMS, D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. The Biochemical Journal 2003, 370, 1. HOUSLAY, M. D.; ADAMS, D. R. Putting the lid on phosphodiesterase 4. Nature Biotechnology 2010, 28, 38. HOUSLAY, M. D.; SCHAFER, P.; ZHANG, K. Y. J. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discovery Today 2005, 10, 1503. HOY, S. M. Crisaborole Ointment 2%: A Review in Mild to Moderate Atopic Dermatitis. American Journal of Clinical Dermatology 2017, 18, 837. HUAI, Q.; WANG, H.; SUN, Y.; KIM, H. Y.; LIU, Y.; KE, H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 2003, 11, 865. HUANG, Z.; LIU, S.; ZHANG, L.; SALEM, M.; GREIG, G. M.; CHAN, C. C.; NATSUMEDA, Y.; NOGUCHI, K. Preferential inhibition of human phosphodiesterase 4 by ibudilast. Life Sciences 2006, 78, 2663. HUGHES, A. D.; CHIN, K. H.; DUNHAM, S. L.; JASPER, J. R.; KING, K. E.; LEE, T. W.; MAMMEN, M.; MARTIN, J.; STEINFELD, T. Discovery of muscarinic acetylcholine receptor antagonist and beta 2 adrenoceptor agonist (MABA) dual pharmacology molecules. Bioorganic & Medicinal Chemistry Letters 2011, 21, 1354. ISHII, N.; SHIRATO, M.; WAKITA, H.; MIYAZAKI, K.; TAKASE, Y.; ASANO, O.; KUSANO, K.; YAMAMOTO, E.; INOUE, C.; HISHINUMA, I. Antipruritic Effect of the Topical Phosphodiesterase 4 Inhibitor E6005 Ameliorates Skin Lesions in a Mouse Atopic Dermatitis Models. Journal of Pharmacology and Experimental Therapeutics 2013, 346, 105. JAMES, L.I.; KORBOUKH, V. K.; KRICHEVSKY, L.; BAUGHMAN, B. M.; HEROLD, J. M.; NORRIS, J. L.; JIN,J.; KIREEV,D. B.; JANZEN, W. P.; ARROWSMITH, C. H.; FRYE, S. V. Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3. Journal of Medicinal Chemistry 2013, 56, 7358. KAWASAKI, M.; FUSANO, A.; NIGO, T.; NAKAMURA, S.; ITO, M. N.; TERANISHI, Y.; MATSUMOTO, S.; TODA, H.; NOMURA, N.; SUMIYOSHI, T. Identification of 2,3-disubstituted pyridines as potent, non-emetic PDE4 inhibitors. Bioorganic & Medicinal Chemistry Letters 2014, 24, 2689. KE, H. Implications of PDE4 structure on inhibitor selectivity across PDE families. International Journal of Impotence Research 2004, 16, S24. 171 KERAVIS, T.; LUGNIER, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. British Journal of Pharmacology 2012, 165, 1288. KOJIMA, A.; TAKITA, S.; SUMIYA, T.; OCHIAI, K.; IWASE, K.; KISHI, T.; OHINATA, A.; YAGETA, Y.; YASUE, T.; KOHNO, Y. Phosphodiesterase inhibitors. Part 6: Design, synthesis, and structure–activity relationships of PDE4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters 2013, 23, 5311. KOMAS, N., LUGNIER, C., LE BEC, A., SERRADEIL-LE GAL, C., BARTHELEMY, G., STOCLET, J. C. Differential sensitivity to cardiotonic drugs of cyclic AMP phosphodiesterases isolated from canine ventricular and sinoatrial-enriched tissues. Journal of Cardiovascular Pharmacology 1989, 14, 213. KUANG, R.; SHUE, H.; XIAO, L.; BLYTHIN, D. J.; SHIH, N.; CHEN, X.; GU, D.; LIN, J. S. L.; TING, P. C.; CAO, J.; ASLANIAN, R.; PIWINSKI, J. J.; PRELUSKY, D.; WU, P.; ZHANG, J.; ZHANG, X.; CELLY, C. S.; BILLAH, M.; WANG, P. Discovery of oxazole-based PDE4 inhibitors with picomolar potency. Bioorganic & Medicinal Chemistry Letters 2012, 22, 2594. KUMAR, K. S.; KUMAR, S. K.; SREENIVAS, B. Y.; GORJA, D. R.; KAPAVARAPU, R.; RAMBABU, D.; KRISHNA, G. R.; REDDY, C. M.; RAO, M. V. B.; PARSA, K. V. L.; PAL, M. C–C bond formation at C-2 of a quinoline ring: Synthesis of 2-(1H-indol-3-yl)quinoline-3-carbonitrile derivatives as a new class of PDE4 inhibitors. Bioorganic & Medicinal Chemistry 2012, 20, 2199. KÜMMERLE, A. E.; RAIMUNDO, J. M.; LEAL, C. M.; DA SILVA, G. S.; BALLIANO, T. L.; PEREIRA, M. A.; DE SIMONE, C. A.; SUDO, R. T.; ZAPATA-SUDO, G.; FRAGA, C. A.; BARREIRO, E. J. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N -acylhydrazone derivatives. European Journal of Medicinal Chemistry 2009, 44, 4004. KÜMMERLE, A. E.; SCHMITT, M.; CARDOZO, S. V. S.; LUGNIER, C.; VILLA, P.; LOPES, A. B.; ROMEIRO, N. C.; JUSTINIANO, H.; MARTINS, M. A.; FRAGA, C. A. M.; BOURGUIGNON, J.; BARREIRO, E. J. Design, Synthesis, and Pharmacological Evaluation of N‑Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase‑4 Inhibitors. Journal of Medicinal Chemistry 2012, 55, 7525. LENHARD, J. M.; KASSEL, D. B.; ROCQUE, W. J.; HAMACHER, L.; HOLMES, W. D.; PATEL, I.; HOFFMAN, C.; LUTHER, M. Phosphorylation of a cAMP-specific phosphodiesterase (HSPDE4B2B) by mitogen-activated protein kinase. The Biochemical Journal 1996, 316, 751. LIM, H.; SUN, D. Recent Synthetic Developments and Applications of the Ullmann Reaction. A Review. Organic Preparations and Procedures International 2013, 45, 341. 172 LIM, S.; JATAKANON, A.; GORDON, D.; MACDONALD, C.; CHUNG, K. F.; BARNES, P. J. Comparison of high dose inhaled steroids, low dose inhaled steroids plus low dose theophylline, and low dose inhaled steroids alone in chronic asthma in general practice. Thorax 2000, 55, 837. LIMA, L. M.; BARREIRO, E. J. Bioisosterism, an useful strategy for molecular modification and drug design. Current Medicinal Chemistry 2005, 12, 23. LIMA, P. C.; LIMA, L. M.; SILVA, K. C. M.; LÉDA, P. H. O.; MIRANDA, A. L. P.; FRAGA, C. A. M.; BARREIRO, E. J. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. European Journal of Medicinal Chemistry 2000, 35, 187. LIPINSKI, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery. Today: Technologies 2004, 1, 337. LIU, A.; HUANG, L.; WANG, Z.; LUO, Z.; MAO, F.; SHAN, W.;XIE, J.; LAI, K.; LI, X. Hybrids consisting of the pharmacophores of salmeterol and roflumilast or phthalazinone: Dual b2-adrenoceptor agonists-PDE4 inhibitors for the treatment of COPD. Bioorganic & Medicinal Chemistry Letters 2013, 23, 1548 LIU, J.; ZHOU, D.; JIA, X.; HUANG, L.; LI, X.; CHAN, A. S. C. A convenient synthesis of (R)-salmeterol via Rh-catalyzed asymmetric transfer hydrogenation. Tetrahedron: Asymmetry 2008, 19, 1824. LUGNIER, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agentes. Pharmacology & Therapeutics 2006, 109, 366. LUGNIER, C.; STIERLE, A.; BERETZ, A.; SCHOEFFTER, P.; LE BEC, A.; WERMUTH, C. G.; CAZENAVE, J. P.; STOCLET, J. C. Tissue and substrate specificity of inhibition by alkoxy-aryl-lactams of platelet and arterial smooth muscle cyclic nucleotide phosphodiesterases relationship to pharmacological activity. Biochemical and Biophysical Research Communications 1983, 113, 954. MAREDDY, J.; SURESH, N.; KUMAR, C. G.; KAPAVARAPU, R.; JAYASREE, A.; PAL, S. 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters 2017, 27, 518. MASSIMI, M.; CARDARELLI, S.; GALLI, F.; GIARDI, M. F.; RAGUSA, F.; PENERA, N.; CINQUE,B.; CIFONE, M. G.; BIAGIONE, S.; GIORGI, M. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival. Journal of Cellular Biochemistry 2017, 118, 1401. MATHERS, C. D.; LONCAR, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine 2006, 3,2011. 173 MAURICE, D. H.; KE, H.; AHMAD, F.; WANG, Y.; CHUNG, J.; MANGANIELLO, V. C. Advances in targeting cyclic nucleotide fosfodiesterases. Nature Reviews 2014, 13, 290. MCMURRY, J. Química Orgânica. Tradução Noveritis do Brasil. 3ª Edição. São Paulo: Cengage Learning, 2016. 1472p. MERZ, K. H.; MARKO, D.; REGIERT, T.; REISS, G.; FRANK, W.; EISENBRAND, G. Synthesis of 7-Benzylamino-6-chloro-2-piperazino-4-pyrrolidinopteridine and Novel Derivatives Free of Positional Isomers. Potent Inhibitors of cAMP-Specific Phosphodiesterase and of Malignant Tumor Cell Growth. Journal of Medicinal Chemistry 1998, 41, 4733. MOKRY, J.; MOKRA, D. Immunological aspects of phosphodiesterase inhibition in the respiratory system. Respiratory Physiology & Neurobiology 2013, 187, 11. MOULTON, B. C.; FRYER, A. D. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and DPOC. British Journal of Pharmacology 2011, 163, 44. NAGANUMA K.; OMURA, A.; MAEKAWARA, N.; SAITOH, M.; OHKAWA, N.; KUBOTA, T.; NAGUMO, H.; KODAMA, T.; TAKEMURA, M.; OHTSUKA, Y.; NAKAMURA, J.; TSUJITA, R.; KAWASAKI, K.; YOKOI, H.; KAWANISHI, M. Discovery of selective PDE4B inhibitors. Bioorganic & Medicinal Chemistry Letters 2009, 19, 3174. NGKELO, A.; ADCOCK, I. M. New treatments for DPOC. Current Opinion in Pharmacology 2013, 13, 362. NIELSON, C. P.; VESTAL, R. E.; STURM, R. J. Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. Journal of Allergy and Clinical Immunology 1990, 86, 801. O’BYRNE, P. M.; GAUVREAU, G. Phosphodiesterase-4 inhibition in DPOC. Lancet 2009, 374, 665. PALLA, G.; PELIZZI, C.; PREDIERI, G.; VIGNALI, C. Conformational study on N-acylhydrazones of aromatic-aldehydes by NMR-spectroscopy. Gazzetta Chimica Italiana 1982, 112, 339. PALLA, G.; PREDIERI, G.; DOMIANO, P.; VIGNALI, C.; TURNER, W. Conformational behaviour and E/Z isomerization of acyl and N-aroylhydrazones. Tetrahedron 1986, 42, 3649. PAUL, F.; PATT, J; HARTWIG, J. F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. Journal of American Chemical Society 1994, 116, 5969. 174 PEACHELL, P. T.; UNDEM, B. J.; SCHLEIMER, R. P.; MACGLASHAN, D. W.; LICHTENSTEIN, L. M.; CIESLINSKI, L. B.; TORPHY, T. J. Preliminary identification and role of phosphodiesterase isozymes in human basophils. The Journal of Immunology 1992, 148, 2503. PEARSON, R. G. Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85, 3533. PDB. RCSB Protein Data Bank. Disponível em: <https://www.rcsb.org/>. Acesso em : 02 agosto 2018. POWERS, G. L.; HAMMER, K. D. P.; DOMENECH, M.; FRANTSKEVICH, K.; MALINOWSKI, R. L.; BUSHMAN, W.; BEEBE, D. J.; MARKER, P. C. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential. Molecular Cancer Research 2015, 13, 149. PRAVEENA, K. S. S.; RAMARAO, E. V. V. S.; MURTHY, N. Y. S.; AKKENAPALLY, S.; KUMAR, C. G.; KAPAVARAPU, R.; PAL, S. Design of new hybrid template by linking quinoline, triazole and dihydroquinoline pharmacophoric groups: A greener approach to novel polyazaheterocycles as cytotoxic agents. Bioorganic & Medicinal Chemistry Letters 2015, 25, 1057. RABE, K. F.; BATEMAN, E. D.; O’DONNELL, D.; WITTE, S.; BREDENBROKER, D.; BETHKE, T. D. Roflumilast–an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2005, 366, 563. RABE, K. F.; WATZ, H. Chronic obstructive pulmonary disease. The Lancet 2017, 389, 1931. RENNARD, S. I. Treatment of stable chronic obstructive pulmonar disease. Lancet 2004, 364, 791. RENNARD, S. I.; SCHACHTER, N.; STREK, M.; RICKARD, K.; AMIT, O. Cilomilast for DPOC: results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. Chest 2006, 129, 56. RIBEIRO, I. G.; SILVA, K, C. M.; PARRINI, S. C.; MIRANDA, A. L. P.; FRAGA, C. A. M.; BARREIRO, E. J. Synthesis and antinociceptive properties of new structurally planned imidazo[1,2-a]pyridine 3-acylarylhydrazone derivatives. European Journal of Medicinal Chemistry 1998, 33, 225. ROBICHAUD, A.; STAMATIOU, P. B.; JIN, C.; LACHANCE, N.; MACDONALD, D.; LALIBERTÉ, F.; LIU, S.; HUANG, Z.; CONTI, M.; CHAN, C. C. Deletion of phosphodiesterase 4D in mice shortens alpha2-adrenoceptor-mediated anesthesia, a behavioural correlate of emesis. The Journal of Clinical Investigation 2002, 110, 1045. 175 SANZ, M. J.; CORTIJO, J.; MORCILLO, E. J. PDE4 inhibitors as new antiinflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacology & Therapeutics 2005, 106, 269. SAVAI, R.; PULLAMSETTI, S. S.; BANAT, G. A.; WEISSMANN, N.; GHOFRANI, H. A.; GRIMMINGER, F.; SCHERMULY, R. T. Targeting cancer with phosphodiesterase inhibitors. Expert Opinion Investigational Drugs 2010, 19, 117. SAVI, C.; COX, R J.; WARNER, D. J.; COOK, A. R.; DICKINSON, M R.; MCDONOUGH, A.; MORRILL, L. C.; PARKER, B.; ANDREWS, G.; YOUNG, S. S.; GILMOUR, P. S.; RILEY, R.; DEARMAN, M. S. Efficacious Inhaled PDE4 Inhibitors with Low Emetic Potential and Long Duration of Action for the Treatment of DPOC. Journal of Medicinal Chemistry 2014, 57, 4661. SCHALKWYK, E. V.; STRYDOM, K.; WILLIAMS, Z.; VENTER, L.; LEICHTL, S.; WIRLITSCH, C. S.; BREDENBRÖKER, D.; BARDIN, P. G. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, attenuates allergen-induced asthmatic reactions. Journal of Allergy and Clinical Immunology 2005, 116, 292. SCHWABE, U.; MIYAKE, M.; OHGAM Y.; DALY, J. W. 4-(3-Cyclopentyloxy-4- methoxyphenyl)-2-pyrrolidone (ZK 62711): a potent inhibitor of adenosine cyclic 3′,5′- monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Molecular Pharmacology 1976, 12, 900. SCHWENKGRUB, J.; ZAREMBA, M.; JONIEC-MACIEJAK, I.; CUDNA, A.; MIROWSKA-GUZEL, D.; KURKOWSKA-JASTRZĘBSKA, I. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of Parkinson’s disease. Plos One 2017, 12, e0182019. SCOPUS. Disponível em: <http://www.scopus.com>. Acesso em: 05 julho 2018. SELDON, P. M.; BARNES, P. J.; MEJA, K.; GIEMBYCZ, M. A. Suppression of lipopolysaccharide-induced tumor necrosis factor-alpha generation from human peripheral blood monocytes by inhibitors of phosphodiesterase 4: interaction with stimulants of adenylyl cyclase. Molecular Pharmacology 1995, 48, 747. SENGUPTA, R.; SUN, T.; WARRINGTON, N. M.; RUBIN, J. B. Treating brain tumorswith PDE4 inhibitors. Trends in Pharmacological Sciences 2011, 32, 337. SETTE, C.; VICINI, E.; CONTI, M. The rat PDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. The Journal of Biological Chemistry 1994, 269, 18271. SHAFIR, A.; LICHTOR, P. A.; BUCHWALD, S. L. N- versus O-Arylation of Aminoalcohols: Orthogonal Selectivity in Copper-Based Catalysts. Journal of the American Chemical Society 2007, 129, 3490. 176 SHAKUR, Y.; PRYDE, J. G.; HOUSLAY, M. D. Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering itssensitivity to inhibition by rolipram. The Biochemical Journal 1993, 292, 677. SHE, G; ZHAO L.; BAO W. 1,1′-Binaphthyl-2,2′-diamine Dihydrochloride: an Efficient Ligand for the N-Arylation of Imidazole with Aryl/heteroaryl Halides Catalyzed by CuI. Chemical Research in Chinese Universities 2016, 32, 947. SILVA, C. L. M.; NOEL, F.; BARREIRO, E. J. Vasodilatory properties of LASSBio 294 and its dependence on cGMP increase. British Journal of Pharmacology 2002, 135, 293. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificação espectrométrica de compostos orgânicos. Tradução: Ricardo Bicca de Alancastro. 7ª Edição. Rio de Janeiro: LTC Editora, 2007. 490p. SINDEN, N. J.; STOCKLEY, R. A. Systemic inflammation and comorbidity in DPOC: a result of ’overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 2010, 65, 930. SINGH, S.; LOKE, Y. K. An overview of the benefits and drawbacks of inhaled corticosteroids in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease 2010, 5, 189. SMITH, M. Organic Synthesis. 4ª Edição. Massachusetts: Academic Press, 2016. 1106p. SOARES, L. M.; VRY, D.; STEINBUSCH, H. W. M.; MILANI, H.; PRICKAERTS, J.; OLIVEIRA, R. M. W. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016, 326, 69. SPINA, D. PDE4 inhibitors: current status. British Journal of Pharmacology 2008, 155, 308. SRIVANI, P.; USHARANI, D.; JEMMIS, E. D.; SASTRY, G. N. Subtype Selectivity in Phosphodiesterase 4 (PDE4): A Bottleneck in Rational Drug Design. Current Pharmaceutical Design 2008, 14, 3854. STEWART, J. J. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling 2007 13, 1173. SUDO, R. T.; ZAPATA-SUDO, G.; BARREIRO, E. J. LASSBio 294, a novel cardionotropic agent, increases the calcium content in the sarcoplasmatic reticulum of saponin-skinned cardiac fibres. British Journal of Pharmacology 2001, 134, 603. 177 SULLIVAN, P.; BEKIR, S.; JAFFAR, Z.; PAGE, C.; JEFFERY, P.; COSTELLO, J. Antiinflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 1994, 343, 1006. SUTHERLAND, E. W.; RALL, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. The Journal of Biological Chemistry 1958, 232, 1077. SWINNEN, J. V.; JOSEPH, D. R.; CONTI, M. The mRMN encoding a high-affinity cAMP phosphodiesterase is regulated by hormones and cAMP. Proceedings of the National Academy of Sciences of the United States of America 1989, 86, 8197. SWINNEN, J. V.; TSIKALAS, K. E.; CONTI, M. Properties and hormonal regullation of two structurally related cAMP fosfodiesterases from the rat Sertoli cell. The Journal of Biological Chemistry 1991, 266, 18370. TENOR, H.; STANICIU, L.; SCHUDT, C.; HATZELMANN, A.; WENDEL, A.; DJUKANOVIC, R.; CHURCH, M. K.; SHUTE, J. K. Cyclic nucleotide phosphodiesterases from purified human CD4+ and CD8+ T lymphocytes. Clinical & Experimental Allergy 1995, 25, 616. THOMPSON, W. J. Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. Pharmacology & Therapeutics 1991, 51, 13. THOMPSON, W. J.; APPLEMAN, M. M. Characterization of cyclic nucleotide phosphodiesterases of rat tissues. The Journal of Biological Chemistry 1971, 246, 3145. TING, P. C.; LEE, J. F.; KUANG, R.; CAO, J.; GU, D.; HUANG, Y.; LIU, Z.; ASLANIAN, R. G.; FENG, K.; PRELUSKY, D.; LAMCA, J.; HOUSE, A.; PHILLIPS, J. E.; WANG, P.; WUD, P.; LUNDELL, D.; CHAPMAN, R. W.; CELLY, C. S. Discovery of oral and inhaled PDE4 inhibitors. Bioorganic & Medicinal Chemistry Letters 2013, 23, 5528. TORPHY, T. J.; BARNETTE, M. S.; UNDERWOOD, D. C.; GRISWOLD, D. E.; CHRISTENSEN, S. B.; MURDOCH, R. D.; NIEMAN, R. B.; COMPTON, C. H. Ariflo® (SB 207499), a Second Generation Phosphodiesterase 4 Inhibitor for the Treatment of Asthma and DPOC: from Concept to Clinic. Pulmonary Pharmacology & Therapeutics 1999, 12, 131. TRIFILIEF, A.; WYSS, D.; WALKER, C.; MAZZONI, L.; HERSPERGER, R. Pharmacological Profile of a Novel Phosphodiesterase 4 Inhibitor, 4-(8-Benzo[1,2,5]oxadiazol-5-yl-[1,7]naphthyridin-6-yl)-benzoic Acid (NVP-ABE171), a 1,7-Naphthyridine Derivative, with Anti-Inflammatory Activities. The Journal of Pharmacology and Experimental Therapeutics 2002, 301, 241. VIGNOLA, A. M. PDE4 inhibitors in DPOC: a more selective approach to treatment. Respiratory Medicine 2004, 98, 495. 178 VITOLO, O.V.; SANT'ANGELO, A.; COSTANZO, V.; BATTAGLIA, F.; ARANCIO, O.; SHELANSKI, M. Amyloid beta-peptide inhibition of the PKA/CREB pathway and long-term potentiation: reversibility by drugs that enhance cAMP signaling. Proceedings of the National Academy of Sciences 2002, 13217. XU, R. X.; HASSELL, A. M.; VANDERWALL, D.; LAMBERT, M. H.; HOLMES, W. D.; LUTHER, M. A..; ROCQUE, W. J.; MILBURN, M. V.; ZHAO, Y.; KE, H.; NOLTE, R. T. Atomic structure of PDE4: insights into phosphodiesterase mechanism a specificity. Science 2000, 288, 1822. WACHTEL, H. Characteristic behavioural alterations in rats induced by rolipram and other selective adenosine cyclic 3,5-monophosphate phosphodiesterase inhibitors. Psychopharmacology 1982, 77, 309. WALDECK, B. Beta-adrenoceptor agonists and asthma: 100 years of development. European Journal of Pharmacology 2002, 445, 1. WANG, H.; PENG, M. S.; CHEN, Y.; GENG, J.; ROBINSON, H.; HOUSLAY, M. D.; CAI, J.; KE, H. Structures of the four subfamilies of phosphodiesterase-4 provide insight into the selectivity of their inhibitors. The Biochemical Journal 2007, 408, 193. WEINBERGER, M.; HENDELES, L. Theophylline in asthma. The New England Journal of Medicine 1996, 334, 1380. WERMUTH, C. G. The Pratical of Medicinal Chemistry. 2ª Edição. Londres: Academic Press, 2003, 736. WHO. Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region, 2000-2016. Geneva, World Health Organization; 2018. Disponível em: <http://www.who.int/en/news-room/fact-sheets/detail/the-top-10-causes-of-death>. Acesso em: 03 julho 2018. WITULSKI, A.; SENFT, S.; BONET, J.; JOST, O. Palladium-Catalyzed N-Arylation Reactions with Aziridine and Azetidine. Synthesis 2007, 2, 243. WOODROW, M. D.; BALLANTINE, S. P.; BARKER, M. D.; CLARKE, B. J.; DAWSON, J.; DEAN, T. W.; DELVES, C. J.; EVANS, B.; GOUGH, S. L.; GUNTRIP, S. B; HOLMAN, S.; HOLMES, D. S.; KRANZ, M.; LINDVAAL, M. K.; LUCAS, F. S.; NEU, M.; RANSHAW, L. E.; SOLANKE, Y. E.; SOMERS, D. O.; WARD, P.; WISEMAN, J. O. Quinolines as a novel structural class of potent and selective PDE4 inhibitors. Optimisation for inhaled administration. Bioorganic & Medicinal Chemistry Letters 2009, 19, 5261. YAMADA, S.; MORIZONO, D.; YAMAMOTO, K. Mild oxidation of aldehydes to the corresponding carboxylic acids and esters: alkaline iodine oxidation revisited. Tetrahedron Letters 1992, 33, 4329. 179 YANG, Q.; NEY, J. E.; WOLFE, J. P. Palladium-Catalyzed Tandem N-Arylation/Carboamination Reactions for the Stereoselective Synthesis of N-Aryl-2-benzyl Pyrrolidines. Organic Letters 2005, 7, 2575. YANG, X.; LUI H.; FU, H.; QIAO, R.; JIANG, Y.; ZHAO, Y. Efficient Copper-Catalyzed Synthesis of 4-Aminoquinazoline and 2,4-Diaminoquinazoline Derivatives. Synlett 2010, 1, 101. ZHANG, C.; XU, Y.; ZHANG, H.; GURNEY, M. E.; O’DONNELL, J. M. Comparison of the Pharmacological Profiles of Selective PDE4B and PDE4D Inhibitors in the Central Nervous System. Nature Scientific Reports 2017, 7, 40115. ZHANG, M.; ZHOU, Z.; YUAN, X.; CHENG, Y.; BI, B.; GONG, M.; CHEN, Y.; XU, J. Chlorbipram: A novel PDE4 inhibitor with improved safety as a potential antidepressant and cognitive enhancer. European Journal of Pharmacology 2013, 721, 56. ZHANG, Y.; PLATTNER, J. J.; AKAMA, T.; BAKER, S. J.; HERNANDEZ, V. S.; SANDERS, V.; FREUND, Y.; KIMURA, R.; BU, W.; HOLD, K. M.; LU, X. Design and synthesis of boron-containing PDE4 inhibitors using soft-drug strategy for potential dermatologic anti-inflammatory application. Bioorganic & Medicinal Chemistry Letters 2010, 20, 2270. ZHOU, Z.; CHENG, Y.; ZOU, Z.; GE, B.; YU, H.; HUANG, C.; WANG, H.; YANG, X.; XU, J. Discovery of N‑Alkyl Catecholamides as Selective Phosphodiesterase‑4 Inhibitors with Anti-neuroinflammation Potential Exhibiting Antidepressant-like Effects at Non-emetic Doses. ACS Chemical Neuroscience 2017, 8, 135.https://tede.ufrrj.br/retrieve/66056/2018%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.jpghttps://tede.ufrrj.br/retrieve/71241/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf.jpghttps://tede.ufrrj.br/retrieve/71243/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/4878Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2021-07-22T10:29:49Z No. of bitstreams: 1 2018 - Luciana Luiz de Azevedo.pdf: 17032182 bytes, checksum: 672df394ec3cde71415e98d703aec62e (MD5)Made available in DSpace on 2021-07-22T10:29:49Z (GMT). No. of bitstreams: 1 2018 - Luciana Luiz de Azevedo.pdf: 17032182 bytes, checksum: 672df394ec3cde71415e98d703aec62e (MD5) Previous issue date: 2018-12-27info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2018 - Luciana Luiz de Azevedo.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/1/2018%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD512018 - Luciana Luiz de Azevedo (parte 2).pdf.jpgGenerated Thumbnailimage/jpeg4760https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/2/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf.jpgd297800d184f210bd98a2bd6bfde216dMD522018 - Luciana Luiz de Azevedo (parte 1).pdf.jpgGenerated Thumbnailimage/jpeg3790https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/3/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf.jpgc18786617990aae1ccdcba1df00aa2f2MD53TEXT2018 - Luciana Luiz de Azevedo.pdf.txtExtracted Texttext/plain385507https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/4/2018%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.txte9961e03939cd92cbcbb47f9635387eeMD542018 - Luciana Luiz de Azevedo (parte 2).pdf.txtExtracted Texttext/plain7629https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/5/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf.txt223b48c8901e22487e1285687732bfbfMD552018 - Luciana Luiz de Azevedo (parte 1).pdf.txtExtracted Texttext/plain377885https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/6/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf.txt4d947f4562081938e73466d28eb65f7dMD56ORIGINAL2018 - Luciana Luiz de Azevedo (parte 2).pdfParte 02application/pdf3715955https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/7/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdfdebaa692ad9acb8a0f632269a7894508MD572018 - Luciana Luiz de Azevedo (parte 1).pdfParte 01application/pdf8921164https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/8/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf4d5bda0daaed24eab84c673b6450cd94MD58LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/9/license.txt7b5ba3d2445355f386edab96125d42b7MD5920.500.14407/101732023-12-21 15:58:27.203oai:rima.ufrrj.br:20.500.14407/10173Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:58:27Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
title |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
spellingShingle |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 Azevedo, Luciana Luiz de PDE4 N-metil-N-acilidrazonas DPOC N-methyl-N-acylhydrazones COPD Química |
title_short |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
title_full |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
title_fullStr |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
title_full_unstemmed |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
title_sort |
Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4 |
author |
Azevedo, Luciana Luiz de |
author_facet |
Azevedo, Luciana Luiz de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Azevedo, Luciana Luiz de |
dc.contributor.advisor1.fl_str_mv |
Kümmerle, Arthur Eugen |
dc.contributor.advisor1ID.fl_str_mv |
053.978.487-78 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5598000938584486 |
dc.contributor.authorID.fl_str_mv |
121.086.357-00 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5406657170572711 |
contributor_str_mv |
Kümmerle, Arthur Eugen |
dc.subject.por.fl_str_mv |
PDE4 N-metil-N-acilidrazonas DPOC |
topic |
PDE4 N-metil-N-acilidrazonas DPOC N-methyl-N-acylhydrazones COPD Química |
dc.subject.eng.fl_str_mv |
N-methyl-N-acylhydrazones COPD |
dc.subject.cnpq.fl_str_mv |
Química |
description |
As PDEs4 são enzimas do tipo fosdodiesterases descritas na literatura como reguladoras dos níveis de AMPc no meio e estão, diretamente, envolvidas na modulação de processos inflamatórios no organismo humano. Esta característica tornou a PDE4 um alvo bastante atraente para o desenvolvimento de fármacos com atividade anti-inflamatória e diversos inibidores da enzima foram descritos, como as N-metil-N-acilidrazonas (N-metil-NAHs). Desta forma, este trabalho tem como objetivo geral a síntese, a caracterização e a avaliação farmacológica de compostos inéditos derivados da série N-metil-NAH planejados como inibidores da enzima PDE4, visando a determinação da influência de substituintes em diferentes posições desta classe de compostos para: 1- a obtenção de possíveis moléculas híbridas (séries A, B e C) para o tratamento da DPOC (doença pulmonar obstrutiva crônica) a partir da hibridação molecular do salmeterol, fármaco referência agonista dos receptores β2, e compostos N-metil-NAH, descritas por nosso grupo como potentes inibidores da PDE4; e 2- para a obtenção de novos derivados N-arilados (série D) visando modulações de propriedades físico-químicas. Todas as modificações foram planejadas a partir de estudos de modelagem molecular com o protótipo N-metil-NAH. A síntese das moléculas finais das séries A, B e C foi realizada de forma convergente após a obtenção dos dois principais blocos de construção reacional, do salmeterol e das N-metil-NAHs. A síntese do bloco das N-metil-NAHs das séries A e B foi realizada após cinco etapas reacionais, com rendimentos que variaram entre 40-99%. Para a série C foi necessária a utilização de uma rota sintética alternativa, que contou com quatro etapas reacionais e apresentou rendimentos que variaram entre 54-99%. A síntese do bloco do salmeterol foi realizada após três etapas reacionais com rendimentos que variaram na faixa de 51-96%. Por fim, a reação para a união dos dois blocos de construção foi avaliada utilizando diferentes metodologias. Entretanto, não houve êxito na obtenção dos compostos híbridos das séries A, B e C. Ainda assim, testes de atividade inibitória da PDE4 foram realizados para os compostos sintetizados no bloco das N-metil-NAHs, similares em termos estéricos com os derivados finais propostos. Os resultados observados demonstraram que o composto avaliado da série C apresentou excelente atividade, com inibição de 97,4% da enzima PDE4 à concentração de 10μM, como previsto por experimentos de docking, onde este se comportava como o protótipo N-metil-NAH. Todavia, para os compostos das séries A e B os resultados observados de atividade inibitória (0% e 84,3% à 10μM, respectivamente) diferiram dos estudos teórico, que previu uma correta interação para a série A e não para B. A síntese da série D foi planejada em duas etapas principais: a primeira consistiu na obtenção de um derivado N-metil-N-acilidrazônico bromado, sintetizado em quatro etapas com rendimentos que variaram na faixa de 70-92%; e a segunda na reação de acoplamento cruzado propriamente dita entre o haleto obtido e diferentes aminas, onde após diversos testes o acoplamento de Buchwald-Hartwig utilizando Pd2(dba)3 como fonte de paládio, XPhos como ligante, K3PO4 como base e dioxano como solvente, à 100°C por 3 horas se mostrou a mais promissora. Foram sintetizadas e caracterizadas 14 diferentes N-metil-N-acilidrazonas com rendimentos variando entre 40-90%. Após a síntese dos compostos da série D, alguns foram selecionados de acordo com suas características físico-químicas para a avaliação biológica, onde os resultados observados foram excelentes, com inibição da PDE4 variando na faixa de 80,3-100,0% à 10μM. Cabe ressaltar que, este fato corroborou com os resultados obtidos pelos experimentos de docking, onde as interações essenciais com a enzima alvo foram mantidas. |
publishDate |
2018 |
dc.date.issued.fl_str_mv |
2018-12-27 |
dc.date.accessioned.fl_str_mv |
2023-12-21T18:58:27Z |
dc.date.available.fl_str_mv |
2023-12-21T18:58:27Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AZEVEDO, Luciana Luiz de. Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4. 2018. 240 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10173 |
identifier_str_mv |
AZEVEDO, Luciana Luiz de. Planejamento, estudos de derivatização e avaliação farmacológica de n-metil-n-acilidrazonas planejadas como inibidoras da enzima PDE4. 2018. 240 f. Tese (Doutorado em Química) - Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2018. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10173 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
BANNER, K. H.; PAGE, C. P. Theophylline and selective phosphodiesterase inhibitors as anti-inflammatory drugs in the treatment of bronchial asthma. The European Respiratory Journal 1995, 8, 996. BARCO, A.; BENETTI, S.; POLLINI, G. P. A Facile Alkylation of Ethyl 2-Oxocyclopentanecarboxylate. Synthesis-Stuttgart 1973, 5, 316. BARNES, P. J. The role of anticholinergics in chronic obstructive pulmonary disease. The American Journal of Medicine 2004, 20, 24. BARNES, P. J. Theophylline in chronic obstructive pulmonary disease: new horizons. Proceedings of the American Thoracic Society 2005, 2, 334. BARNES, P. J. Mechanisms and resistance in glucocorticoid control of inflammation. The Journal of Steroid Biochemistry and Molecular Biology 2010, 120, 76. BARNES, P. J. Development of new drugs for DPOC. Current Medicinal Chemistry 2013, 20, 1531. BARREIRO, E. J. Estratégia de simplificação molecular no planejamento racional de fármacos: a Descoberta de novo agente cardioativo. Química Nova 2002, 25, 1172. BARREIRO, E. J.; KÜMMERLE, A. E.; FRAGA, C. A. M. The methylation effect in medicinal chemistry. Chemical Reviews 2011, 111 , 5215. BEAVO, J. A. Ciclic Nucleotide Phosphodiesterases: Functional implications of multiple isoforms. Physiological Reviews 1995, 75, 725. BENDER, A. T.; BEAVO, J. A. Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use. Pharmacological Reviews 2006, 58, 488. BENSTEAD, D. J.; HULME, A. N.; MCNAB, H.; WIGHT, P. An efficient synthesis of substituted hydrazides. Synlett 2005, 10, 1571 BETHKE, T. D.; BOHMER, G. M.; HERMANN, R.; HAUNS, B.; FUX, R.; MORIKE, K. Doseproportional intraindividual single- and repeated-dose pharmacokinetics of roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor. The Journal of Clinical Pharmacology 2007, 47, 26. BLAAZER, A. R.; SINGH, A. K.; DE HEUVEL, E.; EDINK, E.; ORRLING, K. M.; VEERMAN, J. J. N.; VAN DEN BERGH, T.; JANSEN, C.; BALASUBRAMANIAM, E.; MOOIJ, W. J.; CUSTERS, H.; SIJM, M.; TAGOE, D. N. A.; KALEJAIYE, T. D.; MUNDAY, J. C.; TENOR, H.; MATHEEUSSEN, A.; WIJTMANS, M.; SIDERIUS, M.; DE GRAAF, C.; MAES, L.; DE KONING, H. P.; BAILEY, D. S.; STERK, G. J.; DE ESCH, I. J. 166 P.; BROWN, D. G.; LEURS, R. Targeting a Subpocket in Trypanosoma brucei Phosphodiesterase B1 (TbrPDEB1) Enables the Structure-Based Discovery of Selective Inhibitors with Trypanocidal Activity. Journal of Medicinal Chemistry 2018, 61, 3870. BOLGER, G. B. Molecular biology of the cyclic AMP-specific cyclicnucleotide phosphodiesterases: a diverse family of regulatory enzymes. Cell Signal 1994, 6, 851. BOLGER, G. B. Em Cyclic Nucleotide Phosphodiesterases in Health and Disease; Beavo, J. A.; Francis, S. H.; Houslay, M. D. CRC Press: Boca Raton 2006, cap. 2. BRULLO, C.; RICCIARELLI, R.; PRICKAERTS, J.; ARANCIO, O.; MASSA, M.; ROTOLO, C.; ROMUSSI, A.; REBOSIO, C.; MARENGO, B.; PRONZATO, M. A.; VAN HAGEN, B. T. J.; VAN GOETHEM, N. P.; D'URSI, P.; ORRO, A.; MILANESI, L.; GUARIENTO, S.; CICHERO, E.; FOSSA, P.; FEDELE, E.; BRUNO, O. New insights into selective PDE4D inhibitors: 3-(Cyclopentyloxy)-4-methoxybenzaldehyde O-(2-(2,6-dimethylmorpholino)-2-oxoethyl)oxime (GEBR-7b) structural development and promising activities to restore memory impairment. European Journal of Medicinal Chemistry 2016, 124, 82. BRUNTON, L. L.; CHABNER, E.; A.; KNOLLMANN, B .C. As Bases Farmacológicas da Terapêutica de Goodman & Gilman. 12ª Edição. Nova Iorque: Editora McGraw Hill, 2012, 2112p. BUTCHER, R. W.; SUTHERLAND, E. W. Adenosine 3’,5’-phosphate in biologicals materials. The Journal of Biological Chemistry 1962, 237, 1244. CALVERLEY, P. M.; SANCHEZ-TORIL, F.; MCIVOR, A.; TEICHMANN, P.; BREDENBROEKER, D.; FABBRI, L. M. Effect of 1-year treatment with roflumilast in severe chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine 2007, 176, 154. CARD, G. L.; ENGLAND, B. P.; SUZUKI, Y.; FONG, D.; POWELL, B.; LEE, B.; LUU, C.; TABRIZIZAD, M.; GILLETTE, S.; IBRAHIM, P. N.; ARTIS, D. R.; BOLLAG, G.; MILBURN, M. V.; KIM, S. H.; SCHLESSINGER, J.; ZHANG, K. Y. Structural Basis for the Activity of Drugs that Inhibit Phosphodiesterases. Structure 2004, 12, 2233. CAZZOLA, M.; MOLIMARD, M. The scientific rationale for combining long-acting beta2-agonists and muscarinic antagonists in DPOC. Pulmonary Pharmacology & Therapeutics 2010, 23, 257. CELLI, B.; VESTBO, J.; JENKINS, C. R.; JONES, P. W.; FERGUSON, G. T.; CALVERLEY, P. M.; YATES, J. C.; ANDERSON, J. A.; WILLITS, L. R.; WISE, R. A. Sex differences in mortality and clinical expressions of patients with chronic obstructive pulmonary disease. The TORCH experience. American Journal of Respiratory and Critical Care Medicine 2011, 183, 317. 167 CEREP. Eurofins CEREP SA. Disponível em: <https://www.eurofinsdiscoveryservices.com/catalogmanagement/viewitem/PDE4B1-Human-Phosphodiesterase-Enzymatic-Assay-Cerep/4076#additionalInfo>. Acesso em: 02 agosto 2018. CESARI, N.; BIANCALANI, C.; VERGELLI, C.; PIAZ, V.; GRAZIANO, V.; BIAGINI, P.; GHELARDINI, C.; GALEOTTI, N.; GIOVANNONI, M. P. Arylpiperazinylalkylpyridazinones and analogues as potent and orally active antinociceptive agents: synthesis and studies on mechanism of action. Journal of Medicinal Chemistry 2006, 49, 7826. CLAVEAU, D.; CHEN, S. L.; O’KEEFE, S.; ZALLER, D. M.; STYHLER, A.; LIU, S.; HUANG, Z.; NICHOLSON, D. W.; MANCINI, J. A. Preferential inhibition of T helper 1, but not T helper 2, cytokines in vitro by L-826,141 [4-[2-(3,4-Bisdifluromethoxyphenyl)-2-[4-(1,1,1,3,3,3-hexafluoro-2-hydroxy-propan-2-yl) phenyl]-ethyl]3-methylpyridine-1-oxide], a potent and selective phosphodiesterase 4 inhibitor. The Journal of Pharmacology and Experimental Therapeutics 2004, 310, 752. CLAYDEN, J.; GREEVES, N.; WARREN, S. Organic Chemistry. 2ª Edição. Oxford: Oxford University Press, 2012. 1264p. CLINICALTRIALS.GOV. Disponível em: <https://www.clinicaltrials.gov/ct2/home>. Acesso em: 09 julho 2018. COELHO, L. P.; SERRA, M. F.; PIRES, A. L. A.; CORDEIRO, R. S. B.; SILVA, P. M. R.; SANTOS, M. H.; MARTINS, M. A. 7-Epiclusianone, a Tetraprenylated Benzophenone, Relaxes Airway Smooth Muscle through Activation of the Nitric Oxide-cGMP Pathway. Journal of Pharmacology and Experimental Therapeutics 2008, 327, 206. CONTI, M.; BEAVO, J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annual Review of Biochemistry 2007, 76, 481. COSTA, P.; PINHEIRO, S.; PILLI, R.; VASCONCELLOS, M. Substâncias carboniladas e derivados. 1ª Edição. Porto Alegre: Artmed, 2003. 412p. DAL-PIAZ, V.; GIOVANNONI, M. P. Phosphodiesterase 4 inhibitors, structurally unrelated to rolipram, as promising agents for the treatment of asthma and other pathologies. European Journal of Medicinal Chemistry 2000, 35, 463. DENT, G.; GIEMBYCZ, M. A.; EVANS, P. M.; RABE, K. F.; BARNES, P. J. Suppression of human eosinophil respiratory burst and cyclic AMP hydrolysis by inhibitors of type IV phosphodiesterase: interaction with the beta adrenoceptor agonist albuterol. The Journal of Pharmacology and Experimental Therapeutics 1994, 271, 1167. DIAMANT, Z.; SPINA, D. PDE4-inhibitors: A novel, targeted therapy for obstructive airways disease. Pulmonary Pharmacology & Therapeutics 2011, 24, 353. 168 DONG, C.; VIRTUCIO, C.; ZEMSKA, O.; BALTAZAR, G.; ZHOU, Y.; BAIA, D.; JONES-IATAURO, S.; SEXTON, H.; MARTIN, S.; DEE, J.; MAK, Y.; MEEWAN, M.; ROCK, F.; AKAMA, T.; JARNAGIN, K. Treatment of Skin Inflammation with Benzoxaborole Phosphodiesterase Inhibitors: Selectivity, Cellular Activity, and Effect on Cytokines Associated with Skin Inflammation and Skin Architecture Changes. The Journal of Pharmacology and Experimental Therapeutics 2016, 358, 413. DOURADO, V. Z.; TANNI S. E.; VALE, S. A.; FAGANELLO, M. M.; SANCHEZ, F. F.; GODOY, I. J. Manifestações sistêmicas na doença pulmonar obstrutiva crônica. Jornal Brasileiro de Pneumologia 2006, 32, 161. ERTL, P.; ROHDE, B.; SELZER, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of Medicinal Chemistry 2000, 43, 3714. FALA, L. Otezla (Apremilast), an Oral PDE-4 Inhibitor, Receives FDA Approval for the Treatment of Patients with Active Psoriatic Arthritis and Plaque Psoriasis. American Health & Drug Benefits 2015, 8, 105. FELDING, J.; SØRENSEN, M. D.; POULSEN, T. D.; LARSEN, J.; ANDERSSON, C.; REFER, P.; ENGELL, K.; LADEFOGED, L. G.; THORMANN, T.; VINGGAARD, A. M.; HEGARDT, P.; SØHOEL, A.; NIELSEN, S. F. Discovery and early clinical development of 2-{6-[2-(3,5-dichloro-4-pyridyl)acetyl]-2,3-dimethoxyphenoxy}-N-propylacetamide (LEO 29102), a soft-drug inhibitor of phosphodiesterase 4 for topical treatment of atopic dermatitis. Journal of Medicinal Chemistry 2014, 57, 5893. FOX 3RD, D.; BURGIN, A. B.; GURNEY, M. E. Structural basis for the design of selective phosphodiesterase 4B inhibitors. Cellular Signalling 2014, 26, 657. FREUND, Y. R.; AKAMA, T.; ALLEY, M. R.; ANTUNES, J.; DONG, C.; JARNAGIN, K.; KIMURA, R.; NIEMAN, J. A.; MAPLES, K. R.; PLATTNER, J. J.; ROCK, F.; SHARMA, R.; SINGH, R.; SANDERS, V.; ZHOU, Y. Boron-based phosphodiesterase inhibitors show novel binding of boron to PDE4 bimetal center. FEBS Letters 2012, 586, 3410. FURUE, M.; KADONO, T.; TSUJI, G.; NAKAHARA, T. Topical E6005/RVT-501, a novel phosphodiesterase 4 inhibitor, for the treatment of atopic dermatitis. Expert Opinion on Investigational Drugs 2017, 26, 1403. GIEMBYCZ, M. A. Cilomilast: a second generation phosphodiesterase 4 inhibitor for asthma and chronic obstructive pulmonary disease. Expert Opinion on Investigational Drugs 2001, 10, 1361. GIEMBYCZ, M. A. 4D or not 4D: the emetogenic basis of PDE4 inhibitors uncovered? Trends in Pharmacological Sciences 2002, 23, 548. GIEMBYCZ, M. A.; CORRIGAN, C. J.; SEYBOLD, J.; NEWTON, R.; BARNES, P. J. Identification of cyclic AMP phosphodiesterases 3, 4 and 7 in human CD4+ and CD8+ T- 169 lymphocytes: role in regulating proliferation and the biosynthesis of interleukin-2. British Journal of Pharmacology 1996, 118, 1945. GIEMBYCZ, M. A.; FIELD, S. K. Roflumilast: The first in class phosphodiesterase 4 inhibitor approved for the treatment of DPOC. Journal of Drug Design, Development and Therapy 2010, 4, 147. GIEMBYCZ, M. A.; NEWTON, R. Beyond the dogma: novel beta2-adrenoceptor signalling in the airways. European Respiratory Journal 2006, 27, 1286. GOODMAN, A. D.; GYANG, T.; SMITH III, A. D.; Ibudilast for the treatment of multiple sclerosis. Expert Opinion on Investigational Drugs 2016, 25, 1231. GOTO, T.; SHIINA, A.; MURATA, T.; TOMII, M.; YAMAZAKI, T.; YOSHIDA, K.; YOSHINO, T.; SUZUKI, O.; SOGAWA,Y.; MIZUKAMI, K.; TAKAGI, N.; YOSHITOMI, T.; ETORI,M.; TSUCHIDA, H.; MIKKAICHI, T.; NAKAO, N.; TAKAHASHI, M.; TAKAHASHI, H.; SASAKI, S. Identification of the 5,5-dioxo-7,8-dihydro-6H-thiopyrano[3,2-d] pyrimidine derivatives as highly selective PDE4B inhibitors. Bioorganic & Medicinal Chemistry Letters 2014, 24, 893. GUAY, D.; BOULET, L.; FRIESEN, R. W.; GIRARD, M.; HAMEL, P.; HUANG, Z.; LALIBERTÉ, F.; LALIBERTÉ, S.; MANCINI, J. A.; MUISE, E.; PON D.; STYHLER, A. Optimization and structure–activity relationship of a series of 1-phenyl-1,8-naphthyridin-4-one-3-carboxamides: Identification of MK-0873, a potent and effective PDE4 inhibitor. Bioorganic & Medicinal Chemistry Letters 2008, 18, 5554. GURAM, A. S.; BUCHWALD, S. L. Palladium-Catalyzed Aromatic Aminations with in situ Generated Aminostannanes. Jounal of American Chemical Society 1994, 116, 7901. HALPIN, D. M. G. ABCD of the phosphodiesterase family: interaction and differential activity in DPOC. International Journal of DPOC 2008, 3, 543. HATZELMANN, A; SCHUDT, C. Anti-inflammatory and immunomodulatory potential of the novel PDE4 inhibitor roflumilast in vitro. The Journal of Pharmacology and Experimental Therapeutics 2001, 297, 267. HATZELMANN, A.; MORCILLO, E. J.; LUNGARELLA, G.; ADNOT, S.; SANJAR, S.; BEUME, R.; SCHUDT, C.; TENOR, H. The preclinical pharmacology of roflumilast e A selective, oral phosphodiesterase 4 inhibitor in development for chronic obstructive pulmonary disease. Pulmonary Pharmacology & Therapeutics 2010, 23, 235. HERAVI, M. M.; KHEILKORDI, Z.; ZADSIRJAN, V.; HEYDARI, M.; MALMIR, M. Buchwald-Hartwig reaction: An overview. Journal of Organometallic Chemistry 2018, 861, 17. 170 HOUSLAY, M. D. PDE4 cAMP-specific phosphodiesterases. Progress in Nucleic Acid Research and Molecular Biology 2001, 69, 249. HOUSLAY, M. D.; ADAMS, D. R. PDE4 cAMP phosphodiesterases: modular enzymes that orchestrate signalling cross-talk, desensitization and compartmentalization. The Biochemical Journal 2003, 370, 1. HOUSLAY, M. D.; ADAMS, D. R. Putting the lid on phosphodiesterase 4. Nature Biotechnology 2010, 28, 38. HOUSLAY, M. D.; SCHAFER, P.; ZHANG, K. Y. J. Keynote review: Phosphodiesterase-4 as a therapeutic target. Drug Discovery Today 2005, 10, 1503. HOY, S. M. Crisaborole Ointment 2%: A Review in Mild to Moderate Atopic Dermatitis. American Journal of Clinical Dermatology 2017, 18, 837. HUAI, Q.; WANG, H.; SUN, Y.; KIM, H. Y.; LIU, Y.; KE, H. Three-dimensional structures of PDE4D in complex with roliprams and implication on inhibitor selectivity. Structure 2003, 11, 865. HUANG, Z.; LIU, S.; ZHANG, L.; SALEM, M.; GREIG, G. M.; CHAN, C. C.; NATSUMEDA, Y.; NOGUCHI, K. Preferential inhibition of human phosphodiesterase 4 by ibudilast. Life Sciences 2006, 78, 2663. HUGHES, A. D.; CHIN, K. H.; DUNHAM, S. L.; JASPER, J. R.; KING, K. E.; LEE, T. W.; MAMMEN, M.; MARTIN, J.; STEINFELD, T. Discovery of muscarinic acetylcholine receptor antagonist and beta 2 adrenoceptor agonist (MABA) dual pharmacology molecules. Bioorganic & Medicinal Chemistry Letters 2011, 21, 1354. ISHII, N.; SHIRATO, M.; WAKITA, H.; MIYAZAKI, K.; TAKASE, Y.; ASANO, O.; KUSANO, K.; YAMAMOTO, E.; INOUE, C.; HISHINUMA, I. Antipruritic Effect of the Topical Phosphodiesterase 4 Inhibitor E6005 Ameliorates Skin Lesions in a Mouse Atopic Dermatitis Models. Journal of Pharmacology and Experimental Therapeutics 2013, 346, 105. JAMES, L.I.; KORBOUKH, V. K.; KRICHEVSKY, L.; BAUGHMAN, B. M.; HEROLD, J. M.; NORRIS, J. L.; JIN,J.; KIREEV,D. B.; JANZEN, W. P.; ARROWSMITH, C. H.; FRYE, S. V. Small-Molecule Ligands of Methyl-Lysine Binding Proteins: Optimization of Selectivity for L3MBTL3. Journal of Medicinal Chemistry 2013, 56, 7358. KAWASAKI, M.; FUSANO, A.; NIGO, T.; NAKAMURA, S.; ITO, M. N.; TERANISHI, Y.; MATSUMOTO, S.; TODA, H.; NOMURA, N.; SUMIYOSHI, T. Identification of 2,3-disubstituted pyridines as potent, non-emetic PDE4 inhibitors. Bioorganic & Medicinal Chemistry Letters 2014, 24, 2689. KE, H. Implications of PDE4 structure on inhibitor selectivity across PDE families. International Journal of Impotence Research 2004, 16, S24. 171 KERAVIS, T.; LUGNIER, C. Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. British Journal of Pharmacology 2012, 165, 1288. KOJIMA, A.; TAKITA, S.; SUMIYA, T.; OCHIAI, K.; IWASE, K.; KISHI, T.; OHINATA, A.; YAGETA, Y.; YASUE, T.; KOHNO, Y. Phosphodiesterase inhibitors. Part 6: Design, synthesis, and structure–activity relationships of PDE4-inhibitory pyrazolo[1,5-a]pyridines with anti-inflammatory activity. Bioorganic & Medicinal Chemistry Letters 2013, 23, 5311. KOMAS, N., LUGNIER, C., LE BEC, A., SERRADEIL-LE GAL, C., BARTHELEMY, G., STOCLET, J. C. Differential sensitivity to cardiotonic drugs of cyclic AMP phosphodiesterases isolated from canine ventricular and sinoatrial-enriched tissues. Journal of Cardiovascular Pharmacology 1989, 14, 213. KUANG, R.; SHUE, H.; XIAO, L.; BLYTHIN, D. J.; SHIH, N.; CHEN, X.; GU, D.; LIN, J. S. L.; TING, P. C.; CAO, J.; ASLANIAN, R.; PIWINSKI, J. J.; PRELUSKY, D.; WU, P.; ZHANG, J.; ZHANG, X.; CELLY, C. S.; BILLAH, M.; WANG, P. Discovery of oxazole-based PDE4 inhibitors with picomolar potency. Bioorganic & Medicinal Chemistry Letters 2012, 22, 2594. KUMAR, K. S.; KUMAR, S. K.; SREENIVAS, B. Y.; GORJA, D. R.; KAPAVARAPU, R.; RAMBABU, D.; KRISHNA, G. R.; REDDY, C. M.; RAO, M. V. B.; PARSA, K. V. L.; PAL, M. C–C bond formation at C-2 of a quinoline ring: Synthesis of 2-(1H-indol-3-yl)quinoline-3-carbonitrile derivatives as a new class of PDE4 inhibitors. Bioorganic & Medicinal Chemistry 2012, 20, 2199. KÜMMERLE, A. E.; RAIMUNDO, J. M.; LEAL, C. M.; DA SILVA, G. S.; BALLIANO, T. L.; PEREIRA, M. A.; DE SIMONE, C. A.; SUDO, R. T.; ZAPATA-SUDO, G.; FRAGA, C. A.; BARREIRO, E. J. Studies towards the identification of putative bioactive conformation of potent vasodilator arylidene N -acylhydrazone derivatives. European Journal of Medicinal Chemistry 2009, 44, 4004. KÜMMERLE, A. E.; SCHMITT, M.; CARDOZO, S. V. S.; LUGNIER, C.; VILLA, P.; LOPES, A. B.; ROMEIRO, N. C.; JUSTINIANO, H.; MARTINS, M. A.; FRAGA, C. A. M.; BOURGUIGNON, J.; BARREIRO, E. J. Design, Synthesis, and Pharmacological Evaluation of N‑Acylhydrazones and Novel Conformationally Constrained Compounds as Selective and Potent Orally Active Phosphodiesterase‑4 Inhibitors. Journal of Medicinal Chemistry 2012, 55, 7525. LENHARD, J. M.; KASSEL, D. B.; ROCQUE, W. J.; HAMACHER, L.; HOLMES, W. D.; PATEL, I.; HOFFMAN, C.; LUTHER, M. Phosphorylation of a cAMP-specific phosphodiesterase (HSPDE4B2B) by mitogen-activated protein kinase. The Biochemical Journal 1996, 316, 751. LIM, H.; SUN, D. Recent Synthetic Developments and Applications of the Ullmann Reaction. A Review. Organic Preparations and Procedures International 2013, 45, 341. 172 LIM, S.; JATAKANON, A.; GORDON, D.; MACDONALD, C.; CHUNG, K. F.; BARNES, P. J. Comparison of high dose inhaled steroids, low dose inhaled steroids plus low dose theophylline, and low dose inhaled steroids alone in chronic asthma in general practice. Thorax 2000, 55, 837. LIMA, L. M.; BARREIRO, E. J. Bioisosterism, an useful strategy for molecular modification and drug design. Current Medicinal Chemistry 2005, 12, 23. LIMA, P. C.; LIMA, L. M.; SILVA, K. C. M.; LÉDA, P. H. O.; MIRANDA, A. L. P.; FRAGA, C. A. M.; BARREIRO, E. J. Synthesis and analgesic activity of novel N-acylarylhydrazones and isosters, derived from natural safrole. European Journal of Medicinal Chemistry 2000, 35, 187. LIPINSKI, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discovery. Today: Technologies 2004, 1, 337. LIU, A.; HUANG, L.; WANG, Z.; LUO, Z.; MAO, F.; SHAN, W.;XIE, J.; LAI, K.; LI, X. Hybrids consisting of the pharmacophores of salmeterol and roflumilast or phthalazinone: Dual b2-adrenoceptor agonists-PDE4 inhibitors for the treatment of COPD. Bioorganic & Medicinal Chemistry Letters 2013, 23, 1548 LIU, J.; ZHOU, D.; JIA, X.; HUANG, L.; LI, X.; CHAN, A. S. C. A convenient synthesis of (R)-salmeterol via Rh-catalyzed asymmetric transfer hydrogenation. Tetrahedron: Asymmetry 2008, 19, 1824. LUGNIER, C. Cyclic nucleotide phosphodiesterase (PDE) superfamily: A new target for the development of specific therapeutic agentes. Pharmacology & Therapeutics 2006, 109, 366. LUGNIER, C.; STIERLE, A.; BERETZ, A.; SCHOEFFTER, P.; LE BEC, A.; WERMUTH, C. G.; CAZENAVE, J. P.; STOCLET, J. C. Tissue and substrate specificity of inhibition by alkoxy-aryl-lactams of platelet and arterial smooth muscle cyclic nucleotide phosphodiesterases relationship to pharmacological activity. Biochemical and Biophysical Research Communications 1983, 113, 954. MAREDDY, J.; SURESH, N.; KUMAR, C. G.; KAPAVARAPU, R.; JAYASREE, A.; PAL, S. 1,2,3-Triazole-nimesulide hybrid: Their design, synthesis and evaluation as potential anticancer agents. Bioorganic & Medicinal Chemistry Letters 2017, 27, 518. MASSIMI, M.; CARDARELLI, S.; GALLI, F.; GIARDI, M. F.; RAGUSA, F.; PENERA, N.; CINQUE,B.; CIFONE, M. G.; BIAGIONE, S.; GIORGI, M. Increase of Intracellular Cyclic AMP by PDE4 Inhibitors Affects HepG2 Cell Cycle Progression and Survival. Journal of Cellular Biochemistry 2017, 118, 1401. MATHERS, C. D.; LONCAR, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine 2006, 3,2011. 173 MAURICE, D. H.; KE, H.; AHMAD, F.; WANG, Y.; CHUNG, J.; MANGANIELLO, V. C. Advances in targeting cyclic nucleotide fosfodiesterases. Nature Reviews 2014, 13, 290. MCMURRY, J. Química Orgânica. Tradução Noveritis do Brasil. 3ª Edição. São Paulo: Cengage Learning, 2016. 1472p. MERZ, K. H.; MARKO, D.; REGIERT, T.; REISS, G.; FRANK, W.; EISENBRAND, G. Synthesis of 7-Benzylamino-6-chloro-2-piperazino-4-pyrrolidinopteridine and Novel Derivatives Free of Positional Isomers. Potent Inhibitors of cAMP-Specific Phosphodiesterase and of Malignant Tumor Cell Growth. Journal of Medicinal Chemistry 1998, 41, 4733. MOKRY, J.; MOKRA, D. Immunological aspects of phosphodiesterase inhibition in the respiratory system. Respiratory Physiology & Neurobiology 2013, 187, 11. MOULTON, B. C.; FRYER, A. D. Muscarinic receptor antagonists, from folklore to pharmacology; finding drugs that actually work in asthma and DPOC. British Journal of Pharmacology 2011, 163, 44. NAGANUMA K.; OMURA, A.; MAEKAWARA, N.; SAITOH, M.; OHKAWA, N.; KUBOTA, T.; NAGUMO, H.; KODAMA, T.; TAKEMURA, M.; OHTSUKA, Y.; NAKAMURA, J.; TSUJITA, R.; KAWASAKI, K.; YOKOI, H.; KAWANISHI, M. Discovery of selective PDE4B inhibitors. Bioorganic & Medicinal Chemistry Letters 2009, 19, 3174. NGKELO, A.; ADCOCK, I. M. New treatments for DPOC. Current Opinion in Pharmacology 2013, 13, 362. NIELSON, C. P.; VESTAL, R. E.; STURM, R. J. Effects of selective phosphodiesterase inhibitors on the polymorphonuclear leukocyte respiratory burst. Journal of Allergy and Clinical Immunology 1990, 86, 801. O’BYRNE, P. M.; GAUVREAU, G. Phosphodiesterase-4 inhibition in DPOC. Lancet 2009, 374, 665. PALLA, G.; PELIZZI, C.; PREDIERI, G.; VIGNALI, C. Conformational study on N-acylhydrazones of aromatic-aldehydes by NMR-spectroscopy. Gazzetta Chimica Italiana 1982, 112, 339. PALLA, G.; PREDIERI, G.; DOMIANO, P.; VIGNALI, C.; TURNER, W. Conformational behaviour and E/Z isomerization of acyl and N-aroylhydrazones. Tetrahedron 1986, 42, 3649. PAUL, F.; PATT, J; HARTWIG, J. F. Palladium-catalyzed formation of carbon-nitrogen bonds. Reaction intermediates and catalyst improvements in the hetero cross-coupling of aryl halides and tin amides. Journal of American Chemical Society 1994, 116, 5969. 174 PEACHELL, P. T.; UNDEM, B. J.; SCHLEIMER, R. P.; MACGLASHAN, D. W.; LICHTENSTEIN, L. M.; CIESLINSKI, L. B.; TORPHY, T. J. Preliminary identification and role of phosphodiesterase isozymes in human basophils. The Journal of Immunology 1992, 148, 2503. PEARSON, R. G. Hard and Soft Acids and Bases. Journal of the American Chemical Society 1963, 85, 3533. PDB. RCSB Protein Data Bank. Disponível em: <https://www.rcsb.org/>. Acesso em : 02 agosto 2018. POWERS, G. L.; HAMMER, K. D. P.; DOMENECH, M.; FRANTSKEVICH, K.; MALINOWSKI, R. L.; BUSHMAN, W.; BEEBE, D. J.; MARKER, P. C. Phosphodiesterase 4D Inhibitors Limit Prostate Cancer Growth Potential. Molecular Cancer Research 2015, 13, 149. PRAVEENA, K. S. S.; RAMARAO, E. V. V. S.; MURTHY, N. Y. S.; AKKENAPALLY, S.; KUMAR, C. G.; KAPAVARAPU, R.; PAL, S. Design of new hybrid template by linking quinoline, triazole and dihydroquinoline pharmacophoric groups: A greener approach to novel polyazaheterocycles as cytotoxic agents. Bioorganic & Medicinal Chemistry Letters 2015, 25, 1057. RABE, K. F.; BATEMAN, E. D.; O’DONNELL, D.; WITTE, S.; BREDENBROKER, D.; BETHKE, T. D. Roflumilast–an oral anti-inflammatory treatment for chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2005, 366, 563. RABE, K. F.; WATZ, H. Chronic obstructive pulmonary disease. The Lancet 2017, 389, 1931. RENNARD, S. I. Treatment of stable chronic obstructive pulmonar disease. Lancet 2004, 364, 791. RENNARD, S. I.; SCHACHTER, N.; STREK, M.; RICKARD, K.; AMIT, O. Cilomilast for DPOC: results of a 6-month, placebo-controlled study of a potent, selective inhibitor of phosphodiesterase 4. Chest 2006, 129, 56. RIBEIRO, I. G.; SILVA, K, C. M.; PARRINI, S. C.; MIRANDA, A. L. P.; FRAGA, C. A. M.; BARREIRO, E. J. Synthesis and antinociceptive properties of new structurally planned imidazo[1,2-a]pyridine 3-acylarylhydrazone derivatives. European Journal of Medicinal Chemistry 1998, 33, 225. ROBICHAUD, A.; STAMATIOU, P. B.; JIN, C.; LACHANCE, N.; MACDONALD, D.; LALIBERTÉ, F.; LIU, S.; HUANG, Z.; CONTI, M.; CHAN, C. C. Deletion of phosphodiesterase 4D in mice shortens alpha2-adrenoceptor-mediated anesthesia, a behavioural correlate of emesis. The Journal of Clinical Investigation 2002, 110, 1045. 175 SANZ, M. J.; CORTIJO, J.; MORCILLO, E. J. PDE4 inhibitors as new antiinflammatory drugs: effects on cell trafficking and cell adhesion molecules expression. Pharmacology & Therapeutics 2005, 106, 269. SAVAI, R.; PULLAMSETTI, S. S.; BANAT, G. A.; WEISSMANN, N.; GHOFRANI, H. A.; GRIMMINGER, F.; SCHERMULY, R. T. Targeting cancer with phosphodiesterase inhibitors. Expert Opinion Investigational Drugs 2010, 19, 117. SAVI, C.; COX, R J.; WARNER, D. J.; COOK, A. R.; DICKINSON, M R.; MCDONOUGH, A.; MORRILL, L. C.; PARKER, B.; ANDREWS, G.; YOUNG, S. S.; GILMOUR, P. S.; RILEY, R.; DEARMAN, M. S. Efficacious Inhaled PDE4 Inhibitors with Low Emetic Potential and Long Duration of Action for the Treatment of DPOC. Journal of Medicinal Chemistry 2014, 57, 4661. SCHALKWYK, E. V.; STRYDOM, K.; WILLIAMS, Z.; VENTER, L.; LEICHTL, S.; WIRLITSCH, C. S.; BREDENBRÖKER, D.; BARDIN, P. G. Roflumilast, an oral, once-daily phosphodiesterase 4 inhibitor, attenuates allergen-induced asthmatic reactions. Journal of Allergy and Clinical Immunology 2005, 116, 292. SCHWABE, U.; MIYAKE, M.; OHGAM Y.; DALY, J. W. 4-(3-Cyclopentyloxy-4- methoxyphenyl)-2-pyrrolidone (ZK 62711): a potent inhibitor of adenosine cyclic 3′,5′- monophosphate phosphodiesterases in homogenates and tissue slices from rat brain. Molecular Pharmacology 1976, 12, 900. SCHWENKGRUB, J.; ZAREMBA, M.; JONIEC-MACIEJAK, I.; CUDNA, A.; MIROWSKA-GUZEL, D.; KURKOWSKA-JASTRZĘBSKA, I. The phosphodiesterase inhibitor, ibudilast, attenuates neuroinflammation in the MPTP model of Parkinson’s disease. Plos One 2017, 12, e0182019. SCOPUS. Disponível em: <http://www.scopus.com>. Acesso em: 05 julho 2018. SELDON, P. M.; BARNES, P. J.; MEJA, K.; GIEMBYCZ, M. A. Suppression of lipopolysaccharide-induced tumor necrosis factor-alpha generation from human peripheral blood monocytes by inhibitors of phosphodiesterase 4: interaction with stimulants of adenylyl cyclase. Molecular Pharmacology 1995, 48, 747. SENGUPTA, R.; SUN, T.; WARRINGTON, N. M.; RUBIN, J. B. Treating brain tumorswith PDE4 inhibitors. Trends in Pharmacological Sciences 2011, 32, 337. SETTE, C.; VICINI, E.; CONTI, M. The rat PDE3/IVd phosphodiesterase gene codes for multiple proteins differentially activated by cAMP-dependent protein kinase. The Journal of Biological Chemistry 1994, 269, 18271. SHAFIR, A.; LICHTOR, P. A.; BUCHWALD, S. L. N- versus O-Arylation of Aminoalcohols: Orthogonal Selectivity in Copper-Based Catalysts. Journal of the American Chemical Society 2007, 129, 3490. 176 SHAKUR, Y.; PRYDE, J. G.; HOUSLAY, M. D. Engineered deletion of the unique N-terminal domain of the cyclic AMP-specific phosphodiesterase RD1 prevents plasma membrane association and the attainment of enhanced thermostability without altering itssensitivity to inhibition by rolipram. The Biochemical Journal 1993, 292, 677. SHE, G; ZHAO L.; BAO W. 1,1′-Binaphthyl-2,2′-diamine Dihydrochloride: an Efficient Ligand for the N-Arylation of Imidazole with Aryl/heteroaryl Halides Catalyzed by CuI. Chemical Research in Chinese Universities 2016, 32, 947. SILVA, C. L. M.; NOEL, F.; BARREIRO, E. J. Vasodilatory properties of LASSBio 294 and its dependence on cGMP increase. British Journal of Pharmacology 2002, 135, 293. SILVERSTEIN, R. M.; WEBSTER, F. X.; KIEMLE, D. J. Identificação espectrométrica de compostos orgânicos. Tradução: Ricardo Bicca de Alancastro. 7ª Edição. Rio de Janeiro: LTC Editora, 2007. 490p. SINDEN, N. J.; STOCKLEY, R. A. Systemic inflammation and comorbidity in DPOC: a result of ’overspill’ of inflammatory mediators from the lungs? Review of the evidence. Thorax 2010, 65, 930. SINGH, S.; LOKE, Y. K. An overview of the benefits and drawbacks of inhaled corticosteroids in chronic obstructive pulmonary disease. International Journal of Chronic Obstructive Pulmonary Disease 2010, 5, 189. SMITH, M. Organic Synthesis. 4ª Edição. Massachusetts: Academic Press, 2016. 1106p. SOARES, L. M.; VRY, D.; STEINBUSCH, H. W. M.; MILANI, H.; PRICKAERTS, J.; OLIVEIRA, R. M. W. Rolipram improves cognition, reduces anxiety- and despair-like behaviors and impacts hippocampal neuroplasticity after transient global cerebral ischemia. Neuroscience 2016, 326, 69. SPINA, D. PDE4 inhibitors: current status. British Journal of Pharmacology 2008, 155, 308. SRIVANI, P.; USHARANI, D.; JEMMIS, E. D.; SASTRY, G. N. Subtype Selectivity in Phosphodiesterase 4 (PDE4): A Bottleneck in Rational Drug Design. Current Pharmaceutical Design 2008, 14, 3854. STEWART, J. J. Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling 2007 13, 1173. SUDO, R. T.; ZAPATA-SUDO, G.; BARREIRO, E. J. LASSBio 294, a novel cardionotropic agent, increases the calcium content in the sarcoplasmatic reticulum of saponin-skinned cardiac fibres. British Journal of Pharmacology 2001, 134, 603. 177 SULLIVAN, P.; BEKIR, S.; JAFFAR, Z.; PAGE, C.; JEFFERY, P.; COSTELLO, J. Antiinflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 1994, 343, 1006. SUTHERLAND, E. W.; RALL, T. W. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. The Journal of Biological Chemistry 1958, 232, 1077. SWINNEN, J. V.; JOSEPH, D. R.; CONTI, M. The mRMN encoding a high-affi |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/1/2018%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/2/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/3/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/4/2018%20-%20Luciana%20Luiz%20de%20Azevedo.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/5/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/6/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/7/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%202%29.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/8/2018%20-%20Luciana%20Luiz%20de%20Azevedo%20%28parte%201%29.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10173/9/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 d297800d184f210bd98a2bd6bfde216d c18786617990aae1ccdcba1df00aa2f2 e9961e03939cd92cbcbb47f9635387ee 223b48c8901e22487e1285687732bfbf 4d947f4562081938e73466d28eb65f7d debaa692ad9acb8a0f632269a7894508 4d5bda0daaed24eab84c673b6450cd94 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108059281784832 |