Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados

Detalhes bibliográficos
Autor(a) principal: García, Andrés Calderín
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9065
Resumo: Esta tese teve como objetivo estudar duas frações sólidas presentes em um vermicomposto (VC) de esterco bovino, avaliando os efeitos da aplicação da fração de ácidos húmicos (AH) na regulação do metabolismo antioxidativo em plantas de arroz, assim como a capacidade do sólido residual (RH) que fica depois da extração das SH solúveis ao VC, para reter cátions de metais pesados em efluentes industriais. No capítulo I se apresenta o estudo das características estruturais das frações mediante técnicas de elucidação estrutural. Os AH mostraram maior caráter aromático que RH, justificado por uma baixa relação H/C e E4/E6, bandas bem resolvidas entre 1500 cm-1 e 1650 cm-1 no espectro IV, uma aromaticidade de um 28%, com picos entre 90-142 ppm pertencentes a CAr-H,R e CAr-O no espectro 13C RMN. A Py-CG/MS também mostrou maiores conteúdos de substâncias aromáticas (ligninas) nos AH. O capítulo II teve como objetivo estudar a capacidade do material residual RH para reter cátions dos metais pesados (MP) Ni2+ e Pb2+. Uma massa de 5 g, pH 7 e 150 minutos de agitação, foram condições suficientes para reter elevadas quantidades de Ni2+ e Pb2+. O estudo cinético se descreveu melhor mediante um comportamento de pseudo 2a ordem e mostrou os melhores ajustes para o modelo de adsorção da isoterma de Freundlich. A microscopia MEV demonstrou visualmente a retenção destes metais em RH e a espectroscopia mostrou possível formação de ligações químicas entre os metais e os grupos funcionais ionizáveis. RH, quando testado com águas residuais industriais, mostrou uma efetividade de contenção de Ni2+ e Pb2+ superior a 98% e 96%. O capítulo III contém o estudo dos efeitos dos AH em componentes do metabolismo antioxidativo em plantas de arroz. Os AH mostraram exercer uma regulação da homeostase redox, estimulando a produção de espécies reativas de oxigênio (ERO) e controlando seus níveis por meio do estímulo da atividade das enzimas do metabolismo antioxidativo. Nas plantas em estresse hídrico induzido, onde foram afetados os processos de emissão de raízes laterais, quando aplicados os AH, foi preservado o crescimento e desenvolvimento radicular, comprovados mediante a emissão de raízes laterais superiores ao tratamento controle sem AH. No capítulo IV aparece a caracterização da interação entre os AH e as raízes de plantas adultas, avaliando a percepção desta interação através do metabolismo antioxidativo e as aquoporinas do tonoplasto. Os AH estimularam o sistema antioxidativo e mostraram efeitos protetores em plantas submetidas a estresse hídrico. A espectroscopia demonstrou que nos AH aglomerados nas raízes predominam estruturas alquílicas e alquílicas oxigenadas (0-110 ppm), carboxílicas (156-186 ppm) e carbonílicas (186- 230 ppm) e apresentam diminuição de estruturas arílicas (110-142 ppm) e O-arílicas (142-156 ppm). Nos modos de ação dos AH, se encontram também envolvidas as aquoporinas do tonoplasto.
id UFRRJ-1_d20dd40f10cbd0a4198c2196415960ab
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9065
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling García, Andrés CalderínBerbara, Ricardo Luiz Louro483.564.257-00http://lattes.cnpq.br/8529910145308595Izquierdo, Fernando GuridiSantos, Leandro AzevedoPereira, Marcos GervasioAmaral Sobrinho, Nelson Moura Brasil deLeal , Marco Antônio de AlmeidaDobbss, Leonardo Barros061.145.927-27http://lattes.cnpq.br/88963752325742742023-12-21T18:34:03Z2023-12-21T18:34:03Z2013-11-26GARCIA, Andrés Calderín. Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados. 2013. 117 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.https://rima.ufrrj.br/jspui/handle/20.500.14407/9065Esta tese teve como objetivo estudar duas frações sólidas presentes em um vermicomposto (VC) de esterco bovino, avaliando os efeitos da aplicação da fração de ácidos húmicos (AH) na regulação do metabolismo antioxidativo em plantas de arroz, assim como a capacidade do sólido residual (RH) que fica depois da extração das SH solúveis ao VC, para reter cátions de metais pesados em efluentes industriais. No capítulo I se apresenta o estudo das características estruturais das frações mediante técnicas de elucidação estrutural. Os AH mostraram maior caráter aromático que RH, justificado por uma baixa relação H/C e E4/E6, bandas bem resolvidas entre 1500 cm-1 e 1650 cm-1 no espectro IV, uma aromaticidade de um 28%, com picos entre 90-142 ppm pertencentes a CAr-H,R e CAr-O no espectro 13C RMN. A Py-CG/MS também mostrou maiores conteúdos de substâncias aromáticas (ligninas) nos AH. O capítulo II teve como objetivo estudar a capacidade do material residual RH para reter cátions dos metais pesados (MP) Ni2+ e Pb2+. Uma massa de 5 g, pH 7 e 150 minutos de agitação, foram condições suficientes para reter elevadas quantidades de Ni2+ e Pb2+. O estudo cinético se descreveu melhor mediante um comportamento de pseudo 2a ordem e mostrou os melhores ajustes para o modelo de adsorção da isoterma de Freundlich. A microscopia MEV demonstrou visualmente a retenção destes metais em RH e a espectroscopia mostrou possível formação de ligações químicas entre os metais e os grupos funcionais ionizáveis. RH, quando testado com águas residuais industriais, mostrou uma efetividade de contenção de Ni2+ e Pb2+ superior a 98% e 96%. O capítulo III contém o estudo dos efeitos dos AH em componentes do metabolismo antioxidativo em plantas de arroz. Os AH mostraram exercer uma regulação da homeostase redox, estimulando a produção de espécies reativas de oxigênio (ERO) e controlando seus níveis por meio do estímulo da atividade das enzimas do metabolismo antioxidativo. Nas plantas em estresse hídrico induzido, onde foram afetados os processos de emissão de raízes laterais, quando aplicados os AH, foi preservado o crescimento e desenvolvimento radicular, comprovados mediante a emissão de raízes laterais superiores ao tratamento controle sem AH. No capítulo IV aparece a caracterização da interação entre os AH e as raízes de plantas adultas, avaliando a percepção desta interação através do metabolismo antioxidativo e as aquoporinas do tonoplasto. Os AH estimularam o sistema antioxidativo e mostraram efeitos protetores em plantas submetidas a estresse hídrico. A espectroscopia demonstrou que nos AH aglomerados nas raízes predominam estruturas alquílicas e alquílicas oxigenadas (0-110 ppm), carboxílicas (156-186 ppm) e carbonílicas (186- 230 ppm) e apresentam diminuição de estruturas arílicas (110-142 ppm) e O-arílicas (142-156 ppm). Nos modos de ação dos AH, se encontram também envolvidas as aquoporinas do tonoplasto.CNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoThis thesis aimed to study two solid fractions present in a vermicompost (VC) obtained from manure evaluating effects of humic acids (HA) in the regulation of antioxidative metabolism in rice plants as well as in the ability of the solid waste (RH) to retain heavy metals cations in industrial effluents . Chapter I discusses these fractions after structural elucidation. The AH showed higher aromatic properties than HR , justified by a low H/C ratio and E4/E6, clear bands between 1500 cm-1 and 1650 cm-1 in the IR spectrum, aromaticity of 28 %, with peaks between 90-142 ppm belonging to CAr-H , and R-CAr the 13C RMN spectrum. The Py-CG/MS also showed higher contents of aromatic substances (lignin) in AH. Chapter II showed the ability of the material to retain residual RH cations of heavy metals (MP) Ni2+ and Pb2+. A mass of 5 g, pH 7 and 150 minutes of stirring conditions were sufficient to retain high amounts of Ni2+ and Pb2+. The kinetic study is best described by behavior of pseudo second order and showed the best settings for the adsorption model of Freundlich isotherm. The SEM microscopy confirmed the retention of these metals and spectroscopy showed possible formation of chemical bonds between the metal and the ionizable functional groups. RH when tested with industrial waste water, showed an efficacy of containing Ni2+ and Pb2+ than 98% and 96%. Chapter III discuss the effects of HA on the antioxidative metabolism in rice. The AH showed exert regulation of redox homeostasis, stimulates the production of radical oxygen species (ROS) and controls its levels by stimulating the activity of antioxidative enzymes. In plants under induced water stress, it was found the development of lateral roots when applied AH. In Chapter IV it is discussed the interaction between HA and the roots by evaluating the perception of this interaction through metabolism and antioxidative aquoporinas at the tonoplast. The AH stimulated antioxidative system and showed protective effects in plants subjected to drought stress. Spectroscopy showed that from HA clusters, found at root surface dominate structures like alkyl and alkyl oxygen (0-110 ppm), carboxylic (156-186 ppm) and carbonyls (186-230 ppm) and have decreased structures arylics (110-142 ppm). Modes of action of AH were also found to be involved in the aquaporinas at tonoplasto levels.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaSubstâncias húmicasRetenção de cátions metálicosEspécies reativas de oxigênioHumic substancesRetention of metal cationsOxygen radical speciesAgronomiaFrações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesadosHumified solid fractions from vermicompost: effects on plants and capacity to retain heavy metalsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABRAHAM, E.; RIGO, G.; SZEKELY, G.; NAGY, R.; KONCZ, C.; SZABADOS, L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Molecular Biology, v.51, p.363-372, 2003. AGATI, G.; AZZARELLO, E.; POLLASTRI, S.; TATTINI, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, v.196, p.67-76, 2012. AGUIAR, N.O., NOVOTNY, E.H., OLIVEIRA, A.L., RUMJANEK, V.M., OLIVARES, F.L., CANELLAS, L.P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration v.129, p.95-102, 2013. AGUIAR, N.O., OLIVARES, F.L., NOVOTNY, E.H., DOBBSS, L.B., BALMORI, D.M., SANTOS-JÚNIOR, L.G., CHAGAS, J.G., FAÇANHA, A.R., CANELLAS, L.P. Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil v.362, 161-174, 2012. AL-DEGS, Y.S., EL-BARGHOUTHI, M.I., ISSA, A.A., KHRAISHEHB, M.A., WALKER, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Research v.40, p.2645-2658, 2006. ALVAREZ-PUEBLA, R.A., VALENZUELA-CALAHORRO, C., GARRIDO, J.J. Cu(II) retention on a humic substance. Journal of Colloid and Interface Science v.270, p.47-55, 2004. AMIR, S.; JOURAIPHY, A.; MEDDICH, A.; GHAROUS, M.; WINTERTO, P.; HAFIDI, M. Structural study of humic acids during composting of activated sludgegreen waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, v.177, p.524-529, 2010. ANJUM, S.A.; WANG, L.; FAROOQ, M.; XUE, L.; ALI, S. Fulvic Acid Application Improves the Maize Performance under Well-watered and Drought Conditions. Journal of Agronomy and Crop Science, v.197, p.409–417, 2011. AROCA, R.; PORCEL, R.; RUIZ-LOZANO, J.M.Regulation of root water uptake under abiotic stress conditions.Journal of Experimental Botany, v.63, p.43-57, 2012. ASADA, K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions.Plant Physiology, v.141, p.391–396, 2006. ASLI, S., NEUMANN, P.M.Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil, v.336, p.313-322, 2010. AYDIN, A.; KANT, C.; TURAN, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agriculture Research, v.7, p.1073-1086, 2011. BALDOTTO, M.; CANELLAS, L.P.; CANELA, M.C.; SIMÕES, M.L.; MARTINNETO, L.; FONTES, M.P.; VELLOSO A.C.X. Propriedades redox e grupos funcionais de ácidos húmicos isolados de adubos orgânicos. Revista Brasileira de Ciência do Solo, v.31, p.465-475, 2007. 102 BALMORI, D.M. Evaluación del efecto del Liplant en indicadores bioquímicosfisiológicos en el cultivo del maíz. Tesis en opción al título de Máster en Ciencias de la Química Agraria. Universidad Agraria de La Habana, Cuba. 2006. BALMORI, D.M.; OLIVARES, FL.; SPACCINI, R.; AGUIAR, K.P.; ARAÚJO, M.F.; AGUIAR, N.O.; GURIDI, F.; CANELLAS, L.P. Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. Journal of Analytical and Applied Pyrolysis, DOI:p.2013.05.015, 2013. BARDY, M., FRITSCH, E., DERENNE, S., ALLARD, T., DO NASCIMENTO, N.R., BUENO, G.T. Micromorphology and spectroscopic characteristics of organic matter in waterlogged podzols of the upper Amazon basin. Geoderma v.145, p.222- 230. 2008. BATES, L.S.; WALDREN, R.P.; TEARE, I.D. Rapid determination of free proline for water stress-water studies. Plant soil, v.39, p.205-207, 1973. BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, v.44, p.276–287, 1971. BECANA, M., MORAN, J.F., ITURBE-ORMAETXE, I. Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, v. 201, p.137-147, 1998. BERBARA, R.L.L., GARCIA, A.C. Humic Substances and Plant Defense Metabolism. Em: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springerlink v1, pp. 608, 2014. BERNER, J.M., VAN, DER., WESTHUIZEN, A.J. Inhibition of Xanthine Oxidase Activity Results in the Inhibition of Russian Wheat Aphid-Induced Defense Enzymes. Journal of Chemical Ecology v.36, p.1375-1380, 2010. BHATTACHARJEE, S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, v.89, p.1113-1121, 2005. BHATTACHARYA, A.K., MANDAL, S.N., DAS, S.K. Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal v.123, p.43-51, 2006. BIANCHIN, J.N., MARTENDAL, E., MIOR, R., ALVES, V.N., ARAÚJO, C.S.T., COELHO, N.M.M., CARASEK, E. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta v.78, p.333-336, 2009. BIENERT, G.P., MOLLER, A.L., KRISTIANSEN, K.A., SCHULZ, A., MOLLER, I.M., SCHJOERRING, J.K., JAHN, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Journal of Biological Chemestry, v.282, p.1183-1192, 2007. BLOMSTER, T.; SALOJÄRVI, J.; SIPARI, N.; BROSCHÉ, M.; AHLFORS, R.; KEINÄNEN, M.; OVERMYER, K.; KANGASJÄRVI, J. Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis. Plant Physiology, v.157, p.1866-1883, 2011. BOVERIS, A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria.Methods of Enzymology, v.105, p.429–435, 1984. 103 BRADFORD, M.M. A rapid a sensitive method for the quantification of microgram quantities of protein utilizing of principle of protein-dye binding. Analytical Biochemestry, v. 72, p.248-254, 1976. CALDERIN, A., GURIDI, F., GARCIA, E., ROSADO, E., VALDES, R, PIMENTEL, J., NILS, A. Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de Polímeros v.8, p.204-214, 2007. CAMPITELLI, P.; CEPPI, S. Effects of composting technologies on the chemical and physicochemical properties of humic acids.Geoderma, v.144, p.325–333, 2008. CANELLAS, L.P., DOBBSS, L.B., OLIVEIRA, A.L., CHAGAS, J.G., AGUIAR, N.O., RUMJANEKC, V.M., NOVOTNY, E.H., OLIVARES, F.L. SPACCINI, R., PICCOLO. A. Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science, 63, 315-324, 2012. CANELLAS, L.P., PICCOLO, A., DOBBSS, L.B., SPACCINI, R., OLIVARES, F.L., ZANDONADI, D.B., FAÇANHA, A.R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, v.78, p.457-466, 2010. CANELLAS, L.P.; DANTAS, D.J.; AGUIAR, N.O., PERES, L.E.P.; ZSOGON, A.; OLIVARES, F.L.; DOBBSS, L.B.; FAÇANHA, A.R.; NEBBIOSO, A.; PICCOLO A. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, v.159, p.202–211, 2011. CANELLAS, L.P.; DOBBSS, L.B.; OLIVEIRA, A.L.; CHAGAS, J.G.; AGUIAR, N.O.; RUMJANEK, V.M.; NOVOTNY, E.H.; OLIVARES, F.L.; SPACCINI, R.; PICCOLO, A. Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science v.63, p.315-324, 2012. CANELLAS, L.P.; SPACCINI, R.; PICCOLO, A.; DOBBSS, L.B.; FAÇANHA, A.L.O.; SANTOS, G.A.; OLIVARES, F.L.; FAÇANHA, A.R. Relationships Between Chemical Characteristics and Root Growth Promotion of Humic Acids Isolated From Brazilian Oxisols. Soil Science, v.174, p.611-620, 2009. CÁRDENAS, A.; BAISRE, J.; CALZADA, NOÉ. El complejo de, adsorción de los suelos Ferríticos de Cuba. Ciencias de la Agricultura, v.3, p.18, 1978. CHAI, X.; TAKAYUKI, S.; CAO, X.; GUO, Q.; ZHAO, Y. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere, v.69, p.1446–1453, 2007. CHANCE, B.; MAEHLEY, A. Assay of catalases and peroxidases.Methods Enzymol, v.2, p.764-775, 1955. CHEN, C., WANG, X., JIANG, H., WENPING, H.U. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.302, p.121-125, 2008. CHEN, S.; LI, J.; WANG, T.; WANG, S.; POLLE, A.; HUTTERMANN, A. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. Journal of Plant Growth Regulation, v.21, p.224-233, 2002. CHILSON, O.P.; KELLY-CHILSON, A.E.; SCHNEIDER, J.D. Pyrroline-5- Carboxylate Reductase in Soybean Nodules.Plant Physiology, v.99, p.119-123, 1992. 104 CHRISTIAN, D., WONG, E., CRAWFORD, R.L., CHENG, I.F., HESS, T.F. Heavy metals removal from mine runoff using compost bioreactors. Environmental Technology v.14, p.1533-1546, 2010. CORDEIRO, F.C.; SANTA-CATARINA, C.; SILVEIRA, V.; DE SOUZA, S.R. Humic acid effect on catalase activity and the generation of reactive oxygen pecies in corn (Zea Mays L). Bioscience Biotechnology and Biochemistry, v.75, p.70-74, 2011. CORPAS, F.J., PALMA, J.M., SANDALIO, L.M., VALDERRAMA, R., BARROSO, J.B., DEL RÍO, L.A. Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativumL.) leaves. Journal of Plant Physiology v.165, p.1319-1330, 2008. DAHIYA, S., TRIPATHI, R.M., HEDGE, A.G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and area shell biomass. Bioresource Technology v.99, p.179-187, 2008. DE TULLIO, M.C.; JIANG, KENI.; FELDMAN, L.J. Redox regulation of root apical meristem organization: Connecting root development to its environment. Plant Physiology and Biochemistry, v.48, p.328-336, 2010. DEL LONGO, O.T.,CLAUDIO, A.G., PASTORI, G.M., TRIPPI, V.S. Antioxidant Defences under Hyperoxygenic and Hyperosmotic Conditions in Leaves of Two Lines of Maize with Differential Sensitivity to Drought. Plant Cell Physiology, v.34, p.1023-1028, 1993. DEMIDCHIK, V.; SHABALA, S.N.; DAVIES, J.M. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant Journal, v.49, p.377-386, 2007. DEMIDCHIK, V.; SHANG, Z.; SHIN, R.; THOMPSON, E.; RUBIO, L.; LAOHAVISIT, A.; MORTIMER, J.C.; CHIVASA, S.; SLABAS, A.R.; GLOVER, B.J.; SCHACHTMAN, D.P.; SHABALA, S.N.; DAVIES, J.M. Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant Journal, v.58, p.903-913, 2009. DHINDSA, R.S., MATOWE, W. Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32, 79- 91, 1981. DOAN, T.T., NGO, P.T., RUMPEL, C., NGUYEN, B.V., JOUQUET, P. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae v.160, p.148-154, 2013. DOBBSS, L.; CANELLAS, L.P.; OLIVARES, F.L.; AGUIAR, N.O.; PERES, L.E.P.; SPACCINI, R.; PICCOLO, A. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. Journal of Agricultural and Food Chemistry, v.127, p.1-10, 2010. DOBBSS, L.B., RUMJANECK, V.M., BALDOTTO, A.M., VELLOSO, A.C.X., CANELLAS, L.P. Caracterização química e espectroscópica de ácidos húmicos e fúlvicos isolados da camada superficial de latossolos brasileiros. Revista Brasileira de Ciência do Solo v.33, p.51-63, 2009. DOMÍNGUEZ, J.A.M., GÓMEZ-BRANDÓN, M. Vermicomposting: Earthworms Enhance the Work of Microbes, In: INSAM, H., FRANKE-WILTTLE, I., 105 GOBERNA, M., (eds.) Microbes at Work, 93-114, Springer-Verlag Berlin Heidelberg. 2010. DROUSSI, Z.; D’ORAZIO, V.; HAFIDI, M.; OUATMANE, A. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products.Journal of Hazardous Materials, v.163, p.1289–1297, 2009. DUNAND, C.; CRÈVECOEUR, M.; PENEL, C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist, v.174, p.332-341. 2006. ELENA, A.; DIANE, L.; EVA, B.; FUENTES, M.; BAIGORRI, R.; ZAMARREÑO, A.M.; GARCÍA-MINA, J.M. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiology and Biochemistry, v.47, p.215-223, 2009. FAUR-BRASQUET, C., KADIRVELU, K., LE, CLOIREC. P. Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon v.40, p.2387-2392, 2002. FERRARI, E.; FRANCIOSO, ORNELLA.; NARDI, SERENELLA.; SALADINI, MONICA.; DAL FERRO, NICOLA.; MORARI, FRANCESCO. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. Journal of Molecular Structure, v.998, p.216–224, 2011. FERRER, J.L., AUSTIN, M.B., STEWART, C.JR., NOEL, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry v.46, p.356-370, 2008. FILELLA, M., TOWN, R.M. Heterogeneity and lability of Pb(II) complexation by humic substances: practical interpretation tools. Fresenius Journal Analytical Chemistry v.370, p.413-418. 2001. FOREMAN, J., DEMIDCHIK, V., BOTHWELL, J.H. F., MYLONA, P., MIEDEMA, H., TORRESK, M.A., LINSTEAD, P., COSTA, S., BROWNLEE, C., JONATHAN, D., JONESK, G., DAVIES, J.M., DOLAN, L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, v.422 p.442-445, 2003. FOYER, C.H.; NOCTOR, G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidanst and Redox Signalling, v.11, p.861-905, 2009. GAO, J., LIU, J., LI, B., LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v.19, p.185-1185, 2001. GARCÍA, A.C., IZQUIERDO, F.G., GONZÁLEZ, O.L.H., ARMAS, M.M.D., LÓPEZ, R.H., REBATO, S.M., BALMORI, D.M., BERBARA, R.L.L. Biotechnology of humified materials obtained from vermicomposts for sustainable agroecological purposes. African Journal of Biotechnology v.7, p.625-634. 2013. GARCÍA, A.C.; IZQUIERDO, F.G.; NIEBLAS, E.G.; ROSADO, E.; VALDÉS, R.; PIMENTEL, J.J.; NILS, A. Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de polímeros, v.3, p.204-214, 2007. 106 GARG, V.K., GUPTA, R. Biotechnology for Agro-Industrial Residues Utilization, In: Singh-Nee Nigam, Poonam; Pandey, Ashok (Eds.)Biotechnology for Agro-Industrial Residues Utilisation, 431-456, Springer Science+Business Media B.V. 2009. GARCÍA, A.C., BERBARA, R.L.L., FARIAS, L.P., IZQUIERDO, F.G., HERNÁNDEZ, O.L., CAMPOS, R.H., CASTRO, R.N. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology v.11, p.3125-3134, 2012. GAY, C., GEBICKI, J.M. A critical evolution of the effect of sorbitol on the ferricxylenol orange hydroperoxide assay.Analytical Biochemistry, v.284, p.217-220, 2000. GERKE, J. Aluminum complexation by humic substances and aluminum species in the soil solution. Geoderma v.63, p.165-175, 1994. GHABBOUR, E.A., DAVIES, G. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OW, UK Registered Charity No. 207890. 2001. GIANNOPOLITIS, C.N.; RIES, S.K. Superoxide Dismutases.Occurrence in higher plants.Plant Physiology, v.59, p.309-314, 1977. GILES, C.H., D’ SILVA, A.P.D. Trivedi AS.Surface area determination. London: Butterworth v.135, p. 47, 1970. GILL, S.S., TUTEJA. N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v.48, p.909- 930, 2010. GONDAR, D., LOPEZ, R., FIOL, S., ANTELO, J.M., ARCE, F. Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma v.126, p.367-374, 2005. GUI-LIAN, Z.; LI-YUN, C.; SHUN-TANG, Z.; HUA, Z.; GUO-HUA, L. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice. Rice Science, v.16, p.65-77, 2009. GUO-WEI, LI., YAN-HUI, PENG., XIN, YU., MIN-HUA, ZHANG., WEI-MING, CAI., WEI-NING, SUN., WEI-AI, SU. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology v.165, p.1879-1888, 2008. GUSTAFSSON, J.P. Arsenate adsorption to soils: Modelling the competition from humic substances. Geoderma v.136, p.320-33, 2006. HACHEZ, C., ZELAZNY, E., CHAUMONT, F. Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochimica et Biophysica Acta (BBA)-Biomembrane, v.1758, p.1142-1156, 2006. HAGHIGHI, M.; KAFI, M.; FANG, P. Photosynthetic Activity and N Metabolism of Lettuce as Affected by Humic Acid. International Journal of Vegetable Science, v.18, p.182–189, 2012. HALL, K.R., EAGLETON, L.C., ACRIVOS, A., VERMEULEN, T. Pore and solid diffusion kinetics in fixed bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals v.5, p.212-223. 1996. 107 HENZLER, T., STEUDLE, E. Transport and metabolic degradation of hydrogen peroxide: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany, v.51, p.2053-2066, 2000. HERNÁNDEZ, R., GARCÍA, A., PORTUONDO, L., MUÑIZ, S., BERBARA, R., IZQUIERDO, F. Protección antioxidativa de los ácidos húmicos extraídos de vermicompost en arroz (Oryza sativa L.) var. IACuba30. Revista de Protección Vegetal, v.27, p.102-110, 2012. HIRAYAMA, T.; SHINOZAKI, K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends in Plant Science, v.12, p.343-351, 2007. HLADKÝ, J.; POSPÍŠILOVÁ, L.; LIPTAJ, T. Spectroscopic Characterization of Natural Humic Substances.Journal of Applied Spectroscopy, v.80, p.12-18, 2013. HOAGLAND, D. R.; ARNON, D. I. The water- culture method for growi ng plants without soil. California Agricultural of Experimental Station Bull, v.347, p.1- 32, 1950. HOHMANN, I., BILL, R., KAYINGO, I., PRIOR, B. Microbial MIP channels. Trends in Microbiology, v.8, p.33-38, 2000. http://www.worstpolluted.org/2012-report.html. Acessado em Setembro de 2012. IGLESIAS, A., LOPEZ, R., FIOL, S., ANTELO, J.M., ARCE, F. Analysis of copper and calcium–fulvic acid complexation and competition effects. Water Research v.37, p.3749-3755, 2003. IHSS, 2013.International Humic Substances Society. Disponível em: http://www.humicsubstances.org/. Acesso em: 15 04 2012. IQBAL, M., SAEED, A., KALIM, I. Characterization of Adsorptive Capacity and Investigation of Mechanism of Cu2+, Ni2+ and Zn2+ Adsorption on Mango Peel Waste from Constituted Metal Solution and Genuine Electroplating Effluent. Separation Science and Technology v.44, p.3770-3791, 2009. JAIN, M., NIJHAWAN, A., TYAGI, A.K., KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, v.345, p.646–651, 2006. JALEEL, C.A.; MANIVANNAN, P.; WAHID, A.; FAROOQ, M.; AL-JUBURI, H.; SOMASUNDARAM, R.; PANNEERSELVAM, R.; Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture and Biology, v.11p.100-105, 2009. JANNIN, L., ARKOUN, M., OURRY, A., LAÎNÉ, P., GOUX, D., GARNICA, M., FUENTES, M., SAN FRANCISCO, S., BAIGORRI, R., CRUZ, F., HOUDUSSE, F., GARCIA-MINA, J.M., YVIN, J.C., ETIENNE, P. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil,v.359, p.297-319, 2012. JERZYKIEWICZ, M. Formation of new radicals in humic acids upon interaction Pb(II) ions. Geoderma v.122, p.305-309, 2004. 108 JORDÃO, C.P., FERNANDES, R.B.A., RIBEIRO, K.L., NASCIMENTO, B.S., BARROS, P.M. Zn (II) adsorption from synthetic solution and kaolin wastewater onto vermicomposto. Journal of Hazardous Materials v.162, p.804-811, 2009. JORDÃO, C.P., FIALHO, L.L., NEVES, J.C.L., CECON, P.R., MENDONÇA, E.S., FONTES, R.L.F. Reduction of heavy metal contents in liquid effluents by vermicomposts and the use of the metal-enriched vermicomposts in lettuce cultivation. Bioresource Technology v.98, p.2800-2813, 2007. JORDÃO, C.P., PEREIRA, W.L., CARARI, D.M., FERNANDES, R.B.A, DE ALMEIDA, R.M., FONTES, M.P.F. Adsorption from Brazilian soils of Cu(II) and Cd(II) using cattle manure vermicomposto. International Journal of Environmental Studies v.68, p.719-736, 2011. JUBANY-MARÍ, T.; MUNNÉ-BOSCH, S.; ALEGRE, L. Redox regulation of water stress responses infield-grown plants.Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry, v.48, p.351-358, 2010. JÚNIOR, F.E.M. Production of reactive oxygen intermediates in Rice, in the presence of aluminum. [Produção de intermediários reativos de oxigênio em arroz na presencia de alumínio]. Viçosa, MG, Universidade Federal de Viçosa.Magister Science Theses, 2007. KADIRVELU, K., NAMASIVAYAM, C. Agricultural by-products as metal adsorbents: sorption of lead(II) from aqueous solutions onto coir pith carbon. Journal Environmental Technology v.21, p.1091-1097, 2000. KALAVATHY, M.H., KARTHIKEYAN, T., RAJGOPAL, S., MIRANDA, L.R. Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science v.292, p.354-362, 2005. KALDENHOFF, R., FISCHER, M. Functional aquaporin diversity in plants, Biochim.Biophys. Acta (BBA)-Biomembrane, v.1758, p.1134-1141, 2006. KAR, M.; MISHRA, D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiology, v.57, p.315-319, 1976. KEELER, C.; KELLY, E.F.; MACIEL, G.E. Chemical–structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA.Geoderma, v.130, p.124-140, 2006. KELEN, M. Separation of Abscisic Acid, Indole-3-Acetic Acid, Gibberellic Acid in 99-R (Vitis berlandieri x Vitis rupestris) and Rose Oil (Rosa damascena Mill.) by Reversed Phase Liquid Chromatography. Turkish Journal Chemistry, v.28, p.603-610, 2004. KESBA, H.H.; EL-BELTAGI, H.S. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection. Asian Pacific Journal of Tropical Biomedicine, p.287-293, 2012. KHAN, A.A., SINGH, R.P. Adsorption thermodynamics of carbofuran on Sn (IV) arseno silicate in H+, Na+ and Ca2+ forms. Colloids and Surface v.24, p.33-42, 1987. KOTCHONI, S.O.; KUHNS, C.; DITZER, A.; KIRCH, H.H.; BARTELS, D. Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell and Environment, v.29, p.1033-1048, 2006. 109 KRAMER, E.M. Auxin-regulated cell polarity: an inside job?.Trends in Plant Science, v.14, p.242-247, 2009. KUO, M.C., KAO, C.H. Aluminum effects on lipid peroxidation and antioxidative enzymes activities in rice leaves. Biologia Plantarum, v.46, p.149-152, 2003. KWAK, J.M., MORI, I.C., PEI, Z.M., LEONHARDT, N., TORRES, M.A., DANGL, J.L., BLOOM, R.E., BODDE, S., JONES, J.D., SCHROEDER, J.I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal v.22, p.2623-2633, 2003. KOOPAL, L.K., VAN RIEMSDIJK, H.W., KINNIBURGH, D.G. Humic matter and contaminants. General aspects and modeling metal ion binding. Pure and Applied Chemistry v.73, p.2005–2016, 2001. KULIKOVA, N.A., ABROSKIN, D.P., BEER, A.S., BADUN, G.A., CHERNYSHEVA, M.G., KOROBKOV, V.I. , PERMINOVA, I.V. The Endodermis Is the Major Control Point for Radial Transport of Humic Substances into the Vascular System of Plants. Em: Functions of Natural Organic Matter in Changing Environment p. 873-876. 2013. LARIBIS, A.M., COJEAN, R. Assessing shrink/swell properties of two argillaceous soils from the Paris Basin: a comparison of cation exchange determination methods. Bulletin of Engineering Geology and the Environment v.67, p.415-424, 2008. LAZCANO, C., ARNOLD, J., TATO, A., ZALLER, J. G., DOMÍNGUES, J. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research v.7, p.994-951, 2009. LAROUS, S., MENIAI, A.H., LEHOCINE, M.B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust.Desalination v.185, p.483-490, 2005. LEI, Y.; YIN, C.; LI, C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus prezwalskii. Physiologia Plantaraum, v.127, p.187-191, 2006. LI, C.Y.; CHOW, T.J.; WU, T.S.The Epimerization of Sesamin and Asarinin.Journal of Natural Products, v.68, p. 1622-1624, 2005. LI, GUO-WEI., PENG, YAN-HUI., YU, XIN., ZHANG, MIN-HUA., CAI, WEIMING., SUN, WEI-NING., SU, WEI-AI. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology, v.165, p.1879-1888, 2008. LI, H. Principles and Techniques of plants physiological biochemical experimental.Higher education Press. Beijing. p.164-169, 2000. LI, XIAOWEI.; MEIYAN, XING.; JIAN, YANG.; ZHIDONG, HUANG Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. Journal of Hazardous Materials, v.185, p.740-748, 2011. LIU, L.H., LUDEWIG, U., GASSERT, B., FROMMER, W.B., WIRÉN, N.V. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology 133, 1220-1128, 2003. 110 LENHART, J.J., STEPHEN, E., PATRICK, M., HONEYMAN, B.D. Uranium(VI) complexation with citric, humic and fulvic acids. Radiochimica Acta v.88, p.345-353, 2000. LIU, Q., UMEDA, M., UCHIYAMA, H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Molecular and Biology, v.26, p. 2003–2007, 1994. LOPEZ, F., BOUSSER, A., SISSOËFF, I., GASPAR, M., LACHAISE, B. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiology v.44, p.1384–95, 2003. LÓPEZ, Y.P.; SOBRINHO, N.M.A.; ARIAS, M.I.B.; CARMENATE, R.V.; MAGALHÃES, M.O.L. Contenido de elementos metálicos en suelos característicos del municipio San José de las Lajas. Revista Ciencias Técnicas Agropecuarias, v.21, p.43-46, 2012. LOQUE, D., LUDEWIG, U., YUAN, L., VON WIREN, N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 faciliate NH3 transport into the vacuole. Plant Physiology v.137, p.671-680, 2005. LU, X.Q.; HANNA, J.V.; JOHNSON, W.D. Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry, v.15, p.1019-1033, 2000. LU, X.Q.; HANNA, J.V.; JOHNSON,W.D. Evidence of chemical pathways of humification: a study of aquatic humic substances heated at various temperatures. Chemical Geology, v.177, p.249–264, 2001. MA, S., QUIST, T.M., ULANOV, A., JOLY, R., BOHNERT, H.J. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant Journal 40, 845-859, 2004. MAHAJAN, S., TUTEJA, N. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444, 139-158, 2005. MATYSIK, J.A.; BHALU, B.; MOHANTY, P. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plant.Current Science, v.5, p.525- 532, 2002. MAUREL, C., JAVOT, H., LAUVERGEAT, V., GERBEAU, P., TOURNAIRE, C., SANTONI, V., HEYES, J. Molecular physiology of aquaporins in plants. International Review of Cytology, v.215, p.105–148, 2002. MAUREL, C., VERDOUCQ, L., LUU, D.T., SANTONI, V. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, v.59, p.595–624, 2008. MILLER, G.; SUZUKI, N.; CIFTCI-YILMAZ, S.; MITTLER, R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell and Environmental, v.33, p.453-467, 2010. MISRA, H.P., FRIDOVICH, I. The Generation of Superoxide Radical during the Autoxidation of Ferredoxins.The Journal of Biological Chemistry, v. 25, p.6886- 6890, 1971. MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science v.7, p.405-10, 2002. 111 MITTLER, R., VANDERAUWERA, S., GOLLERY, M., VAN, B.F. Reactive oxygen gene network of plants.Trends in Plant Science, v.9, p.490-498, 2004. MITTLER, RON.; VANDERAUWERA, S.; SUZUKI, N.; MILLER, G.; TOGNETTI, V.B.; VANDEPOELE, K.; GOLLERY, M.; SHULAEV, V.; BREUSEGEM, F.V. ROS signaling: the new wave? Trends in Plant Science, v.16, p.300-309, 2011. MOHAMMADI, M., KARR, A.L. Superoxide anion generation in effective and ineffective soybean root nodules. Journal of Plant Physiology, v.158, p.1023–1029, 2001. MONTILLET, J.L.; CHAMNONGPOL, S.; RUSTÉRUCCI, C.; DAT, J.; VAN DE COTTE, B.; AGNEL, J.P.; BATTESTI, C.; INZÉ, D.; VAN BREUSEGEM, F.; TRIANTAPHYLIDÈS, C. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, v.138, p.1516-1526, 2005. MORA, V.; BACAICOA, E.; ZAMARREÑO, A.M.; AGUIRRE, E.; GARNICA, M.; FUENTES, M.; GARCÍA-MINA, J.M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-toshoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, v.167, p.633-642, 2010. MORI, I.C., SCHROEDER, J.I. Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress Signaling, and Hypothetically Mechanotransduction. Plant Physiology v.135, p.702- 708, 2004. MUSCOLO, A.; SIDARI, M.; ATTINÁ, E.; FRANCIOSO, O., TUGNOLI, V.; NARDI, S. Biological activity of humic substances is related to their chemical structure. Soil Science Society of American Journal, v.71, p.75-85, 2007. MUSCOLO, A.; SIDARI, M.; NARDI, S. Humic substance: Relationship between structure and activity. Deeper information suggests univocal findings Original. Journal of Geochemical Exploration, v.129, p.57-63, 2013. NARDI, S., PIZZEGHELLO, D., MUSCOLO, A., VIANELLO, A. Physiological effects of humic substances on higher plants. Soil Biology and Biochemistry v.34, p.1527-1536, 2002. NARDI, S.; MUSCOLO, A.; VACCARO, S.; BAIANO, S.; SPACCINI, R.; PICCOLO, A. Relationship between molecular characteristics of soil humic fractions and glycolytic pathway and krebs cycle in maize seedlings. Soil Biology & Biochemistry, v.39, p.3138- 3146, 2007. NEBBIOSO, A., PICCOLO, A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Analytica Chimica Acta v.720, p.77-79, 2012. NEBBIOSO, A.; PICCOLO, A. Basis of a Humeomics Science: Chemical Fractionation and Molecular Characterization of Humic Biosuprastructures. Biomacromolecules, v.12, p.1187-1199, 2011. NEBBIOSO, A.; PICCOLO, A. Molecular Rigidity and Diffusivity of Al3+ and Ca2+ Humates As Revealed by NMR Spectroscopy.Environmental Science Technology, v.43, p.2417–2424, 2009. 112 NIEBLAS, E.G., TRUJILLO, A.M., CARMENATE, R.V., GARCÍA, A.C., IZQUIERDO, F.G., ELÍAS, S.S., MORALES, A.R., ARIAS, M.I.B., GONZÁLEZ, O.L.H. Evaluation of liquid residuals with heavy metals dissolved in soils of the agroecosystem San José de las Lajas. Centro Agrícola v.35, p.2072-2001, 2008. NOELTING, G.; BERNFELD, P. On amylolytic enzymes III. The $-amylase : dosage of activity and control of the absence of amylase . Helvetica Chimica Acta, v.31, p.286-290, 1948. PASSARDI, F.; LONGET, D.; PENEL, C.; DUNAND, C. The class III peroxidase multigenic family in rice and its evolution in land plants.Phytochemistry, v.65, p.1879- 1893, 2004. PEI, Z.M., MURATA, Y., BENNING, G.S., THOMINE, B., KLÜSENER, G.J., ALLEN, E., GRILL, J., SCHROEDER, I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, v.406, p.731-734, 2000. PEIXOTO, P.H.P.; CAMBRAIA, J.; SANTANA, R.; MOSQUIN, P.R.; MOREIRA, M.A. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in Sorghum. Revista Brasileira de Fisiologia Vegetal, v.11, p.137-143, 1999. PÉREZ, J.J.R., IZQUIERDO, F.G., ESCOBAR, I.M.R., RUISÁNCHEZ, Y., MAYORAL, J.A.L., AMADOR, B.M., ESPINOZA, F.H., FABRÉ, T.B., AMADOR, C.A., SILVERA, C.M.O., MORALES, Y.A., MILANÉS, J.Y.R. Efectos del humus líquido sobre algunos parámetros de calidad interna en frutos de tomate cultivados en condiciones de estrés salino [Effects of liquid humus on some parameters of internal quality of tomato fruits grown under salt stress conditions]. Centro Agrícola v.38, p.57-61, 2011. PÉREZ, M.G.; TORRADO, P.V.; COLNAGO, L.A.; NETO, L.M.; OTERO, X.L.; MILORI, D.M.B.P.; GOMES, F.H. 13C NMR and FTIR spectroscopy characterization of humic acids in spodosols under tropical rain forest in southeastern Brazil. Geoderma, v.146, p.425–433, 2008. PETOLINO, J.F.; YOUNG, S.; HOPKINS, N.; SUKHAPINDA, K.; WOOSLEY, A.; HAYES, C.; PELCHER, L. Expression of murine adenosine deaminase (ADA) in transgenic maize. Transgenic Research, v.9, p.1–9, 2000. PFEIFER, THOMAS.; KLAUS, UWE.; HOFFMANN, RALF; SPITELLER, MICHAEL. Characterisation of humic substances using atmospheric pressure chemical ionisation and electrospray ionisation mass spectrometry combined with size-exclusion chromatography. Journal of Chromatography A, v.926, p.151–159, 2001. PICCOLO, A., STEVENSON, F.J. Infrared spectra of Cu2+, Pb2+ and Ca2+ complexes of soil humic substances. Geoderma v.27, p.195-208, 1982. PICCOLO, A.; SPITELLER , M.; NEBBIOSO, A. Effects of sample properties and mass spectroscopic parameters on electrospray ionization mass spectra of sizefractions from a soil humic acid. Analytical and Bioanalytical Chemistry, v.397, p.3071–3078, 2010. 113 PITZSCHKE, A., FORZANI, C., HIRT, H. Reactive oxygen species signaling in plants. Antioxid.Redox Signal, v.8, p.1757-1764, 2006. PLAZA, C., D’ORAZIO, V., SENESI, N. Copper (II) complexation of humic acids from the first generation of EUROSOILS by total luminescence spectroscopy.Geoderma v.125, p.177-186, 2005. POLLE, A. Dissecting the superoxide dismutase-ascorbate-glutathione pathway by metabolic modeling: computer analysis as a step towards flux analysis. Plant Physiology v.126, p.445-462,2001. POPKO, J.; HANSCH, R.; MENDEL, R.R., POLLE, A.; TEICHMANN, T.The role of abscisic acid and auxin in the response of poplar to abiotic stress.Plant Biology, v.12, p.242-258, 2010. QUAN, LI-JUAN., ZHANG, BO., SHI, WEI-WEI., LI, HONG-YU. Hydrogen Peroxide in Plants: a Versatile Molecule of the Reactive Oxygen Species Network. Journal of Integrative Plant Biology, v.50, p.2-18, 2008. RAMEL, F.; SULMON, C.; BOGARD, M.; COUÉE, I., GOUESBET, G.; Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets.BMC Plant Biology, v.9, p.1-18, 2009. RAMOS, A.V.R. Evaluación de una Base de Pintura Industrial Formulada con Extractos de Plantas del Género Aloecomo Posible Recubrimiento Inhibidor de Corrosión. Tese de grado apresentado como requisito parcial para Optar ao título de licenciado em química. 2013. RAO, M.V.; DAVIS, K.R. Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant Journal, v.17, p.603- 614,1999. RAYLE, D.L., CLELAND. R.E.The Acid Growth Theory of Auxin-induced Cell Elongation Is Alive and Well.Plant Physiology, v.99, p.1271-1274,1992. REINES, M. Lombrices de tierra con valor comercial. Biología y técnicas de cultivo, Universidad de La Habana y Universidad de Quintana Roo, La Habana, Cuba, 1998. RENTEL, M.C.; LECOURIEUX, D.; QUAKED, F.; USHER, S.L.; PETERSON, L.; OKAMOTO, H.; KNIGHT, H.; PECK, S.C.; GRIERSON, C.S.; HIRT, H.; KNIGHT, M.R. OXI1 kinase is necessary for oxidative burst-mediated signalling in Arabidopsis development. Nature, v.427, p.858-861. 2004. ROMERO, E.; PLAZA, C.; SENESI, N.; NOGALES, R.; POLO, A. Humic acid-like fractions in raw and vermicomposted winery and distillery wastes. Geoderma, v.139, p.397–406, 2007. RUPIASIH, N.N.; VIDYASAGAR, P.B. Analytical study of humic acid from various sources commonly used as fertilizer: emphasis on heavy metal content. International Journal of Design and Nature and Ecodynamics, v. 4, p.32–46, 2009. RUSSELL, L., STOKES, A.R., MACDONALD, H., MUSCOLO, A., NARDI, S. Stomatal responses to humic substances and auxin are sensitive to inhibitors of phospholipase A2. Plant Soil v.283, p.175–185, 2006. 114 SAEED, A., AKHTER, M.W., IQBAL, M. Removal and recovery of heavy metals from aqueous solution using papaya wood as a new biosorbent, Separation and Purification Technology v.45, p.25-31, 2005. SAEED, A., IQBA,L M., HÖLL, W.H. Kinetics, equilibrium and mechanism of Cd2+ removal from aqueous solution by mung bean husk. Journal of Hazardous Materials v.168, p.1467-1475, 2009. SAHA, B., TAI, M.H., STREAT, M. Study of activated carbon after oxidation and subsequent treatment characterization. Process Safety and Environmental Protection v.79, p.211- 217, 2001. ŠAMAJ, J., BALUŠKA, F., MENZEL, D. New signalling molecules regulating root hair tip growth. Trends in Plant Science v.9, p.217-220, 2004. SANTOS, G. A.; CAMARGO, F. A O. (editores). 1999. Fundamentos da matéria orgânica do solo: ecossistemas tropicais e subtropicais. Ed. Genesis, Porto Alegre, Brasil. 508pp. SAVOURÉ, A.; HUA, X.J.; BERTAUCHE, N.; VAN, M.M.; VERBRUGGEN, N. Abscisic acid-independent and abscisic acid-dependent regulation of the proline biosynthesis upon cold and osmotic stresses in Arabidopsis thaliana. Mol Genetics and Genomics, v.254, p.104-109, 1997. SCHIAVON, M.A.; GHELLO, D.P.; MUSCOLO, A.; VACCARO, S.; FRANCIOSO, O.; NARDI, S. High Molecular Size Humic Substan ces Enhance Phenylpropanoid Metabolism in Maize (Zea mays L.). Journal of Chemical Ecology, v.36, p.662-669, 2010. SCHMIDT, W.; SANTI, S.; PINTON, R.; VARANINI, Z. Water-extractable humic substances alter root development and epidermal cell pattern in Arabidopsis. Plant Soil, v.300, p.259–267, 2007. SCHNITZER, M. Humic substances: chemistry and reactions. In: Schnitzer, M., Khan, S.U. (Eds.), Soil Organic Matter. Elsevier, Amsterdam. 1978. SCHOPTER, P.; LISZKAY, A.; BECHTOLD, M.; FRAHRY, G.; WAGNER, A. Evidence that hydroxyl radicals mediate auxine-induced extension growth.Planta, v.214, p.821-828, 2002. SENESI, N., RIZZI, F.R., DELINO, P. Fractal dimension of humic acids in aquous suspension as a function of pH and time. Soil Science of American Journal, v.60, p.1773-1778, 1996. SENESI, N., SPOSITO, G., MARTIN, J.P. Copper (II) and iron (III) complexation by soil humic acids: an IR and ESR study. Science of the Total Environment v.55, p.351-362, 1986. SENESI, N.; PLAZA, C.; BRUNETTI, G.; POLO, A.A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology & Biochemistry, v.39, p.1244-1262, 2007. SENESI, N.; RIZZI, F.R.; DELINO, P. Fractal dimension of humic acids in aqueous suspension as a function of pH and time. Soil Science Society of American Journal, v.60, p.1773-1778, 1996. 115 SHARMA, P.; JHA, A.B.; DUBEY, R.S.; PESSARAKLI, M. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions.Journal of Botany, v.2012, p.1-26, 2012. SHIRSHOVA, L.T.; GHABBOUR, E.A.; DAVIES, G. Spectroscopic characterization of humic acid fractions isolated from soil using different extraction procedures.Geoderma, v.133, p.204-216, 2006. SIDDIQUI, M.H., AL-WHAIBI, M.H., BASALAH, M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma v.248p, 447-455, 2011. SINGH, R., SINGH, R., SONI, S.K., SINGH, S.P., CHAUHAN, U.K., KALRA, A. Vermicompost from biodegraded distillation waste improves soil properties and essential oil yield of Pogostemon cablin (patchouli) Benth. Applied Soil Ecology v.70, p.48-56, 2013. SLESAK I, LIBIK M, KARPINSKA B, KARPINSKI S, MISZALSKI Z. Acta Biochimica Polonica, v.54, p.39–50, 2007. SMET, I.D.; ZHANG, H.; INZÉ, D.; BEECKMAN, T. A novel role for abscisic acid emerges from underground. Trends in Plant Science, v.11, p.434-439, 2006. SPACCINI, R., PICCOLO, A. Molecular characterization of compost at increasing stages of maturity: Thermochemolysis-GC-MS and 13C-CPMAS-NMR spectroscopy. Journal of Agricultural and Food Chemistry, v.55, p.2303–2311, 2007. SRIVASTAVA, P.K., GUPTA, M., UPADHYAY, R.K., SHARMA, S., SHIKHA., SINGH, N., TEWARI, S.K., SINGH, B. Effects of combined application of vermicompost and mineral fertilizer on the growth of Allium cepa L. and soil fertility. Journal of Plant Nutrition and Soil Science v.175, p.101-107, 2012. STRIZHOV, N.; ABRAHAM, E.; OKRESZ, L.; BLICKLING, S.; ZILBERSTEIN, A.; SCHELL, J.; KONCZ, C.; SZABADOS, L. Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal, v.12, p.557-569, 1997. SUGA, S., IMAGAWA, S., MAESHIMA, M. Specificity of the accumulation of RNA and proteins of the plasma membrane and tonoplast aquaporins in radish organs.Planta, v.212, p.294-304, 2001. SUJATHA, S., BHAT, R. Impacts of Vermicompost and Nitrogen, Phosphorus, and Potassium Application on Soil Fertility Status in Arecanut Grown on a Laterite Soil. Communications in Soil Science and Plant Analysis v.43, p.2400-2412, 2012. SUZUKI, N.; KOUSSEVITZKY, S.; MITTLER, R.; MILLER, G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell and Environment, v.35, p.259-270, 2012. SZABADOS, L.; SAVOURÉ, A. Proline: a multifunctional amino acid. Trends in Plant Science, v.15, p.89-97, 2009. TAÍZ, L.; ZEIGER, E. Plant Physiology.Third Edition, Copyrights by Sinauer Associates, Inc. 2005. TAKEDA, S., GAPPER, C., KAYA, H., BELL, E., KUCHITSU, K., DOLAN, L. Local positive feedback regulation determines cell shape in root hair cells. Science v.319, p.1241-1244, 2008. 116 TEJADA, M., GARCÍA-MARTÍNEZ, A.M., PARRADO, J. Effects of a vermicompost composted with beet vinasse on soil properties, soil losses and soil restoration. Catena v.77, p.238-247, 2009. TERKHI, M.C.; TALEB, F.; GOSSART, P.; SEMMOUD, A.; ADDOU, A. Fourier transform infrared study of mercury interaction with carboxyl groups in humic acids. Journal of Photochemistry and Photobiology A: Chemistry, v.198, p.205–214, 2008. TOGNETTI, V.B., MÜHLENBOCK, P., VAN BREUSEGEM, F. Stress homeostasis the redox and auxin perspective. Plant Cell Environment v.35, p.321-333, 2012. TREVISAN, S., BOTTON, A., VACCARO, S., VEZZARO, A., QUAGGIOTTI, S., NARDI, S. Humic substances affect Arabidopsis physiology by altering the expression of genes involved in primary metabolism, growth and development. Environment Experimental Botany, v.74, p.45-55, 2011. TSUKAGOSHI, H., BUSCH, W., BENFEY, P.N. Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell v.143, p.606-616, 2010. TUNALI, S., AKAR, T. Zn(II) biosorption properties of Botrytis cinereabiomass. Journal of Hazardous Material v.131, p.137-145, 2006. TYERMAN, S.D., NIEMIETZ, C.M., BRAMLEY, H. Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant Cell Environmental, v.25, p.173–194, 2002. UEHLEIN, N., FILESCHI, K., ECKERT, M. Arbuscular mycorrhizal sym-biosis and plant aquaporin.Phytochemistry, v.68, p.122–129, 2007. URDANETA, C., PARRA, L.M.M., MATUTE, S., GARABOTO, M.A., BARROS, H., VÁZQUEZ, C. Evaluation of vermicompost as bioadsorbent substrate of Pb, Ni, V and Cr for waste waters remediation using Total Reflection X-ray Fluorescence. Spectrochimica Acta Part B v.63, p.1455-1460, 2008. VALDEZ-PÉREZ, M.A., FERNÁNDEZ-LUQUEÑO, F., FRANCO-HERNANDEZ, O., COTERA, L.B.F., DENDOOVEN, L. Cultivation of beans (Phaseolus vulgaris L.) in limed or unlimed wastewater sludge, vermicompost or inorganic amended soil. Scientia Horticulturae v.128, p.380-387, 2011. VASCONCELOS, F.; ZHANG, X.; ERVIN, E.H.; KIEHL, C.J, Enzimatic antioxidant responses bioestimulants maize and soybean subjected to drought. Science Agriculture (Piracicaba, Braz.), v.66, p.395-402, 2009. VAUGHAM, D., LINEHAN, D.J. The growth of wheat plants in humic acid solutions under axenic conditions. Plant Soil v.44, p.445-9, 1976. VAUGHAN, D., ORD, B.G. Uptake and Incorporation of 14C-labelled Soil Organic Matter by Roots of Pisum sativum L. Journal Experimental Botany v.32, p.679- 687,1981. VAUGHAN. D.; ORD, B.G. An in vitro effect of soil organic matter fractions and synthetic humic acids on the generation of superoxide radicals. Plant Soil, v.66, p.113-116,1982. VELIZ, L., MARTÍNEZ, J.D., ARAUJO, M.L., BRITO, F., LUBES, G., RODRIGUEZ, M., LUBES, V. Estudio de la hidrólisis del ion Niquel(II) y de la 117 formación de los complejos de Niquel (II) con los ácidos Picolínico y Dipicolínico en NaCl 1,0 mol.dm-3 a 25°C . Avances en Química v.6, p.3-8, 2011. VINKLER, P., LAKATOS, B., MEISEL, J. Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma v.15, p.231-242, 1976. WANG, S., TERDKIATBURANA, T., TADÉ, M.O. Adsorption of Cu(II), Pb(II) and humic acid on natural zeolite tuff in single and binary systems. Separation and Purification Technology v.62, p.64-70, 2008. WEI, YU-LING., LEE, YA-CHUN., YANG, YAW-WEN., LEE ,JYH-FU. Molecular study of concentrated copper pollutant with a compost. Chemosphere v.57, p.1201- 1205, 2004. WU. P., ZHANG, Q., DAI, Y., ZHU, N., DANG, Z., LI, P., WU, J., WANG, X. Adsorption of Cu(II), Cd(II) and Cr(III) ions from aqueous solutions on humic acid modified Ca-montmorillonite. Geoderma v.164, p.215-219 2011. XIAOLI, C.; SHIMAOKA, T.; XIAOYAN, C.; QIANG, G.; YOUCAI, Z. Characterization of humic and fulvic acids extracted from landfill by elemental composition,13C CP/MAS NMR and TMAH-Py-GC/MS. Waste Management, v.28, p.896–903, 2008. XIAOLI, C.; SHIMAOKA, T.; XIAOYAN, C.; QIANG, G.; YOUCAI, Z. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere, v.69, p.1446-1453, 2007. YANG, C., WANG, M., LU, Y., CHANG, I., CHOU, C. Humic Substances Affect the Activity of Chlorophyllase. Journal of Chemical Ecology v.8, p.1561-1573, 2004. ZALLER, J.G. Vermicompost as a substitute for peat in potting media: Effects on germination, biomass allocation, yields and fruit quality of three tomato varieties. Scientia Horticulturae v.112, p.191-199, 2007. ZANDONADI, D.B., SANTOS, M.P., DOBBSS, L.B., OLIVARES, F.L, CANELLAS, L.P., BINZEL, M.L., OKOROKOVA-FAÇANHA, A.L., FAÇANHA, A.R. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta, v.231, p.1025-1036, 2010. ZEPEDA-JAZO, I., VELARDE-BUENDÍA, A.M., ENRÍQUEZ-FIGUEROA, R., BOSE, JAYAKUMAR., SHABALA, S., MUÑIZ-MURGUÍA, J., POTTOSIN, I.I. Polyamines Interact with Hydroxyl Radicals in Activating Ca2+ and K+ Transport across the Root Epidermal Plasma Membranes. Plant Physiology v.157, p.2167–2180, 2011. ZU-YI, TAO., JIN, ZHANG., JIAN-JUN, ZHAI. Characterization and differentiation of humic acids and fulvic acids in soils from various regions of China by nuclear magnetic resonance spectroscopy.Analytica Chimica Acta v.395, p.199-203, 1999.https://tede.ufrrj.br/retrieve/14264/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/16506/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/22828/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/29164/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/35544/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/41964/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/48334/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/retrieve/54730/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/3451Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-04-23T00:53:09Z No. of bitstreams: 1 2013 - Andres Calderin Garcia.pdf: 4054482 bytes, checksum: 1da03fc33f3ee75b9424b6a9702e2c97 (MD5)Made available in DSpace on 2020-04-23T00:53:09Z (GMT). No. of bitstreams: 1 2013 - Andres Calderin Garcia.pdf: 4054482 bytes, checksum: 1da03fc33f3ee75b9424b6a9702e2c97 (MD5) Previous issue date: 2013-11-26info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2013 - Andres Calderin Garcia.pdf.jpgGenerated Thumbnailimage/jpeg4036https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/1/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpg6f4106359e0c6eba7f0e54763e9229efMD51TEXT2013 - Andres Calderin Garcia.pdf.txtExtracted Texttext/plain323067https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/2/2013%20-%20Andres%20Calderin%20Garcia.pdf.txt8a9e06908c8a7c9b600975c5405a6bc5MD52ORIGINAL2013 - Andres Calderin Garcia.pdf2013 - Andres Calderin Garciaapplication/pdf4054482https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/3/2013%20-%20Andres%20Calderin%20Garcia.pdf1da03fc33f3ee75b9424b6a9702e2c97MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/90652023-12-21 15:34:03.098oai:rima.ufrrj.br:20.500.14407/9065Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:34:03Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
dc.title.alternative.eng.fl_str_mv Humified solid fractions from vermicompost: effects on plants and capacity to retain heavy metals
title Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
spellingShingle Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
García, Andrés Calderín
Substâncias húmicas
Retenção de cátions metálicos
Espécies reativas de oxigênio
Humic substances
Retention of metal cations
Oxygen radical species
Agronomia
title_short Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
title_full Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
title_fullStr Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
title_full_unstemmed Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
title_sort Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados
author García, Andrés Calderín
author_facet García, Andrés Calderín
author_role author
dc.contributor.author.fl_str_mv García, Andrés Calderín
dc.contributor.advisor1.fl_str_mv Berbara, Ricardo Luiz Louro
dc.contributor.advisor1ID.fl_str_mv 483.564.257-00
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8529910145308595
dc.contributor.advisor-co1.fl_str_mv Izquierdo, Fernando Guridi
dc.contributor.advisor-co2.fl_str_mv Santos, Leandro Azevedo
dc.contributor.referee1.fl_str_mv Pereira, Marcos Gervasio
dc.contributor.referee2.fl_str_mv Amaral Sobrinho, Nelson Moura Brasil de
dc.contributor.referee3.fl_str_mv Leal , Marco Antônio de Almeida
dc.contributor.referee4.fl_str_mv Dobbss, Leonardo Barros
dc.contributor.authorID.fl_str_mv 061.145.927-27
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8896375232574274
contributor_str_mv Berbara, Ricardo Luiz Louro
Izquierdo, Fernando Guridi
Santos, Leandro Azevedo
Pereira, Marcos Gervasio
Amaral Sobrinho, Nelson Moura Brasil de
Leal , Marco Antônio de Almeida
Dobbss, Leonardo Barros
dc.subject.por.fl_str_mv Substâncias húmicas
Retenção de cátions metálicos
Espécies reativas de oxigênio
topic Substâncias húmicas
Retenção de cátions metálicos
Espécies reativas de oxigênio
Humic substances
Retention of metal cations
Oxygen radical species
Agronomia
dc.subject.eng.fl_str_mv Humic substances
Retention of metal cations
Oxygen radical species
dc.subject.cnpq.fl_str_mv Agronomia
description Esta tese teve como objetivo estudar duas frações sólidas presentes em um vermicomposto (VC) de esterco bovino, avaliando os efeitos da aplicação da fração de ácidos húmicos (AH) na regulação do metabolismo antioxidativo em plantas de arroz, assim como a capacidade do sólido residual (RH) que fica depois da extração das SH solúveis ao VC, para reter cátions de metais pesados em efluentes industriais. No capítulo I se apresenta o estudo das características estruturais das frações mediante técnicas de elucidação estrutural. Os AH mostraram maior caráter aromático que RH, justificado por uma baixa relação H/C e E4/E6, bandas bem resolvidas entre 1500 cm-1 e 1650 cm-1 no espectro IV, uma aromaticidade de um 28%, com picos entre 90-142 ppm pertencentes a CAr-H,R e CAr-O no espectro 13C RMN. A Py-CG/MS também mostrou maiores conteúdos de substâncias aromáticas (ligninas) nos AH. O capítulo II teve como objetivo estudar a capacidade do material residual RH para reter cátions dos metais pesados (MP) Ni2+ e Pb2+. Uma massa de 5 g, pH 7 e 150 minutos de agitação, foram condições suficientes para reter elevadas quantidades de Ni2+ e Pb2+. O estudo cinético se descreveu melhor mediante um comportamento de pseudo 2a ordem e mostrou os melhores ajustes para o modelo de adsorção da isoterma de Freundlich. A microscopia MEV demonstrou visualmente a retenção destes metais em RH e a espectroscopia mostrou possível formação de ligações químicas entre os metais e os grupos funcionais ionizáveis. RH, quando testado com águas residuais industriais, mostrou uma efetividade de contenção de Ni2+ e Pb2+ superior a 98% e 96%. O capítulo III contém o estudo dos efeitos dos AH em componentes do metabolismo antioxidativo em plantas de arroz. Os AH mostraram exercer uma regulação da homeostase redox, estimulando a produção de espécies reativas de oxigênio (ERO) e controlando seus níveis por meio do estímulo da atividade das enzimas do metabolismo antioxidativo. Nas plantas em estresse hídrico induzido, onde foram afetados os processos de emissão de raízes laterais, quando aplicados os AH, foi preservado o crescimento e desenvolvimento radicular, comprovados mediante a emissão de raízes laterais superiores ao tratamento controle sem AH. No capítulo IV aparece a caracterização da interação entre os AH e as raízes de plantas adultas, avaliando a percepção desta interação através do metabolismo antioxidativo e as aquoporinas do tonoplasto. Os AH estimularam o sistema antioxidativo e mostraram efeitos protetores em plantas submetidas a estresse hídrico. A espectroscopia demonstrou que nos AH aglomerados nas raízes predominam estruturas alquílicas e alquílicas oxigenadas (0-110 ppm), carboxílicas (156-186 ppm) e carbonílicas (186- 230 ppm) e apresentam diminuição de estruturas arílicas (110-142 ppm) e O-arílicas (142-156 ppm). Nos modos de ação dos AH, se encontram também envolvidas as aquoporinas do tonoplasto.
publishDate 2013
dc.date.issued.fl_str_mv 2013-11-26
dc.date.accessioned.fl_str_mv 2023-12-21T18:34:03Z
dc.date.available.fl_str_mv 2023-12-21T18:34:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GARCIA, Andrés Calderín. Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados. 2013. 117 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9065
identifier_str_mv GARCIA, Andrés Calderín. Frações sólidas humificadas de vermicomposto: seus efeitos em plantas e capacidade para a retenção de metais pesados. 2013. 117 f. Tese (Doutorado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2013.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9065
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABRAHAM, E.; RIGO, G.; SZEKELY, G.; NAGY, R.; KONCZ, C.; SZABADOS, L. Light-dependent induction of proline biosynthesis by abscisic acid and salt stress is inhibited by brassinosteroid in Arabidopsis. Plant Molecular Biology, v.51, p.363-372, 2003. AGATI, G.; AZZARELLO, E.; POLLASTRI, S.; TATTINI, M. Flavonoids as antioxidants in plants: Location and functional significance. Plant Science, v.196, p.67-76, 2012. AGUIAR, N.O., NOVOTNY, E.H., OLIVEIRA, A.L., RUMJANEK, V.M., OLIVARES, F.L., CANELLAS, L.P. Prediction of humic acids bioactivity using spectroscopy and multivariate analysis. Journal of Geochemical Exploration v.129, p.95-102, 2013. AGUIAR, N.O., OLIVARES, F.L., NOVOTNY, E.H., DOBBSS, L.B., BALMORI, D.M., SANTOS-JÚNIOR, L.G., CHAGAS, J.G., FAÇANHA, A.R., CANELLAS, L.P. Bioactivity of humic acids isolated from vermicomposts at different maturation stages. Plant Soil v.362, 161-174, 2012. AL-DEGS, Y.S., EL-BARGHOUTHI, M.I., ISSA, A.A., KHRAISHEHB, M.A., WALKER, G.M. Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies. Water Research v.40, p.2645-2658, 2006. ALVAREZ-PUEBLA, R.A., VALENZUELA-CALAHORRO, C., GARRIDO, J.J. Cu(II) retention on a humic substance. Journal of Colloid and Interface Science v.270, p.47-55, 2004. AMIR, S.; JOURAIPHY, A.; MEDDICH, A.; GHAROUS, M.; WINTERTO, P.; HAFIDI, M. Structural study of humic acids during composting of activated sludgegreen waste: Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials, v.177, p.524-529, 2010. ANJUM, S.A.; WANG, L.; FAROOQ, M.; XUE, L.; ALI, S. Fulvic Acid Application Improves the Maize Performance under Well-watered and Drought Conditions. Journal of Agronomy and Crop Science, v.197, p.409–417, 2011. AROCA, R.; PORCEL, R.; RUIZ-LOZANO, J.M.Regulation of root water uptake under abiotic stress conditions.Journal of Experimental Botany, v.63, p.43-57, 2012. ASADA, K. Production and Scavenging of Reactive Oxygen Species in Chloroplasts and Their Functions.Plant Physiology, v.141, p.391–396, 2006. ASLI, S., NEUMANN, P.M.Rhizosphere humic acid interacts with root cell walls to reduce hydraulic conductivity and plant development. Plant Soil, v.336, p.313-322, 2010. AYDIN, A.; KANT, C.; TURAN, M. Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agriculture Research, v.7, p.1073-1086, 2011. BALDOTTO, M.; CANELLAS, L.P.; CANELA, M.C.; SIMÕES, M.L.; MARTINNETO, L.; FONTES, M.P.; VELLOSO A.C.X. Propriedades redox e grupos funcionais de ácidos húmicos isolados de adubos orgânicos. Revista Brasileira de Ciência do Solo, v.31, p.465-475, 2007. 102 BALMORI, D.M. Evaluación del efecto del Liplant en indicadores bioquímicosfisiológicos en el cultivo del maíz. Tesis en opción al título de Máster en Ciencias de la Química Agraria. Universidad Agraria de La Habana, Cuba. 2006. BALMORI, D.M.; OLIVARES, FL.; SPACCINI, R.; AGUIAR, K.P.; ARAÚJO, M.F.; AGUIAR, N.O.; GURIDI, F.; CANELLAS, L.P. Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. Journal of Analytical and Applied Pyrolysis, DOI:p.2013.05.015, 2013. BARDY, M., FRITSCH, E., DERENNE, S., ALLARD, T., DO NASCIMENTO, N.R., BUENO, G.T. Micromorphology and spectroscopic characteristics of organic matter in waterlogged podzols of the upper Amazon basin. Geoderma v.145, p.222- 230. 2008. BATES, L.S.; WALDREN, R.P.; TEARE, I.D. Rapid determination of free proline for water stress-water studies. Plant soil, v.39, p.205-207, 1973. BEAUCHAMP, C.; FRIDOVICH, I. Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, v.44, p.276–287, 1971. BECANA, M., MORAN, J.F., ITURBE-ORMAETXE, I. Iron-dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant and Soil, v. 201, p.137-147, 1998. BERBARA, R.L.L., GARCIA, A.C. Humic Substances and Plant Defense Metabolism. Em: Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment. Springerlink v1, pp. 608, 2014. BERNER, J.M., VAN, DER., WESTHUIZEN, A.J. Inhibition of Xanthine Oxidase Activity Results in the Inhibition of Russian Wheat Aphid-Induced Defense Enzymes. Journal of Chemical Ecology v.36, p.1375-1380, 2010. BHATTACHARJEE, S. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, v.89, p.1113-1121, 2005. BHATTACHARYA, A.K., MANDAL, S.N., DAS, S.K. Adsorption of Zn (II) from aqueous solution by using different adsorbents. Chemical Engineering Journal v.123, p.43-51, 2006. BIANCHIN, J.N., MARTENDAL, E., MIOR, R., ALVES, V.N., ARAÚJO, C.S.T., COELHO, N.M.M., CARASEK, E. Development of a flow system for the determination of cadmium in fuel alcohol using vermicompost as biosorbent and flame atomic absorption spectrometry. Talanta v.78, p.333-336, 2009. BIENERT, G.P., MOLLER, A.L., KRISTIANSEN, K.A., SCHULZ, A., MOLLER, I.M., SCHJOERRING, J.K., JAHN, T.P. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. Journal of Biological Chemestry, v.282, p.1183-1192, 2007. BLOMSTER, T.; SALOJÄRVI, J.; SIPARI, N.; BROSCHÉ, M.; AHLFORS, R.; KEINÄNEN, M.; OVERMYER, K.; KANGASJÄRVI, J. Apoplastic Reactive Oxygen Species Transiently Decrease Auxin Signaling and Cause Stress-Induced Morphogenic Response in Arabidopsis. Plant Physiology, v.157, p.1866-1883, 2011. BOVERIS, A. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria.Methods of Enzymology, v.105, p.429–435, 1984. 103 BRADFORD, M.M. A rapid a sensitive method for the quantification of microgram quantities of protein utilizing of principle of protein-dye binding. Analytical Biochemestry, v. 72, p.248-254, 1976. CALDERIN, A., GURIDI, F., GARCIA, E., ROSADO, E., VALDES, R, PIMENTEL, J., NILS, A. Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de Polímeros v.8, p.204-214, 2007. CAMPITELLI, P.; CEPPI, S. Effects of composting technologies on the chemical and physicochemical properties of humic acids.Geoderma, v.144, p.325–333, 2008. CANELLAS, L.P., DOBBSS, L.B., OLIVEIRA, A.L., CHAGAS, J.G., AGUIAR, N.O., RUMJANEKC, V.M., NOVOTNY, E.H., OLIVARES, F.L. SPACCINI, R., PICCOLO. A. Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science, 63, 315-324, 2012. CANELLAS, L.P., PICCOLO, A., DOBBSS, L.B., SPACCINI, R., OLIVARES, F.L., ZANDONADI, D.B., FAÇANHA, A.R. Chemical composition and bioactivity properties of size-fractions separated from a vermicompost humic acid. Chemosphere, v.78, p.457-466, 2010. CANELLAS, L.P.; DANTAS, D.J.; AGUIAR, N.O., PERES, L.E.P.; ZSOGON, A.; OLIVARES, F.L.; DOBBSS, L.B.; FAÇANHA, A.R.; NEBBIOSO, A.; PICCOLO A. Probing the hormonal activity of fractionated molecular humic components in tomato auxin mutants. Annals of Applied Biology, v.159, p.202–211, 2011. CANELLAS, L.P.; DOBBSS, L.B.; OLIVEIRA, A.L.; CHAGAS, J.G.; AGUIAR, N.O.; RUMJANEK, V.M.; NOVOTNY, E.H.; OLIVARES, F.L.; SPACCINI, R.; PICCOLO, A. Chemical properties of humic matter as related to induction of plant lateral roots. European Journal of Soil Science v.63, p.315-324, 2012. CANELLAS, L.P.; SPACCINI, R.; PICCOLO, A.; DOBBSS, L.B.; FAÇANHA, A.L.O.; SANTOS, G.A.; OLIVARES, F.L.; FAÇANHA, A.R. Relationships Between Chemical Characteristics and Root Growth Promotion of Humic Acids Isolated From Brazilian Oxisols. Soil Science, v.174, p.611-620, 2009. CÁRDENAS, A.; BAISRE, J.; CALZADA, NOÉ. El complejo de, adsorción de los suelos Ferríticos de Cuba. Ciencias de la Agricultura, v.3, p.18, 1978. CHAI, X.; TAKAYUKI, S.; CAO, X.; GUO, Q.; ZHAO, Y. Spectroscopic studies of the progress of humification processes in humic substances extracted from refuse in a landfill. Chemosphere, v.69, p.1446–1453, 2007. CHANCE, B.; MAEHLEY, A. Assay of catalases and peroxidases.Methods Enzymol, v.2, p.764-775, 1955. CHEN, C., WANG, X., JIANG, H., WENPING, H.U. Direct observation of macromolecular structures of humic acid by AFM and SEM. Colloids and Surfaces A: Physicochemical and Engineering Aspects v.302, p.121-125, 2008. CHEN, S.; LI, J.; WANG, T.; WANG, S.; POLLE, A.; HUTTERMANN, A. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar. Journal of Plant Growth Regulation, v.21, p.224-233, 2002. CHILSON, O.P.; KELLY-CHILSON, A.E.; SCHNEIDER, J.D. Pyrroline-5- Carboxylate Reductase in Soybean Nodules.Plant Physiology, v.99, p.119-123, 1992. 104 CHRISTIAN, D., WONG, E., CRAWFORD, R.L., CHENG, I.F., HESS, T.F. Heavy metals removal from mine runoff using compost bioreactors. Environmental Technology v.14, p.1533-1546, 2010. CORDEIRO, F.C.; SANTA-CATARINA, C.; SILVEIRA, V.; DE SOUZA, S.R. Humic acid effect on catalase activity and the generation of reactive oxygen pecies in corn (Zea Mays L). Bioscience Biotechnology and Biochemistry, v.75, p.70-74, 2011. CORPAS, F.J., PALMA, J.M., SANDALIO, L.M., VALDERRAMA, R., BARROSO, J.B., DEL RÍO, L.A. Peroxisomal xanthine oxidoreductase: Characterization of the enzyme from pea (Pisum sativumL.) leaves. Journal of Plant Physiology v.165, p.1319-1330, 2008. DAHIYA, S., TRIPATHI, R.M., HEDGE, A.G. Biosorption of lead and copper from aqueous solutions by pre-treated crab and area shell biomass. Bioresource Technology v.99, p.179-187, 2008. DE TULLIO, M.C.; JIANG, KENI.; FELDMAN, L.J. Redox regulation of root apical meristem organization: Connecting root development to its environment. Plant Physiology and Biochemistry, v.48, p.328-336, 2010. DEL LONGO, O.T.,CLAUDIO, A.G., PASTORI, G.M., TRIPPI, V.S. Antioxidant Defences under Hyperoxygenic and Hyperosmotic Conditions in Leaves of Two Lines of Maize with Differential Sensitivity to Drought. Plant Cell Physiology, v.34, p.1023-1028, 1993. DEMIDCHIK, V.; SHABALA, S.N.; DAVIES, J.M. Spatial variation in H2O2 response of Arabidopsis thaliana root epidermal Ca2+ flux and plasma membrane Ca2+ channels. Plant Journal, v.49, p.377-386, 2007. DEMIDCHIK, V.; SHANG, Z.; SHIN, R.; THOMPSON, E.; RUBIO, L.; LAOHAVISIT, A.; MORTIMER, J.C.; CHIVASA, S.; SLABAS, A.R.; GLOVER, B.J.; SCHACHTMAN, D.P.; SHABALA, S.N.; DAVIES, J.M. Plant extracellular ATP signalling by plasma membrane NADPH oxidase and Ca2+ channels. Plant Journal, v.58, p.903-913, 2009. DHINDSA, R.S., MATOWE, W. Drought tolerance in two mosses: correlation with enzymatic defense against lipid peroxidation. Journal of Experimental Botany, 32, 79- 91, 1981. DOAN, T.T., NGO, P.T., RUMPEL, C., NGUYEN, B.V., JOUQUET, P. Interactions between compost, vermicompost and earthworms influence plant growth and yield: A one-year greenhouse experiment. Scientia Horticulturae v.160, p.148-154, 2013. DOBBSS, L.; CANELLAS, L.P.; OLIVARES, F.L.; AGUIAR, N.O.; PERES, L.E.P.; SPACCINI, R.; PICCOLO, A. Bioactivity of chemically transformed humic matter from vermicompost on plant root growth. Journal of Agricultural and Food Chemistry, v.127, p.1-10, 2010. DOBBSS, L.B., RUMJANECK, V.M., BALDOTTO, A.M., VELLOSO, A.C.X., CANELLAS, L.P. Caracterização química e espectroscópica de ácidos húmicos e fúlvicos isolados da camada superficial de latossolos brasileiros. Revista Brasileira de Ciência do Solo v.33, p.51-63, 2009. DOMÍNGUEZ, J.A.M., GÓMEZ-BRANDÓN, M. Vermicomposting: Earthworms Enhance the Work of Microbes, In: INSAM, H., FRANKE-WILTTLE, I., 105 GOBERNA, M., (eds.) Microbes at Work, 93-114, Springer-Verlag Berlin Heidelberg. 2010. DROUSSI, Z.; D’ORAZIO, V.; HAFIDI, M.; OUATMANE, A. Elemental and spectroscopic characterization of humic-acid-like compounds during composting of olive mill by-products.Journal of Hazardous Materials, v.163, p.1289–1297, 2009. DUNAND, C.; CRÈVECOEUR, M.; PENEL, C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: possible interaction with peroxidases. New Phytologist, v.174, p.332-341. 2006. ELENA, A.; DIANE, L.; EVA, B.; FUENTES, M.; BAIGORRI, R.; ZAMARREÑO, A.M.; GARCÍA-MINA, J.M. The root application of a purified leonardite humic acid modifies the transcriptional regulation of the main physiological root responses to Fe deficiency in Fe-sufficient cucumber plants. Plant Physiology and Biochemistry, v.47, p.215-223, 2009. FAUR-BRASQUET, C., KADIRVELU, K., LE, CLOIREC. P. Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: adsorption competition with organic matter. Carbon v.40, p.2387-2392, 2002. FERRARI, E.; FRANCIOSO, ORNELLA.; NARDI, SERENELLA.; SALADINI, MONICA.; DAL FERRO, NICOLA.; MORARI, FRANCESCO. DRIFT and HR MAS NMR characterization of humic substances from a soil treated with different organic and mineral fertilizers. Journal of Molecular Structure, v.998, p.216–224, 2011. FERRER, J.L., AUSTIN, M.B., STEWART, C.JR., NOEL, J.P. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiology and Biochemistry v.46, p.356-370, 2008. FILELLA, M., TOWN, R.M. Heterogeneity and lability of Pb(II) complexation by humic substances: practical interpretation tools. Fresenius Journal Analytical Chemistry v.370, p.413-418. 2001. FOREMAN, J., DEMIDCHIK, V., BOTHWELL, J.H. F., MYLONA, P., MIEDEMA, H., TORRESK, M.A., LINSTEAD, P., COSTA, S., BROWNLEE, C., JONATHAN, D., JONESK, G., DAVIES, J.M., DOLAN, L. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature, v.422 p.442-445, 2003. FOYER, C.H.; NOCTOR, G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxidanst and Redox Signalling, v.11, p.861-905, 2009. GAO, J., LIU, J., LI, B., LI, Z. Isolation and purification of functional total RNA from blue-grained wheat endosperm tissues containing high levels of starches and flavonoids. Plant Molecular Biology Reporter, v.19, p.185-1185, 2001. GARCÍA, A.C., IZQUIERDO, F.G., GONZÁLEZ, O.L.H., ARMAS, M.M.D., LÓPEZ, R.H., REBATO, S.M., BALMORI, D.M., BERBARA, R.L.L. Biotechnology of humified materials obtained from vermicomposts for sustainable agroecological purposes. African Journal of Biotechnology v.7, p.625-634. 2013. GARCÍA, A.C.; IZQUIERDO, F.G.; NIEBLAS, E.G.; ROSADO, E.; VALDÉS, R.; PIMENTEL, J.J.; NILS, A. Material de origen natural que retiene cationes de metales pesados. Revista Iberoamericana de polímeros, v.3, p.204-214, 2007. 106 GARG, V.K., GUPTA, R. Biotechnology for Agro-Industrial Residues Utilization, In: Singh-Nee Nigam, Poonam; Pandey, Ashok (Eds.)Biotechnology for Agro-Industrial Residues Utilisation, 431-456, Springer Science+Business Media B.V. 2009. GARCÍA, A.C., BERBARA, R.L.L., FARIAS, L.P., IZQUIERDO, F.G., HERNÁNDEZ, O.L., CAMPOS, R.H., CASTRO, R.N. Humic acids of vermicompost as an ecological pathway to increase resistance of rice seedlings to water stress. African Journal of Biotechnology v.11, p.3125-3134, 2012. GAY, C., GEBICKI, J.M. A critical evolution of the effect of sorbitol on the ferricxylenol orange hydroperoxide assay.Analytical Biochemistry, v.284, p.217-220, 2000. GERKE, J. Aluminum complexation by humic substances and aluminum species in the soil solution. Geoderma v.63, p.165-175, 1994. GHABBOUR, E.A., DAVIES, G. The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 OW, UK Registered Charity No. 207890. 2001. GIANNOPOLITIS, C.N.; RIES, S.K. Superoxide Dismutases.Occurrence in higher plants.Plant Physiology, v.59, p.309-314, 1977. GILES, C.H., D’ SILVA, A.P.D. Trivedi AS.Surface area determination. London: Butterworth v.135, p. 47, 1970. GILL, S.S., TUTEJA. N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, v.48, p.909- 930, 2010. GONDAR, D., LOPEZ, R., FIOL, S., ANTELO, J.M., ARCE, F. Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma v.126, p.367-374, 2005. GUI-LIAN, Z.; LI-YUN, C.; SHUN-TANG, Z.; HUA, Z.; GUO-HUA, L. Effects of High Temperature Stress on Microscopic and Ultrastructural Characteristics of Mesophyll Cells in Flag Leaves of Rice. Rice Science, v.16, p.65-77, 2009. GUO-WEI, LI., YAN-HUI, PENG., XIN, YU., MIN-HUA, ZHANG., WEI-MING, CAI., WEI-NING, SUN., WEI-AI, SU. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology v.165, p.1879-1888, 2008. GUSTAFSSON, J.P. Arsenate adsorption to soils: Modelling the competition from humic substances. Geoderma v.136, p.320-33, 2006. HACHEZ, C., ZELAZNY, E., CHAUMONT, F. Modulating the expression of aquaporin genes in planta: a key to understand their physiological functions? Biochimica et Biophysica Acta (BBA)-Biomembrane, v.1758, p.1142-1156, 2006. HAGHIGHI, M.; KAFI, M.; FANG, P. Photosynthetic Activity and N Metabolism of Lettuce as Affected by Humic Acid. International Journal of Vegetable Science, v.18, p.182–189, 2012. HALL, K.R., EAGLETON, L.C., ACRIVOS, A., VERMEULEN, T. Pore and solid diffusion kinetics in fixed bed adsorption under constant-pattern conditions. Industrial & Engineering Chemistry Fundamentals v.5, p.212-223. 1996. 107 HENZLER, T., STEUDLE, E. Transport and metabolic degradation of hydrogen peroxide: model calculations and measurements with the pressure probe suggest transport of H2O2 across water channels. Journal of Experimental Botany, v.51, p.2053-2066, 2000. HERNÁNDEZ, R., GARCÍA, A., PORTUONDO, L., MUÑIZ, S., BERBARA, R., IZQUIERDO, F. Protección antioxidativa de los ácidos húmicos extraídos de vermicompost en arroz (Oryza sativa L.) var. IACuba30. Revista de Protección Vegetal, v.27, p.102-110, 2012. HIRAYAMA, T.; SHINOZAKI, K. Perception and transduction of abscisic acid signals: keys to the function of the versatile plant hormone ABA. Trends in Plant Science, v.12, p.343-351, 2007. HLADKÝ, J.; POSPÍŠILOVÁ, L.; LIPTAJ, T. Spectroscopic Characterization of Natural Humic Substances.Journal of Applied Spectroscopy, v.80, p.12-18, 2013. HOAGLAND, D. R.; ARNON, D. I. The water- culture method for growi ng plants without soil. California Agricultural of Experimental Station Bull, v.347, p.1- 32, 1950. HOHMANN, I., BILL, R., KAYINGO, I., PRIOR, B. Microbial MIP channels. Trends in Microbiology, v.8, p.33-38, 2000. http://www.worstpolluted.org/2012-report.html. Acessado em Setembro de 2012. IGLESIAS, A., LOPEZ, R., FIOL, S., ANTELO, J.M., ARCE, F. Analysis of copper and calcium–fulvic acid complexation and competition effects. Water Research v.37, p.3749-3755, 2003. IHSS, 2013.International Humic Substances Society. Disponível em: http://www.humicsubstances.org/. Acesso em: 15 04 2012. IQBAL, M., SAEED, A., KALIM, I. Characterization of Adsorptive Capacity and Investigation of Mechanism of Cu2+, Ni2+ and Zn2+ Adsorption on Mango Peel Waste from Constituted Metal Solution and Genuine Electroplating Effluent. Separation Science and Technology v.44, p.3770-3791, 2009. JAIN, M., NIJHAWAN, A., TYAGI, A.K., KHURANA, J. P. Validation of housekeeping genes as internal control for studying gene expression in rice by quantitative real-time PCR. Biochemical and Biophysical Research Communications, v.345, p.646–651, 2006. JALEEL, C.A.; MANIVANNAN, P.; WAHID, A.; FAROOQ, M.; AL-JUBURI, H.; SOMASUNDARAM, R.; PANNEERSELVAM, R.; Drought Stress in Plants: A Review on Morphological Characteristics and Pigments Composition. International Journal of Agriculture and Biology, v.11p.100-105, 2009. JANNIN, L., ARKOUN, M., OURRY, A., LAÎNÉ, P., GOUX, D., GARNICA, M., FUENTES, M., SAN FRANCISCO, S., BAIGORRI, R., CRUZ, F., HOUDUSSE, F., GARCIA-MINA, J.M., YVIN, J.C., ETIENNE, P. Microarray analysis of humic acid effects on Brassica napus growth: Involvement of N, C and S metabolisms. Plant Soil,v.359, p.297-319, 2012. JERZYKIEWICZ, M. Formation of new radicals in humic acids upon interaction Pb(II) ions. Geoderma v.122, p.305-309, 2004. 108 JORDÃO, C.P., FERNANDES, R.B.A., RIBEIRO, K.L., NASCIMENTO, B.S., BARROS, P.M. Zn (II) adsorption from synthetic solution and kaolin wastewater onto vermicomposto. Journal of Hazardous Materials v.162, p.804-811, 2009. JORDÃO, C.P., FIALHO, L.L., NEVES, J.C.L., CECON, P.R., MENDONÇA, E.S., FONTES, R.L.F. Reduction of heavy metal contents in liquid effluents by vermicomposts and the use of the metal-enriched vermicomposts in lettuce cultivation. Bioresource Technology v.98, p.2800-2813, 2007. JORDÃO, C.P., PEREIRA, W.L., CARARI, D.M., FERNANDES, R.B.A, DE ALMEIDA, R.M., FONTES, M.P.F. Adsorption from Brazilian soils of Cu(II) and Cd(II) using cattle manure vermicomposto. International Journal of Environmental Studies v.68, p.719-736, 2011. JUBANY-MARÍ, T.; MUNNÉ-BOSCH, S.; ALEGRE, L. Redox regulation of water stress responses infield-grown plants.Role of hydrogen peroxide and ascorbate. Plant Physiology and Biochemistry, v.48, p.351-358, 2010. JÚNIOR, F.E.M. Production of reactive oxygen intermediates in Rice, in the presence of aluminum. [Produção de intermediários reativos de oxigênio em arroz na presencia de alumínio]. Viçosa, MG, Universidade Federal de Viçosa.Magister Science Theses, 2007. KADIRVELU, K., NAMASIVAYAM, C. Agricultural by-products as metal adsorbents: sorption of lead(II) from aqueous solutions onto coir pith carbon. Journal Environmental Technology v.21, p.1091-1097, 2000. KALAVATHY, M.H., KARTHIKEYAN, T., RAJGOPAL, S., MIRANDA, L.R. Kinetic and isotherm studies of Cu (II) adsorption onto H3PO4-activated rubber wood sawdust. Journal of Colloid and Interface Science v.292, p.354-362, 2005. KALDENHOFF, R., FISCHER, M. Functional aquaporin diversity in plants, Biochim.Biophys. Acta (BBA)-Biomembrane, v.1758, p.1134-1141, 2006. KAR, M.; MISHRA, D. Catalase, Peroxidase, and Polyphenoloxidase Activities during Rice Leaf Senescence. Plant Physiology, v.57, p.315-319, 1976. KEELER, C.; KELLY, E.F.; MACIEL, G.E. Chemical–structural information from solid-state 13C NMR studies of a suite of humic materials from a lower montane forest soil, Colorado, USA.Geoderma, v.130, p.124-140, 2006. KELEN, M. Separation of Abscisic Acid, Indole-3-Acetic Acid, Gibberellic Acid in 99-R (Vitis berlandieri x Vitis rupestris) and Rose Oil (Rosa damascena Mill.) by Reversed Phase Liquid Chromatography. Turkish Journal Chemistry, v.28, p.603-610, 2004. KESBA, H.H.; EL-BELTAGI, H.S. Biochemical changes in grape rootstocks resulted from humic acid treatments in relation to nematode infection. Asian Pacific Journal of Tropical Biomedicine, p.287-293, 2012. KHAN, A.A., SINGH, R.P. Adsorption thermodynamics of carbofuran on Sn (IV) arseno silicate in H+, Na+ and Ca2+ forms. Colloids and Surface v.24, p.33-42, 1987. KOTCHONI, S.O.; KUHNS, C.; DITZER, A.; KIRCH, H.H.; BARTELS, D. Overexpression of different aldehyde dehydrogenase genes in Arabidopsis thaliana confers tolerance to abiotic stress and protects plants against lipid peroxidation and oxidative stress. Plant Cell and Environment, v.29, p.1033-1048, 2006. 109 KRAMER, E.M. Auxin-regulated cell polarity: an inside job?.Trends in Plant Science, v.14, p.242-247, 2009. KUO, M.C., KAO, C.H. Aluminum effects on lipid peroxidation and antioxidative enzymes activities in rice leaves. Biologia Plantarum, v.46, p.149-152, 2003. KWAK, J.M., MORI, I.C., PEI, Z.M., LEONHARDT, N., TORRES, M.A., DANGL, J.L., BLOOM, R.E., BODDE, S., JONES, J.D., SCHROEDER, J.I. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO Journal v.22, p.2623-2633, 2003. KOOPAL, L.K., VAN RIEMSDIJK, H.W., KINNIBURGH, D.G. Humic matter and contaminants. General aspects and modeling metal ion binding. Pure and Applied Chemistry v.73, p.2005–2016, 2001. KULIKOVA, N.A., ABROSKIN, D.P., BEER, A.S., BADUN, G.A., CHERNYSHEVA, M.G., KOROBKOV, V.I. , PERMINOVA, I.V. The Endodermis Is the Major Control Point for Radial Transport of Humic Substances into the Vascular System of Plants. Em: Functions of Natural Organic Matter in Changing Environment p. 873-876. 2013. LARIBIS, A.M., COJEAN, R. Assessing shrink/swell properties of two argillaceous soils from the Paris Basin: a comparison of cation exchange determination methods. Bulletin of Engineering Geology and the Environment v.67, p.415-424, 2008. LAZCANO, C., ARNOLD, J., TATO, A., ZALLER, J. G., DOMÍNGUES, J. Compost and vermicompost as nursery pot components: effects on tomato plant growth and morphology. Spanish Journal of Agricultural Research v.7, p.994-951, 2009. LAROUS, S., MENIAI, A.H., LEHOCINE, M.B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust.Desalination v.185, p.483-490, 2005. LEI, Y.; YIN, C.; LI, C. Differences in some morphological, physiological, and biochemical responses to drought stress in two contrasting populations of Populus prezwalskii. Physiologia Plantaraum, v.127, p.187-191, 2006. LI, C.Y.; CHOW, T.J.; WU, T.S.The Epimerization of Sesamin and Asarinin.Journal of Natural Products, v.68, p. 1622-1624, 2005. LI, GUO-WEI., PENG, YAN-HUI., YU, XIN., ZHANG, MIN-HUA., CAI, WEIMING., SUN, WEI-NING., SU, WEI-AI. Transport functions and expression analysis of vacuolar membrane aquaporins in response to various stresses in rice. Journal of Plant Physiology, v.165, p.1879-1888, 2008. LI, H. Principles and Techniques of plants physiological biochemical experimental.Higher education Press. Beijing. p.164-169, 2000. LI, XIAOWEI.; MEIYAN, XING.; JIAN, YANG.; ZHIDONG, HUANG Compositional and functional features of humic acid-like fractions from vermicomposting of sewage sludge and cow dung. Journal of Hazardous Materials, v.185, p.740-748, 2011. LIU, L.H., LUDEWIG, U., GASSERT, B., FROMMER, W.B., WIRÉN, N.V. Urea transport by nitrogen-regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiology 133, 1220-1128, 2003. 110 LENHART, J.J., STEPHEN, E., PATRICK, M., HONEYMAN, B.D. Uranium(VI) complexation with citric, humic and fulvic acids. Radiochimica Acta v.88, p.345-353, 2000. LIU, Q., UMEDA, M., UCHIYAMA, H. Isolation and expression analysis of two rice genes encoding the major intrinsic protein. Plant Molecular and Biology, v.26, p. 2003–2007, 1994. LOPEZ, F., BOUSSER, A., SISSOËFF, I., GASPAR, M., LACHAISE, B. Diurnal regulation of water transport and aquaporin gene expression in maize roots: contribution of PIP2 proteins. Plant Cell Physiology v.44, p.1384–95, 2003. LÓPEZ, Y.P.; SOBRINHO, N.M.A.; ARIAS, M.I.B.; CARMENATE, R.V.; MAGALHÃES, M.O.L. Contenido de elementos metálicos en suelos característicos del municipio San José de las Lajas. Revista Ciencias Técnicas Agropecuarias, v.21, p.43-46, 2012. LOQUE, D., LUDEWIG, U., YUAN, L., VON WIREN, N. Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 faciliate NH3 transport into the vacuole. Plant Physiology v.137, p.671-680, 2005. LU, X.Q.; HANNA, J.V.; JOHNSON, W.D. Source indicators of humic substances: an elemental composition, solid state 13C CP/MAS NMR and Py-GC/MS study. Applied Geochemistry, v.15, p.1019-1033, 2000. LU, X.Q.; HANNA, J.V.; JOHNSON,W.D. Evidence of chemical pathways of humification: a study of aquatic humic substances heated at various temperatures. Chemical Geology, v.177, p.249–264, 2001. MA, S., QUIST, T.M., ULANOV, A., JOLY, R., BOHNERT, H.J. Loss of TIP1;1 aquaporin in Arabidopsis leads to cell and plant death. Plant Journal 40, 845-859, 2004. MAHAJAN, S., TUTEJA, N. Cold, salinity and drought stresses: an overview. Archives of Biochemistry and Biophysics 444, 139-158, 2005. MATYSIK, J.A.; BHALU, B.; MOHANTY, P. Molecular mechanism of quenching of reactive oxygen species by proline under stress in plant.Current Science, v.5, p.525- 532, 2002. MAUREL, C., JAVOT, H., LAUVERGEAT, V., GERBEAU, P., TOURNAIRE, C., SANTONI, V., HEYES, J. Molecular physiology of aquaporins in plants. International Review of Cytology, v.215, p.105–148, 2002. MAUREL, C., VERDOUCQ, L., LUU, D.T., SANTONI, V. Plant aquaporins: membrane channels with multiple integrated functions. Annual Review of Plant Biology, v.59, p.595–624, 2008. MILLER, G.; SUZUKI, N.; CIFTCI-YILMAZ, S.; MITTLER, R. Reactive oxygen species homeostasis and signaling during drought and salinity stresses. Plant Cell and Environmental, v.33, p.453-467, 2010. MISRA, H.P., FRIDOVICH, I. The Generation of Superoxide Radical during the Autoxidation of Ferredoxins.The Journal of Biological Chemistry, v. 25, p.6886- 6890, 1971. MITTLER, R. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science v.7, p.405-10, 2002. 111 MITTLER, R., VANDERAUWERA, S., GOLLERY, M., VAN, B.F. Reactive oxygen gene network of plants.Trends in Plant Science, v.9, p.490-498, 2004. MITTLER, RON.; VANDERAUWERA, S.; SUZUKI, N.; MILLER, G.; TOGNETTI, V.B.; VANDEPOELE, K.; GOLLERY, M.; SHULAEV, V.; BREUSEGEM, F.V. ROS signaling: the new wave? Trends in Plant Science, v.16, p.300-309, 2011. MOHAMMADI, M., KARR, A.L. Superoxide anion generation in effective and ineffective soybean root nodules. Journal of Plant Physiology, v.158, p.1023–1029, 2001. MONTILLET, J.L.; CHAMNONGPOL, S.; RUSTÉRUCCI, C.; DAT, J.; VAN DE COTTE, B.; AGNEL, J.P.; BATTESTI, C.; INZÉ, D.; VAN BREUSEGEM, F.; TRIANTAPHYLIDÈS, C. Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiology, v.138, p.1516-1526, 2005. MORA, V.; BACAICOA, E.; ZAMARREÑO, A.M.; AGUIRRE, E.; GARNICA, M.; FUENTES, M.; GARCÍA-MINA, J.M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-toshoot distribution of cytokinins, polyamines and mineral nutrients. Journal of Plant Physiology, v.167, p.633-642, 2010. MORI, I.C., SCHROEDER, J.I. Reactive Oxygen Species Activation of Plant Ca2+ Channels. A Signaling Mechanism in Polar Growth, Hormone Transduction, Stress
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Agronomia - Ciência do Solo
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Agronomia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/1/2013%20-%20Andres%20Calderin%20Garcia.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/2/2013%20-%20Andres%20Calderin%20Garcia.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/3/2013%20-%20Andres%20Calderin%20Garcia.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9065/4/license.txt
bitstream.checksum.fl_str_mv 6f4106359e0c6eba7f0e54763e9229ef
8a9e06908c8a7c9b600975c5405a6bc5
1da03fc33f3ee75b9424b6a9702e2c97
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107885261160448