Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana

Detalhes bibliográficos
Autor(a) principal: Almeida, Patrícia Saraiva Vilas Boas de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/10245
Resumo: Câncer e infecções bacterianas são doenças que causam um grande número de mortes e, apesar dos tratamentos existentes, ainda se fazem necessários novos fármacos que causem menos danos aos pacientes e que sejam mais ativos às células resistentes. Derivados de cumarina e diversas classes de complexos de Ru(II) vêm sendo estudados quanto ao seu potencial como agentes antimicrobianos e antitumorais. Sendo assim, quatro novos ligantes híbridos de cumarina-N-acilidrazonas do tipo (E)-(N’-4-R-benzilideno-7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida (HL2: R=H; HL3: R=Cl, HL4: R=Br, HL5: R= OCH3), foram obtidos através da condensação de uma hidrazida (7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida, HL1) e diferentes aldeídos p-substituídos. Reações entre HL2-5 e cis-[RuCl2(DMSO)4] resultaram em complexos trans-cis-[RuCl2(DMSO)2(HL2-5)], C2-5 (classe Ru(II)-Cl-DMSO). Concomitantemente, a hidrólise do ligante ocorreu, resultando na formação do complexo trans-cis-[RuCl2(DMSO)2(HL1)] C1, contendo a hidrazida coordenada. As estruturas cristalinas dos ligantes HL2 e HL3 e dos complexos C2-5 foram determinadas por DRX, que revelaram a isomerização de E para Z das cumarinas-N-acilidrazonas resultante da coordenação. Os complexos C2-5 exibiram o átomo de Ru(II) em uma geometria octaédrica distorcida com o ligante coordenado na forma ceto através da carbonila da hidrazona e do nitrogênio imínico. Na tentativa de sintetizar uma segunda classe de complexos carregados e contendo bipiridina como ligante auxiliar ([Ru(bipy)2(HLn)]PF6 - classe Ru(II)-bipy), realizou-se a reação entre HL2 e cis-[Ru(bipy)2Cl2]. Porém, a possível hidrólise do ligante impossibilitou a obtenção do complexo desejado. Uma metodologia similar utilizando híbridos de cumarina-β-cetoéster HL6-8 originou os complexos da classe Ru(II)-bipy, [Ru(bipy)2(HL6-8)]PF6 C6-8. A análise de DRX de C7 mostrou o Ru(II) em um ambiente octaédrico distorcido com o ligante coordenado pela porção β-cetoéster desprotonada e duas bipiridinas na esfera de coordenação. A avaliação antiproliferativa dos compostos contra linhagens de células tumorais (4T1: carcinoma mamário murino e B16-F10: melanoma murino metastático) e não tumoral (BHK-21: rim de hamster) mostrou que, de uma maneira geral, os ligantes híbridos cumarina-N-acilidrazona e cumarina-hidrazida HL1-5 foram mais ativos que seus complexos C1-5, cujos valores de IC50 (metade da concentração inibitória máxima) foram encontrados na faixa de 10,6 a 50,4 µM para os ligantes e entre 17,7 e 97,8 µM para os complexos. Por outro lado, os ligantes cumarina-β-cetoéster HL6-8 foram inativos (IC50 > 100 µM), mas os complexos C6-8 apresentaram alta citotoxicidade, com valores de IC50 entre 2,0 e 12,8 µM. Para o teste antibacteriano, HL1 foi o único ligante ativo frente a uma cepa de bactéria gram-negativa, porém seu MIC não foi determinado nas concentrações estudadas. Todos os complexos demostraram atividade somente frente a cepas de bactérias gram positivas. Para os complexos Ru(II)-Cl-DMSO, somente C3 e C4 (R = Cl e Br) apresentaram MIC nas concentrações utilizadas (40,5 e 86 µM). Por outro lado, os complexos Ru(II)-bipy C6-8 apresentaram MIC entre 2,20-9,22 µM. A maior atividade apresentada pelos derivados Ru(II)-bipy em ambos os testes biológicos, comparada aos complexos Ru(II)-DMSO, foi atribuída à presença de carga no complexo e aos ligantes bipiridina. Estudos de interação com DNA dos complexos [Ru(bipy)2(HL6-8)]PF6 (C6-8) estão em andamento.
id UFRRJ-1_d2839a1cd300f67a0e461c8f7ffee394
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/10245
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Almeida, Patrícia Saraiva Vilas Boas deNeves, Amanda PortoCPF: 055.195.997-50Kummerle, Arthur EugenCPF: 053.978.487-78Lima, Áurea Echevarria Aznar NevesSilva, Gustavo Bezerra daVargas, Maria DominguesScarpellini, MarcielaCPF: 087.759.696-45http://lattes.cnpq.br/71432537393733482023-12-21T18:59:30Z2023-12-21T18:59:30Z2019-07-31ALMEIDA, Patrícia Saraiva Vilas Boas de. Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana. 2019. 234 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/10245Câncer e infecções bacterianas são doenças que causam um grande número de mortes e, apesar dos tratamentos existentes, ainda se fazem necessários novos fármacos que causem menos danos aos pacientes e que sejam mais ativos às células resistentes. Derivados de cumarina e diversas classes de complexos de Ru(II) vêm sendo estudados quanto ao seu potencial como agentes antimicrobianos e antitumorais. Sendo assim, quatro novos ligantes híbridos de cumarina-N-acilidrazonas do tipo (E)-(N’-4-R-benzilideno-7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida (HL2: R=H; HL3: R=Cl, HL4: R=Br, HL5: R= OCH3), foram obtidos através da condensação de uma hidrazida (7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida, HL1) e diferentes aldeídos p-substituídos. Reações entre HL2-5 e cis-[RuCl2(DMSO)4] resultaram em complexos trans-cis-[RuCl2(DMSO)2(HL2-5)], C2-5 (classe Ru(II)-Cl-DMSO). Concomitantemente, a hidrólise do ligante ocorreu, resultando na formação do complexo trans-cis-[RuCl2(DMSO)2(HL1)] C1, contendo a hidrazida coordenada. As estruturas cristalinas dos ligantes HL2 e HL3 e dos complexos C2-5 foram determinadas por DRX, que revelaram a isomerização de E para Z das cumarinas-N-acilidrazonas resultante da coordenação. Os complexos C2-5 exibiram o átomo de Ru(II) em uma geometria octaédrica distorcida com o ligante coordenado na forma ceto através da carbonila da hidrazona e do nitrogênio imínico. Na tentativa de sintetizar uma segunda classe de complexos carregados e contendo bipiridina como ligante auxiliar ([Ru(bipy)2(HLn)]PF6 - classe Ru(II)-bipy), realizou-se a reação entre HL2 e cis-[Ru(bipy)2Cl2]. Porém, a possível hidrólise do ligante impossibilitou a obtenção do complexo desejado. Uma metodologia similar utilizando híbridos de cumarina-β-cetoéster HL6-8 originou os complexos da classe Ru(II)-bipy, [Ru(bipy)2(HL6-8)]PF6 C6-8. A análise de DRX de C7 mostrou o Ru(II) em um ambiente octaédrico distorcido com o ligante coordenado pela porção β-cetoéster desprotonada e duas bipiridinas na esfera de coordenação. A avaliação antiproliferativa dos compostos contra linhagens de células tumorais (4T1: carcinoma mamário murino e B16-F10: melanoma murino metastático) e não tumoral (BHK-21: rim de hamster) mostrou que, de uma maneira geral, os ligantes híbridos cumarina-N-acilidrazona e cumarina-hidrazida HL1-5 foram mais ativos que seus complexos C1-5, cujos valores de IC50 (metade da concentração inibitória máxima) foram encontrados na faixa de 10,6 a 50,4 µM para os ligantes e entre 17,7 e 97,8 µM para os complexos. Por outro lado, os ligantes cumarina-β-cetoéster HL6-8 foram inativos (IC50 > 100 µM), mas os complexos C6-8 apresentaram alta citotoxicidade, com valores de IC50 entre 2,0 e 12,8 µM. Para o teste antibacteriano, HL1 foi o único ligante ativo frente a uma cepa de bactéria gram-negativa, porém seu MIC não foi determinado nas concentrações estudadas. Todos os complexos demostraram atividade somente frente a cepas de bactérias gram positivas. Para os complexos Ru(II)-Cl-DMSO, somente C3 e C4 (R = Cl e Br) apresentaram MIC nas concentrações utilizadas (40,5 e 86 µM). Por outro lado, os complexos Ru(II)-bipy C6-8 apresentaram MIC entre 2,20-9,22 µM. A maior atividade apresentada pelos derivados Ru(II)-bipy em ambos os testes biológicos, comparada aos complexos Ru(II)-DMSO, foi atribuída à presença de carga no complexo e aos ligantes bipiridina. Estudos de interação com DNA dos complexos [Ru(bipy)2(HL6-8)]PF6 (C6-8) estão em andamento.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroCancer and bacterial infections are diseases that cause a large number of deaths, and despite the existing treatments, drugs being less harmful to the patients and more active against resistant cells are still needed. Coumarin derivatives and several classes of Ru(II) complexes have been studied for their potential as antimicrobial and antitumor agents. For this reason, four novel coumarin-N-acylhydrazone hybrid ligands of the type (E)-7-(diethylamino)-N'-(4-R-benzylidene)-2-oxo-2H-chromene-3-carbohydrazide (HL2: R=H; HL3: R=Cl, HL4: R=Br, HL5: R= OCH3), were obtained from condensation reactions, using one hydrazide (7-(diethylamine)-2-oxo-2H-chromone-3-carbohydrazide, HL1) and different p-substituted aldehydes. Reactions between HL2-5 and cis-[RuCl2(DMSO)4] afforded the complexes trans-cis-[RuCl2(DMSO)2(HL2-5)], C2-5 (Ru(II)-Cl-DMSO class). Concomitantly, hydrolysis of the ligand occurred, resulting in the formation of the complex trans-cis-[RuCl2(DMSO)2(HL1)] C1, containing the hydrazide as ligand. Crystal structures of HL2, HL3 and the complexes C2-5 were determined by single crystal XRD, that revealed an E to Z isomerization of the coumarin-N-acylhydrazones upon coordination. Complexes C2-5 exhibited the Ru(II) atom in a distorted octahedral geometry, where the coumarin ligand is coordinated in the keto form through the hydrazone carbonyl and the iminic nitrogen. In an attempt to synthesize a second class of complexes, containing bipyridine as auxiliary ligand and charged, ([Ru(bipy)2(HLn)]PF6 -Ru(II)-bipy class), the reaction between HL2 and cis-[Ru(bipy)2Cl2] was carried out. However, possible hydrolysis of the ligand precluded the isolation of the desired complex. A similar methodology using cumarin-β-ketoester hybrids HL6-8 yielded the complexes of the Ru(II)-bipy class, [Ru(bipy)2(HL6-8)]PF6 C6-8. The XRD analysis of C7 shows the Ru(II) ion in a distorted octahedral environment with the ligand coordinated through the deprotonated β-ketoester portion and two bypiridines in the coordination sphere. Antiproliferative evaluation of the compounds against tumor cell lines (4T1: murine mammary carcinoma and B16-F10: murine melanoma metastatic) and a non-tumor cell line (BHK-21: hamster kidney) showed that overall, the coumarin-N-acylhydrazone and coumarin-hydrazyde hybrids HL1-5 were more active than the complexes C1-5, where the IC50 (half of the maximum inhibitory concentration) values for the ligands were found in the range of 10.6 to 50.4 µM and between 17.7, and 97.8 µM for the complexes. On the other hand, the coumarin-β-ketoester ligands HL6-8 were inactive (IC50 > 100 µM), yet the complexes C6-8 presented high cytotoxicity, with IC50 values ranging from 2.0 and 12.8 µM. For the antimicrobial assays, HL1 was the only ligand active against one gram-negative bacteria strain, however its MIC was not determined within the studied concentrations. Among the complexes, all demonstrated activity only against gram-positive bacteria strains. Within the Ru(II)-Cl-DMSO series, only C3 and C4 (R = Cl and Br) exhibited MIC at the concentrations used (40.5 and 86 μM). On the other hand, the complexes of the Ru(II)-bipy class C6-8 presented MIC between 2.20 and 9.22 μM. Comparing the classes of complexes, Ru(II)-bipy and Ru(II)-DMSO, the higher activities presented by the former in both biological studies was attributed to the presence of charge and of bipyridine ligands. The investigation of DNA interaction of the complexes [Ru(bipy)2(HLn)]PF6 (C6-8) are in progress.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de Químicacomplexos de rutêniohíbridos de cumarinaatividade antitumoralatividade antibacterianaruthenium complexescoumarinantitumor activityantibacterial activityQuímicaComplexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacterianaRu(II) complexes containing coumarin hybrid ligands: synthesis and evaluation of cytotoxic and antibacterial activitiesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis1 - WHO - World Health Organization. What is câncer? Disponível em: https://www.who.int/cancer/en/. Acessado em: Novembro de 2018. 2 - HASSANPOUR, S. H.; DEHGHANI, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, v. 4, n. 4, p. 127-129, 2017. 3 - International Agency for Research on Cancer (IARC). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million câncer deaths in 2018. Disponível em: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf. Acessado em: Novembro de 2018. 4 - DeMARIA, P. J.; BILUSIC, M. Cancer Vaccines. Hematology/Oncology Clinics of North America, v. 33, n. 2, p. 199-214, 2019. 5 - ALAM, A.; FAROOQ, U.; SINGH, R.; DUBEY, V. P.; KUMAR, S.; KUMARI1, R.; NAIK, K. K.; TRIPATHI1, B. D.; DHAR, K. L. Chemotherapy Treatment and Strategy Schemes: A Review. Open Access Journal of Toxicology, v. 2, n. 5, p. 1-5, 2018. 6 - HUANG, C. Y., JU, D. T., CHANG, C. F., REDDY, P. M., VELMURUGAN, B. K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, v. 7, n. 4, p.12-23, 2017. 7 - Ministério da Saúde Instituto Nacional de Câncer (INCA). Quimioterapia Orientações aos pacientes. 2ed, Rio de Janeiro, RJ, 2010. 8 - GRAF, N.; LIPPARD, S. J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Advanced Drug Delivery Reviews, v. 64, n. 11, p. 993-1004, 2012. 9 - KERRU, N., SINGH, P., KOORBANALLY, N., RAJ, R., KUMAR, V. Recent advances (2015–2016) in anticancer hybrids. European Journal of Medicinal Chemistry, v. 142, p. 179-212, 2017. 10 - LIANG, J. X., ZHONG, H. J., YANG, G., VELLAISAMY, K., MA, D. L., LEUNG, C. H. LIANG, Jia-Xin et al. Recent development of transition metal complexes with in vivo antitumor activity. Journal of Inorganic Biochemistry, v. 177, p. 276-286, 2017. 11 - Science Direct. https://www.sciencedirect.com/. Acessado em 20/03/2019. 12 - PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, p. 124-148, 2018. 13 - THAKUR, A.; SINGLA, R.; JAITAK, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. European Journal of Medicinal Chemistry, v. 101, p. 476-495, 2015. 14 - RIVEIRO, M. E., DE KIMPE, N., MOGLIONI, A., VAZQUEZ, R., MONCZOR, F., SHAYO, C., DAVIO, C. Coumarins: old compounds with novel promising therapeutic perspectives. Current Medicinal Chemistry, v. 17, n. 13, p. 1325-1338, 2010. 15 - AUDISIO, D., METHY-GONNOT, D., RADANYI, C., RENOIR, J. M., DENIS, S., SAUVAGE, F., ALAMI, M. Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. European Journal of Medicinal Chemistry, v. 83, p. 498-507, 2014. 16 - BURLISON, J. A., AVILA, C., VIELHAUER, G., LUBBERS, D. J., HOLZBEIERLEIN, J., BLAGG, B. S. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. The Journal of Organic Chemistry, v. 73, n. 6, p. 2130-2137, 2008. 17 - WU, J.; LIU, T.; RIOS, Z.; MEI, Q.; LIN, X.; CAO, S. Heat Shock Proteins and Cancer. Trends in Pharmocologycal Science, v. 38, n. 3, p. 226-256, 2017. 18 - GANESHAPILLAI, D., WOO, L. L., THOMAS, M. P., PUROHIT, A., POTTER, B. V. C-3-and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS omega, v. 3, n. 9, p. 10748-10772, 2018. 19 - PALMIERI, C., STEIN, R. C., LIU, X., HUDSON, E., NICHOLAS, H., SASANO, H., REED, S. IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients. Breast Cancer Research and Treatment, v. 165, n. 2, p. 343-353, 2017. 20 - EL-KARIM, S. S. A., SYAM, Y. M., EL KERDAWY, A. M., ABDELGHANY, T. M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorganic Chemistry, v. 86, p. 80-96, 2019. 21 - THOTA, S., RODRIGUES, D. A., PINHEIRO, P. D. S. M., LIMA, L. M., FRAGA, C. A., BARREIRO, E. J. N-Acylhydrazones as drugs. Bioorganic & Medicinal Chemistry Letters, v. 28, p. 2797-2806, 2018. 22 - ROLLAS, S.; KÜÇÜKGÜZEL, S. Biological activities of hydrazone derivatives. Molecules, v. 12, n. 8, p. 1910-1939, 2007. 23 - ELSHEMY, H. A. H.; ZAKI, M. A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorganic & Medicinal Chemistry, v. 25, n. 3, p. 1066-1075, 2017. 24 - NASR, T.; BONDOCK, S.; RASHED, H. M.; FAYAD, W.; YOUNS, M. SAKR, T. M. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. European Journal of Medicinal Chemistry v. 151, p. 723-739, 2018. 25 - NASR, T.; BONDOCK, S.; YOUNS, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. European Journal of Medicinal Chemistry v. 76, p. 539-548, 2014. 26 - MEIER-MENCHES, S. M., GERNER, C., BERGER, W., HARTINGER, C. G., KEPPLER, B. K. Structure–activity relationships for ruthenium and osmium anticancer agents-towards clinical development. Chemical Society Reviews, v. 47, n. 3, p. 909-928, 2018. 27 - COLLIER, W. A.; KRAUSS, F.; Zur experimentellen Therapie der Tumoren. Zeitschrift für Krebsforschung, v. 34, p. 526-530, 1931. 28 - ROSENBERG, B., VAN CAMP, L., KRIGAS, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, v. 205, n. 4972, p. 698-699, 1965. 29 - ALESSIO, E; MESSORI, L. The Deceptively Similar Ruthenium (III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years? In: Metallo-Drugs: Development and Action of Anticancer Agents, v. 18, p. 141, 2018. 30 - BRATSOS, I., JEDNER, S., GIANFERRARA, T., ALESSIO, E. Ruthenium anticancer compounds: challenges and expectations. CHIMIA - International Journal for Chemistry, v. 61, n. 11, p. 692-697, 2007. 31 - CLARKE, M. J.; ZHU, F.; FRASCA, D. R. Non-platinum chemotherapeutic metallopharmaceuticals. Chemical Reviews, v. 99, n. 9, p. 2511-2534, 1999. 32 - MONTI-BRAGADIN, C., RAMANI, L., SAMER, L., MESTRONI, G., ZASSINOVICH, G. Effects of cis-dichlorodiammineplatinum (II) and related transition metal complexes on Escherichia coli. Antimicrobial agents and chemotherapy, v. 7, n. 6, p. 825-827, 1975. 33 - GIRALDI, T., SAVA, G., BERTOLI, G., MESTRONI, G., ZASSINOVICH, G. Antitumor action of two rhodium and ruthenium complexes in comparison with cisdiamminedichloroplatinum (II). Cancer Research, v. 37, n. 8 Part 1, p. 2662-2666, 1977. 34 - SAVA, G., ZORZET, S., GIRALDI, T., MESTRONI, G., ZASSINOVICH, G. Antineoplastic activity and toxicity of an organometallic complex of ruthenium (II) in comparison with cis-PDD in mice bearing solid malignant neoplasms. European Journal of Cancer and Clinical Oncology, v. 20, n. 6, p. 841-847, 1984. 35 - ALESSIO, E., BALDUCCI, G., CALLIGARIS, M., COSTA, G., ATTIA, W. M., MESTRONI, G. Synthesis, molecular structure, and chemical behavior of hydrogen trans-bis (dimethyl sulfoxide) tetrachlororuthenate (III) and mer-trichlorotris (dimethyl sulfoxide) ruthenium (III): the first fully characterized chloride-dimethyl sulfoxide-ruthenium (III) complexes. Inorganic Chemistry, v. 30, n. 4, p. 609-618, 1991. 36 - SAVA, G., PACOR, S., ZORZET, S., ALESSIO, E., MESTRONI, G. Antitumour properties of dimethylsulphoxide ruthenium (II) complexes in the Lewis lung carcinoma system. Pharmacological Research, v. 21, n. 5, p. 617-628, 1989. 37 - BRABEC, V.; KASPARKOVA, J. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coordination Chemistry Reviews, v. 376, p. 75-94, 2018. 38 - KEPPLER, B. K.; RUPP, W. Antitumor activity of imidazolium-bisimidazoletetrachlororuthenate (III). Journal of Cancer Research and Clinical Oncology, v. 111, n. 2, p. 166-168, 1986. 39 - KEPPLER, B. K., HENN, M., JUHL, U. M., BERGER, M. R., NIEBL, R., WAGNER, F. E. New ruthenium complexes for the treatment of cancer. In: Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy. Springer, Berlin, Heidelberg, p. 41-69, 1989. 40 - TRONDL, R.; HEFFETER, P.; KOWOL, C. R.; JAKUPEC, M. A.; BERGER, W.; KEPPLER, B. K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chemical Science, v. 5, n. 8, p. 2925-2932, 2014. 41 - ALESSIO, E. Thirty years of the drug candidate NAMI‐A and the myths in the field of ruthenium anticancer compounds: a personal perspective. European Journal of Inorganic Chemistry, v. 2017, n. 12, p. 1549-1560, 2017. 42 - Gagliardi, R., Sava, G., Pacor, S., Mestroni, G., Alessio, E. Antimetastatic action and toxicity on healthy tissues of Na [trans-RuCl 4 (DMSO) Im] in the mouse. Clinical & Experimental Metastasis, v. 12, n. 2, p. 93-100, 1994. 43 - SAVA, G., CAPOZZI, I., CLERICI, K., GAGLIARDI, G., ALESSIO, E., MESTRONI, G. Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clinical & Experimental Metastasis, v. 16, n. 4, p. 371-379, 1998. 44 - COCCHIETTO, M; SAVA, G. Blood Concentration and Toxicity of the Antimetastasis Agent NAMI‐A Following Repeated Intravenous Treatment in Mice. Pharmacology & Toxicology, v. 87, n. 5, p. 193-197, 2000. 45 - PILLOZZI, S., GASPAROLI, L., STEFANINI, M., RISTORI, M., D'AMICO, M., ALESSIO, E., MESSORI, L. NAMI-A is highly cytotoxic toward leukaemia cell lines: evidence of inhibition of KCa 3.1 channels. Dalton Transactions, v. 43, n. 32, p. 12150-12155, 2014. 46 - LIN, K., ZHAO, Z., BO, H., HAO, X., WANG, J. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Frontiers in Pharmacology, v. 9, p. 1323-1333, 2018. 47 - HARTINGER, C. G., JAKUPEC, M. A., ZORBAS‐SEIFRIED, S., GROESSL, M., EGGER, A., BERGER, W., KEPPLER, B. K. KP1019, a new redox‐active anticancer agent-Preclinical development and results of a clinical phase I study in tumor patients. Chemistry & Biodiversity, v. 5, n. 10, p. 2140-2155, 2008. 48 - HEFFETER, P., RIABTSEVA, A., SENKIV, Y., KOWOL, C. R., KÖRNER, W., JUNGWITH, U., STOIKA, R. Nanoformulation improves activity of the (pre) clinical anticancer ruthenium complex KP1019. Journal of Biomedical Nanotechnology, v. 10, n. 5, p. 877-884, 2014. 49 - GOLLA, U., SWAGATIKA, S., CHAUHAN, S., TOMAR, R. S. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget, v. 8, n. 58, p. 98426-98454, 2017. 50 - THOMPSON, D. S., WEISS, G. J., JONES, S. F., BURRIS, H. A., RAMANATHAN, R. K., INFANTE, J. R., VON HOFF. NKP-1339: Maximum tolerated dose defined for first-inhuman GRP78 targeted agent. Journal of Clinical Oncology, n. 15, p.3033-3033, 2012. 51 - MALINA, J., NOVAKOVA, O., KEPPLER, B. K., ALESSIO, E., BRABEC, V. Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium (III) in cell-free media. Journal of Biological Inorganic Chemistry, v. 6, n. 4, p. 435-445, 2001. 52 - SAVA G. Ruthenium compounds in cancer therapy. In: Metal compounds in cancer therapy, p. 65-91, Chapman and Hall London , 1994. 53 - RADEMAKER-LAKHAI, J. M., VAN DEN BONGARD, D., PLUIM, D., BEIJNEN, J. H., SCHELLENS, J. H. A phase I and pharmacological study with imidazolium-trans-DMSOimidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clinical Cancer Research, v. 10, n. 11, p. 3717-3727, 2004. 54 - BERGAMO, A.; SAVA, G. Ruthenium complexes can target determinants of tumour malignancy. Dalton Transactions, n. 13, p. 1267-1272, 2007. 55 - BERGAMO, A., GAIDDON, C., SCHELLENS, J. H. M., BEIJNEN, J. H., SAVA, G. Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. Journal of Inorganic Biochemistry, v. 106, n. 1, p. 90-99, 2012. 56 - BRINDELL, M., STAWOSKA, I., SUPEL, J., SKOCZOWSKI, A., STOCHEL, G., VAN ELDIK, R. The reduction of (ImH)[trans-Ru III Cl 4 (dmso)(Im)] under physiological conditions: preferential reaction of the reduced complex with human serum albumin. Journal of Biological Inorganic Chemistry, v. 13, n. 6, p. 909-918, 2008. 57 - GROESSL, M., REISNER, E., HARTINGER, C. G., EICHINGER, R., SEMENOVA, O., TIMERBAEV, A. R., KEPPLER, B. K. Structure− activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L (S-dmso) ruthenate (III)](L= imidazole, indazole, 1, 2, 4-triazole, 4-amino-1, 2, 4-triazole, and 1-methyl-1, 2, 4-triazole): Aquation, redox properties, protein binding, and antiproliferative activity. Journal of Medicinal Chemistry, v. 50, n. 9, p. 2185-2193, 2007. 58 - SULYOK, M., HANN, S., HARTINGER, C. G., KEPPLER, B. K., STINGEDER, G., KOELLENSPERGER, G. Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium (III) compound with plasma proteins. Journal of Analytical Atomic Spectrometry, v. 20, n. 9, p. 856-863, 2005. 59 - KEPPLER, B. K. Metal Complexes in Cancer Chemotherapy. VCH, Weinheim, Germany, 1993. 60 - PAL, M.; NANDI, U.; MUKHERJEE, D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. European Journal of Medicinal Chemistry, v. 150, p. 419-445, 2018. 61 - BIJELIC, A., THEINER, S., KEPPLER, B. K., ROMPEL, A. X-ray structure analysis of indazolium trans-[tetrachlorobis (1-H-indazole) ruthenate (III)](KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. Journal of Medicinal Chemistry, v. 59, n. 12, p. 5894-5903, 2016. 62 - KAPITZA, S., PONGRATZ, M., JAKUPEC, M. A., HEFFETER, P., BERGER, W., LACKINGER, L., MARIAN, B. Heterocyclic complexes of ruthenium (III) induce apoptosis in colorectal carcinoma cells. Journal of Cancer Research and Clinical Oncology, v. 131, n. 2, p. 101-110, 2005. 63 - PIEPER, T., BORSKY, K., KEPPLER, B. K. Non-platinum antitumor compounds. In: Metallopharmaceuticals I. Springer, Berlin, Heidelberg, 1999. p. 171-199. 64 - GROESSL, M., ZAVA, O., DYSON, P. J. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics, v. 3, n. 6, p. 591-599, 2011. 65 - ANG, W. H., CASINI, A., SAVA, G., DYSON, P. J. Organometallic ruthenium-based antitumor compounds with novel modes of action. Journal of Organometallic Chemistry, v. 696, n. 5, p. 989-998, 2011. 66 - NAZAROV, A. A., HARTINGER, C. G., DYSON, P. J. Opening the lid on piano-stool complexes: an account of ruthenium (II)–arene complexes with medicinal applications. Journal of Organometallic Chemistry, v. 751, p. 251-260, 2014. 67 - MURRAY, B. S., BABAK, M. V., HARTINGER, C. G., DYSON, P. J. The development of RAPTA compounds for the treatment of tumors. Coordination Chemistry Reviews, v. 306, p. 86-114, 2016. 68 - MEDICI, S., PEANA, M., NURCHI, V. M., LACHOWICZ, J. I., CRISPONI, G., ZORODDU, M. A. Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, v. 284, p. 329-350, 2015. 69 - NOWAK-SLIWINSKA, P., VAN BEIJNUM, J. R., CASINI, A., NAZAROV, A. A., WAGNIERES, G., VAN DEN BERGH, H., GRIFFIOEN, A. W. Organometallic ruthenium (II) arene compounds with antiangiogenic activity. Journal of Medicinal Chemistry, v. 54, n. 11, p. 3895-3902, 2011. 70 - WEISS, A., BERNDSEN, R. H., DUBOIS, M., MÜLLER, C., SCHIBLI, R., GRIFFIOEN, A. W., NOWAK-SLIWINSKA, P. In vivo anti-tumor activity of the organometallic ruthenium (II)-arene complex [Ru (η 6-p-cymene) Cl 2 (pta)](RAPTA-C) in human ovarian and colorectal carcinomas. Chemical Science, v. 5, n. 12, p. 4742-4748, 2014. 71 - THOTA, S., RODRIGUES, D. A., CRANS, D. C., BARREIRO, E. J. Ru (II) compounds: next-generation anticancer metallotherapeutics? Journal of Medicinal Chemistry, v. 61, n. 14, p. 5805-5821, 2018. 72 - LAZAREVIĆ, T., RILAK, A., BUGARČIĆ, Ž. D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European Journal of Medicinal Chemistry, v. 142, p. 8-31, 2017. 73 - GILL, M. R.; THOMAS, J. A. Ruthenium (II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chemical Society Reviews, v. 41, n. 8, p. 3179-3192, 2012. 74 - YANG, Y.; LIAO, G.; FU, C. Recent Advances on Octahedral Polypyridyl Ruthenium (II) Complexes as Antimicrobial Agents. Polymers, v. 10, n. 6, p. 650-662, 2018. 75 - KILAH, N. L.; MEGGERS, E. Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer. Australian Journal of Chemistry, v. 65, n. 9, p. 1325-1332, 2012. 76 - DWYER, F. P., GYARFAS, E. C., ROGERS, W. P., KOCH, J. H. Biological activity of complex ions. Nature, v. 170, n. 4318, p. 190-191, 1952. 77 - KENNY, R. G.; MARMION, C. J. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chemical reviews, v. 119, n. 2, p. 1058-1137, 2019. 78 - QIU, K., CHEN, Y., REES, T. W., JI, L., CHAO, H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coordination Chemistry Reviews, v. 378, p. 66-86, 2019. 79 - KO, C. N., LI, G., LEUNG, C. H., MA, D. L. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coordination Chemistry Reviews, v. 381, p. 79-103, 2019. 80 - MA, G. L., BI, X. D., GAO, F., FENG, Z., ZHAO, D. C., LIN, F. J., ZHANG, H. Novel polypyridyl ruthenium complexes acting as high affinity DNA intercalators, potent transcription inhibitors and antitumor reagents. Journal of Inorganic Biochemistry, v. 185, p. 1-9, 2018. 81 - ZHAO, X., LI, L., YU, G., ZHANG, S., LI, Y., WU, Q., MEI, W. Nucleus-enriched Ruthenium Polypyridine Complex Acts as a Potent Inhibitor to Suppress Triple-negative Breast Cancer Metastasis In vivo. Computational and Structural Biotechnology Journal, v. 17, p. 21-30, 2019. 82 - MONRO, S., COLÓN, K. L., YIN, H., ROQUE, J., KONDA, P., GUJAR, S., MCFARLAND, S. A. Transition metal complexes and photodynamic therapy from a tumorcentered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, v. 119, n. 2, p. 797-828, 2019. 83 - JAKUBASZEK, M., GOUD, B., FERRARI, S., GASSER, G. Mechanisms of action of Ru (II) polypyridyl complexes in living cells upon light irradiation. Chemical Communications, v. 54, n. 93, p. 13040-13059, 2018. 84 - FONG, J., KASIMOVA, K., ARENAS, Y., KASPLER, P., LAZIC, S., MANDEL, A., LILGE, L. A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochemical & Photobiological Sciences, v. 14, n. 11, p. 2014-2023, 2015. 85 - SHI, G., MONRO, S., HENNIGAR, R., COLPITTS, J., FONG, J., KASIMOVA, K. MANDEL, A. Ru (II) dyads derived from α-oligothiophenes: A new class of potent and versatile photosensitizers for PDT. Coordination Chemistry Reviews, v. 282, p. 127-138, 2015. 86 - LIU, X. W., SHEN, Y. M., LI, Z. X., ZHONG, X., CHEN, Y. D., ZHANG, S. B. Study on DNA binding behavior and light switch effect of new coumarin-derived Ru (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 149, p. 150-156, 2015. 87 - HARA, D., KOMATSU, H., SON, A., NISHIMOTO, S. I., TANABE, K. Water-soluble phosphorescent ruthenium complex with a fluorescent coumarin unit for ratiometric sensing of oxygen levels in living cells. Bioconjugate Chemistry, v. 26, n. 4, p. 645-649, 2015. 88 - LI, M. J., WONG, K. M. C., YI, C.,YAM, V. W. W. New Ruthenium (II) Complexes Functionalized with Coumarin Derivatives: Synthesis, Energy‐Transfer‐Based Sensing of Esterase, Cytotoxicity, and Imaging Studies. Chemistry–A European Journal, v. 18, n. 28, p. 8724-8730, 2012. 89 - THOTA, S., VALLALA, S., YERRA, R., BARREIRO, E. J. Design, synthesis, characterization, cytotoxic and structure activity relationships of novel Ru (II) complexes. Chinese Chemical Letters, v. 26, n. 6, p. 721-726, 2015. 90 - THOTA, S., VALLALA, S., YERRA, R., RODRIGUES, D. A., RAGHAVENDRA, N. M., BARREIRO, E. J. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru (II) complexes. International Journal of Biological Macromolecules, v. 82, p. 663-670, 2016. 91 - MISHRA, L., YADAW, A. K., BHATTACHARYA, S., DUBEY, S. K. Mixed-ligand Ru (II) complexes with 2, 2′-bipyridine and aryldiazo-β-diketonato auxillary ligands: Synthesis, physico-chemical study and antitumour properties. Journal of Inorganic Biochemistry, v. 99, n. 5, p. 1113-1118, 2005. 92 - TORTORA, G. J., FUNKE, B. R., CASE, C. L., JOHNSON, T. R. Microbiology: An introduction. San Francisco, CA: Benjamin Cummings, 2004. 93 - YILMAZ, Ç.; ÖZCENGIZ, G. Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochemical Pharmacology, v. 133, p. 43-62, 2017. 94 - SILVEIRA, G. P., NOME, F., GESSER, J. C., TERENZI, M. M. S. H. Estratégias utilizadas no combate a resistência bacteriana. Química Nova, v. 29, n. 4, p. 844, 2006. 95 - KAPOOR, G.; SAIGAL, S.; ELONGAVAN, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology and Clinical Pharmacology, v. 33, n. 3, p. 300-305, 2017. 96 - World Health Organization – WHO. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization, 2014. Disponível em: https://www.who.int/drugresistance/documents/surveillancereport/en/ 97 - REGIEL-FUTYRA, A., DĄBROWSKI, J. M., MAZURYK, O., ŚPIEWAK, K., KYZIOŁ, A., PUCELIK, B., STOCHEL, G. Bioinorganic antimicrobial strategies in the resistance era. Coordination Chemistry Reviews, v. 351, p. 76-117, 2017. 98 - World Health Organization – WHO. Global Action Plan on Antimicrobial Resistance. World Health Organization, 2015. Disponível em: https://www.who.int/antimicrobialresistance/ global-action-plan/en/ 99 - JAD, Y. E., ACOSTA, G. A., NAICKER, T., RAMTAHAL, M., EL-FAHAM, A., GOVENDER, T. ALBERICIO, F. Synthesis and biological evaluation of a teixobactin analogue. Organic Letters, v. 17, n. 24, p. 6182-6185, 2015. 100 - HOVER, B. M., KIM, S. H., KATZ, M., CHARLOP-POWERS, Z., OWEN, J. G., TERNEI, M. A., PERLIN, D. S. Culture-independent discovery of the malacidins as calciumdependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nature Microbiology, v. 3, n. 4, p. 415-422, 2018. 101 - LING, L. L., SCHNEIDER, T., PEOPLES, A. J., SPOERING, A. L., ENGELS, I., CONLON, B. P., JONES, M. A new antibiotic kills pathogens without detectable resistance. Nature, v. 517, n. 7535, p. 455-459, 2015. 102 - SMITH, P. A., KOEHLER, M. F., GIRGIS, H. S., YAN, D., CHEN, Y., CHEN, Y., MURRAY, J. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, v. 561, n. 7722, p. 189-194, 2018. 103 - LI, F.; COLLINS, J. G.; KEENE, F. R. Ruthenium complexes as antimicrobial agents. Chemical Society Reviews, v. 44, n. 8, p. 2529-2542, 2015. 104 - PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, p. 124-148, 2018. 105 - ALI, R.; MARELLA, A.; ALAM, T.; NAZ, R.; AKHTER, M.; SHAQUIQUZZAMAN, M.; SAHA, R.; TANWAR, O.; ALAM, M.; HOODA, J. Review of biological activities of hydrazones. Indonesian Journal of Pharmacology, v. 23, p. 193-202, 2012. 106 - SANDHU, S.; BANSAL, Y.; SILAKARI, O.; BANSAL, G. Coumarin hybrids as novel therapeutic agents. Bioorganic and Medicinal Chemistry v. 22, n. 15, p. 3806-3814, 2014. 107 - ASHOK, D., GUNDU, S., AAMATE, V. K., DEVULAPALLY, M. G., BATHINI, R., MANGA, V. Dimers of coumarin-1, 2, 3-triazole hybrids bearing alkyl spacer: design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. Journal of Molecular Structure, v. 1157, p. 312-321, 2018. 108 - ANGELOVA, V. T.; VALCHEVA, V.; VASSILEV, N. G.; BUYUKLIEV, R.; MOMEKOV, G.; DIMITROV, I.; SASO, L.; DJUKIC, M.; SHIVACHE, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorganic and Medicinal Chemistry Letters v. 27, p. 223-227, 2017. 109 - AMINOV, R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, v. 1, p. 1-7, 2010. 110 - SOUTHAM, H. M., BUTLER, J. A., CHAPMAN, J. A., POOLE, R. K. The microbiology of ruthenium complexes. In: Advances in Microbial Physiology. p. 1-96, Elsevier Ltd., 1 ed., 2017. 111 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. New Ru(II)-Cl-DMSO complexes with heterocyclic hydrazone ligands towards cancer chemotherapy. Polyhedron v. 27, n. 7, p. 1917-1924, 2008. 112 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. Dimethyl sulfoxide ruthenium(II) complexes of thiosemicarbazones and semicarbazone: Synthesis, characterization and biological studies. Polyhedron, v. 27, n. 7, p. 2743-2750, 2008. 113 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. New Ru(II)–DMSO complexes of ON/SN chelates: Synthesis, behavior of Schiff bases towards hydrolytic cleavage of C=N bond, electrochemistry and biological activities. Polyhedron, v. 29, p. 3363-3371, 2010. 114 - DWYER, F. P., REID, I. K., SHULMAN, A., LAYCOCK, G. M., DIXSON, S. The biological actions of 1, 10‐phenanthroline and 2, 2′‐bipyridine hydrochlorides, quaternary salts and metal chelates and related compounds: 1. Bacteriostatic action on selected gram‐positive, gram‐negative and acid‐fast bacteria. Australian Journal of Experimental Biology and Medical Science, v. 47, n. 2, p. 203-218, 1969. 115 - BOLHUIS, A., HAND, L., MARSHALL, J. E., RICHARDS, A. D., RODGER, A., ALDRICH-WRIGHT, J. Antimicrobial activity of ruthenium-based intercalators. European Journal of Pharmaceutical Sciences, v. 42, n. 4, p. 313-317, 2011. 116 - ARENAS, Y., MONRO, S., SHI, G., MANDEL, A., MCFARLAND, S., LILGE, L. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru (II)-based type I/type II photosensitizers. Photodiagnosis and Photodynamic Therapy, v. 10, n. 4, p. 615-625, 2013. 117 - CHAVES, J. D. S.; TUNES, L. G.; DE J. FRANCO, C. H.; FRANCISCO, T. M.; CORRÊA, C. C.; MURTA, S. M. F.; DE ALMEIDA, M. V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. European Journal of Medicinal Chemistry v. 127, p. 727-739, 2017 118 - MOSMANN, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods v. 65, n. 2, p. 55-63, 1983. 119 - SANTOS, A. F. S; SOUZA, M. C. DE; DINIZ, R.; MAIA, J. R. S. Novel zinc (II) derivatives of phenol schiff bases : synthesis , characterization , crystal structure and antimicrobial activity. The Journal of Engineering and Exact Sciences v. 4, p. 19-27, 2018. 120 - DZOTAM, J. K.; TOUANI, F. K.; KUETE, V. Antibacterial and antibioticmodifying activities of three food plants (Xanthosoma mafaffa Lam., Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gramnegative bacteria. Complementary and Alternative Medicine, v. 16, n. 1, p. 9-15, 2016. 121 - CABRERA, E., CERECETTO, H., GONZÁLEZ, M., GAMBINO, D., NOBLIA, P., OTERO, L., DE CERÁIN, A. L. Ruthenium (II) nitrofurylsemicarbazone complexes: new DNA binding agents. European Journal of Medicinal Chemistry, v. 39, n. 4, p. 377-382, 2004. 122 - THOTA, S., IMRAN, M., UDUGULA, M., KARKI, S. S., KANJARLA, N., YERRA, R., DE CLERCQ, E. Synthesis, spectroscopic characterization, antineoplastic, in vitrocytotoxic, and antibacterial activities of mononuclear ruthenium (II) complexes. Journal of Coordination Chemistry, v. 65, n. 5, p. 823-839, 2012. 123 - COLINA-VEGAS, L., DUTRA, J. L., VILLARREAL, W., NETO, J. H. D. A., COMINETTI, M. R., PAVAN, F., BATISTA, A. A. Ru (II)/clotrimazole/diphenylphosphine/bipyridine complexes: Interaction with DNA, BSA and biological potential against tumor cell lines and Mycobacterium tuberculosis. Journal of Inorganic Biochemistry, v. 162, p. 135-145, 2016. 124 - FRENCH, G. L. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, v. 58, n. 6, p. 1107-1117, 2006. 125 - LI, F., MULYANA, Y., FETERL, M., WARNER, J. M., COLLINS, J. G., KEENE, F. R. The antimicrobial activity of inert oligonuclear polypyridylruthenium (II) complexes against pathogenic bacteria, including MRSA. Dalton Transactions, v. 40, n. 18, p. 5032-5038, 2011. 126 - ACQUAVIVA, R., MENICHINI, F., RAGUSA, S., GENOVESE, C., AMODEO, A., TUNDIS, R., IAUK, L. Antimicrobial and antioxidant properties of Betula aetnensis Rafin.(Betulaceae) leaves extract. Natural Product Research, v. 27, n. 4-5, p. 475-479, 2013. 127 - FADLI, M., SAAD, A., SAYADI, S., CHEVALIER, J., MEZRIOUI, N. E., PAGÈS, J. M., HASSANI, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine, v. 19, n. 5, p. 464-471, 2012. 128 - MORENO, L. Z., PAIXÃO, R., GOBBI, D. D., RAIMUNDO, D. C., FERREIRA, T. P., MORENO, A. M., MATTÉ, M. H. Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. The Journal of Infection in Developing Countries, v. 8, p. 416-423, 2014. 129 - AARESTRUP, F. M., KNÖCHEL, S., HASMAN, H. Antimicrobial susceptibility of Listeria monocytogenes from food products. Foodborne Pathogens and Disease, v. 4, n. 2, p. 216-221, 2007.https://tede.ufrrj.br/retrieve/67442/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5210Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2021-11-01T17:58:52Z No. of bitstreams: 1 2019 - Patrícia Saraiva Vilas Boas de Almeida.pdf: 10195032 bytes, checksum: 9d3b66e0e8c89792bfdc9f439bad3a1b (MD5)Made available in DSpace on 2021-11-01T17:58:52Z (GMT). No. of bitstreams: 1 2019 - Patrícia Saraiva Vilas Boas de Almeida.pdf: 10195032 bytes, checksum: 9d3b66e0e8c89792bfdc9f439bad3a1b (MD5) Previous issue date: 2019-07-31info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Patrícia Saraiva Vilas Boas de Almeida.pdf.jpgGenerated Thumbnailimage/jpeg3553https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/1/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf.jpga4a00ffcd114fd0f95fa25916869fabcMD51TEXT2019 - Patrícia Saraiva Vilas Boas de Almeida.pdf.txtExtracted Texttext/plain425750https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/2/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf.txt106c71dd597726e9dba87d28013e2236MD52ORIGINAL2019 - Patrícia Saraiva Vilas Boas de Almeida.pdfapplication/pdf10195032https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/3/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf9d3b66e0e8c89792bfdc9f439bad3a1bMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/102452023-12-21 15:59:30.29oai:rima.ufrrj.br:20.500.14407/10245Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:59:30Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
dc.title.alternative.eng.fl_str_mv Ru(II) complexes containing coumarin hybrid ligands: synthesis and evaluation of cytotoxic and antibacterial activities
title Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
spellingShingle Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
Almeida, Patrícia Saraiva Vilas Boas de
complexos de rutênio
híbridos de cumarina
atividade antitumoral
atividade antibacteriana
ruthenium complexes
coumarin
antitumor activity
antibacterial activity
Química
title_short Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
title_full Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
title_fullStr Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
title_full_unstemmed Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
title_sort Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana
author Almeida, Patrícia Saraiva Vilas Boas de
author_facet Almeida, Patrícia Saraiva Vilas Boas de
author_role author
dc.contributor.author.fl_str_mv Almeida, Patrícia Saraiva Vilas Boas de
dc.contributor.advisor1.fl_str_mv Neves, Amanda Porto
dc.contributor.advisor1ID.fl_str_mv CPF: 055.195.997-50
dc.contributor.advisor-co1.fl_str_mv Kummerle, Arthur Eugen
dc.contributor.advisor-co1ID.fl_str_mv CPF: 053.978.487-78
dc.contributor.referee1.fl_str_mv Lima, Áurea Echevarria Aznar Neves
dc.contributor.referee2.fl_str_mv Silva, Gustavo Bezerra da
dc.contributor.referee3.fl_str_mv Vargas, Maria Domingues
dc.contributor.referee4.fl_str_mv Scarpellini, Marciela
dc.contributor.authorID.fl_str_mv CPF: 087.759.696-45
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/7143253739373348
contributor_str_mv Neves, Amanda Porto
Kummerle, Arthur Eugen
Lima, Áurea Echevarria Aznar Neves
Silva, Gustavo Bezerra da
Vargas, Maria Domingues
Scarpellini, Marciela
dc.subject.por.fl_str_mv complexos de rutênio
híbridos de cumarina
atividade antitumoral
atividade antibacteriana
topic complexos de rutênio
híbridos de cumarina
atividade antitumoral
atividade antibacteriana
ruthenium complexes
coumarin
antitumor activity
antibacterial activity
Química
dc.subject.eng.fl_str_mv ruthenium complexes
coumarin
antitumor activity
antibacterial activity
dc.subject.cnpq.fl_str_mv Química
description Câncer e infecções bacterianas são doenças que causam um grande número de mortes e, apesar dos tratamentos existentes, ainda se fazem necessários novos fármacos que causem menos danos aos pacientes e que sejam mais ativos às células resistentes. Derivados de cumarina e diversas classes de complexos de Ru(II) vêm sendo estudados quanto ao seu potencial como agentes antimicrobianos e antitumorais. Sendo assim, quatro novos ligantes híbridos de cumarina-N-acilidrazonas do tipo (E)-(N’-4-R-benzilideno-7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida (HL2: R=H; HL3: R=Cl, HL4: R=Br, HL5: R= OCH3), foram obtidos através da condensação de uma hidrazida (7-(dietilamino)-2-oxo-2H-cromona-3-carboidrazida, HL1) e diferentes aldeídos p-substituídos. Reações entre HL2-5 e cis-[RuCl2(DMSO)4] resultaram em complexos trans-cis-[RuCl2(DMSO)2(HL2-5)], C2-5 (classe Ru(II)-Cl-DMSO). Concomitantemente, a hidrólise do ligante ocorreu, resultando na formação do complexo trans-cis-[RuCl2(DMSO)2(HL1)] C1, contendo a hidrazida coordenada. As estruturas cristalinas dos ligantes HL2 e HL3 e dos complexos C2-5 foram determinadas por DRX, que revelaram a isomerização de E para Z das cumarinas-N-acilidrazonas resultante da coordenação. Os complexos C2-5 exibiram o átomo de Ru(II) em uma geometria octaédrica distorcida com o ligante coordenado na forma ceto através da carbonila da hidrazona e do nitrogênio imínico. Na tentativa de sintetizar uma segunda classe de complexos carregados e contendo bipiridina como ligante auxiliar ([Ru(bipy)2(HLn)]PF6 - classe Ru(II)-bipy), realizou-se a reação entre HL2 e cis-[Ru(bipy)2Cl2]. Porém, a possível hidrólise do ligante impossibilitou a obtenção do complexo desejado. Uma metodologia similar utilizando híbridos de cumarina-β-cetoéster HL6-8 originou os complexos da classe Ru(II)-bipy, [Ru(bipy)2(HL6-8)]PF6 C6-8. A análise de DRX de C7 mostrou o Ru(II) em um ambiente octaédrico distorcido com o ligante coordenado pela porção β-cetoéster desprotonada e duas bipiridinas na esfera de coordenação. A avaliação antiproliferativa dos compostos contra linhagens de células tumorais (4T1: carcinoma mamário murino e B16-F10: melanoma murino metastático) e não tumoral (BHK-21: rim de hamster) mostrou que, de uma maneira geral, os ligantes híbridos cumarina-N-acilidrazona e cumarina-hidrazida HL1-5 foram mais ativos que seus complexos C1-5, cujos valores de IC50 (metade da concentração inibitória máxima) foram encontrados na faixa de 10,6 a 50,4 µM para os ligantes e entre 17,7 e 97,8 µM para os complexos. Por outro lado, os ligantes cumarina-β-cetoéster HL6-8 foram inativos (IC50 > 100 µM), mas os complexos C6-8 apresentaram alta citotoxicidade, com valores de IC50 entre 2,0 e 12,8 µM. Para o teste antibacteriano, HL1 foi o único ligante ativo frente a uma cepa de bactéria gram-negativa, porém seu MIC não foi determinado nas concentrações estudadas. Todos os complexos demostraram atividade somente frente a cepas de bactérias gram positivas. Para os complexos Ru(II)-Cl-DMSO, somente C3 e C4 (R = Cl e Br) apresentaram MIC nas concentrações utilizadas (40,5 e 86 µM). Por outro lado, os complexos Ru(II)-bipy C6-8 apresentaram MIC entre 2,20-9,22 µM. A maior atividade apresentada pelos derivados Ru(II)-bipy em ambos os testes biológicos, comparada aos complexos Ru(II)-DMSO, foi atribuída à presença de carga no complexo e aos ligantes bipiridina. Estudos de interação com DNA dos complexos [Ru(bipy)2(HL6-8)]PF6 (C6-8) estão em andamento.
publishDate 2019
dc.date.issued.fl_str_mv 2019-07-31
dc.date.accessioned.fl_str_mv 2023-12-21T18:59:30Z
dc.date.available.fl_str_mv 2023-12-21T18:59:30Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALMEIDA, Patrícia Saraiva Vilas Boas de. Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana. 2019. 234 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/10245
identifier_str_mv ALMEIDA, Patrícia Saraiva Vilas Boas de. Complexos de Ru(II) contendo ligantes híbridos de cumarina: síntese e avaliação das atividades citotóxica e antibacteriana. 2019. 234 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica - RJ, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/10245
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1 - WHO - World Health Organization. What is câncer? Disponível em: https://www.who.int/cancer/en/. Acessado em: Novembro de 2018. 2 - HASSANPOUR, S. H.; DEHGHANI, M. Review of cancer from perspective of molecular. Journal of Cancer Research and Practice, v. 4, n. 4, p. 127-129, 2017. 3 - International Agency for Research on Cancer (IARC). Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million câncer deaths in 2018. Disponível em: https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf. Acessado em: Novembro de 2018. 4 - DeMARIA, P. J.; BILUSIC, M. Cancer Vaccines. Hematology/Oncology Clinics of North America, v. 33, n. 2, p. 199-214, 2019. 5 - ALAM, A.; FAROOQ, U.; SINGH, R.; DUBEY, V. P.; KUMAR, S.; KUMARI1, R.; NAIK, K. K.; TRIPATHI1, B. D.; DHAR, K. L. Chemotherapy Treatment and Strategy Schemes: A Review. Open Access Journal of Toxicology, v. 2, n. 5, p. 1-5, 2018. 6 - HUANG, C. Y., JU, D. T., CHANG, C. F., REDDY, P. M., VELMURUGAN, B. K. A review on the effects of current chemotherapy drugs and natural agents in treating non–small cell lung cancer. Biomedicine, v. 7, n. 4, p.12-23, 2017. 7 - Ministério da Saúde Instituto Nacional de Câncer (INCA). Quimioterapia Orientações aos pacientes. 2ed, Rio de Janeiro, RJ, 2010. 8 - GRAF, N.; LIPPARD, S. J. Redox activation of metal-based prodrugs as a strategy for drug delivery. Advanced Drug Delivery Reviews, v. 64, n. 11, p. 993-1004, 2012. 9 - KERRU, N., SINGH, P., KOORBANALLY, N., RAJ, R., KUMAR, V. Recent advances (2015–2016) in anticancer hybrids. European Journal of Medicinal Chemistry, v. 142, p. 179-212, 2017. 10 - LIANG, J. X., ZHONG, H. J., YANG, G., VELLAISAMY, K., MA, D. L., LEUNG, C. H. LIANG, Jia-Xin et al. Recent development of transition metal complexes with in vivo antitumor activity. Journal of Inorganic Biochemistry, v. 177, p. 276-286, 2017. 11 - Science Direct. https://www.sciencedirect.com/. Acessado em 20/03/2019. 12 - PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, p. 124-148, 2018. 13 - THAKUR, A.; SINGLA, R.; JAITAK, V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. European Journal of Medicinal Chemistry, v. 101, p. 476-495, 2015. 14 - RIVEIRO, M. E., DE KIMPE, N., MOGLIONI, A., VAZQUEZ, R., MONCZOR, F., SHAYO, C., DAVIO, C. Coumarins: old compounds with novel promising therapeutic perspectives. Current Medicinal Chemistry, v. 17, n. 13, p. 1325-1338, 2010. 15 - AUDISIO, D., METHY-GONNOT, D., RADANYI, C., RENOIR, J. M., DENIS, S., SAUVAGE, F., ALAMI, M. Synthesis and antiproliferative activity of novobiocin analogues as potential hsp90 inhibitors. European Journal of Medicinal Chemistry, v. 83, p. 498-507, 2014. 16 - BURLISON, J. A., AVILA, C., VIELHAUER, G., LUBBERS, D. J., HOLZBEIERLEIN, J., BLAGG, B. S. Development of novobiocin analogues that manifest anti-proliferative activity against several cancer cell lines. The Journal of Organic Chemistry, v. 73, n. 6, p. 2130-2137, 2008. 17 - WU, J.; LIU, T.; RIOS, Z.; MEI, Q.; LIN, X.; CAO, S. Heat Shock Proteins and Cancer. Trends in Pharmocologycal Science, v. 38, n. 3, p. 226-256, 2017. 18 - GANESHAPILLAI, D., WOO, L. L., THOMAS, M. P., PUROHIT, A., POTTER, B. V. C-3-and C-4-Substituted Bicyclic Coumarin Sulfamates as Potent Steroid Sulfatase Inhibitors. ACS omega, v. 3, n. 9, p. 10748-10772, 2018. 19 - PALMIERI, C., STEIN, R. C., LIU, X., HUDSON, E., NICHOLAS, H., SASANO, H., REED, S. IRIS study: a phase II study of the steroid sulfatase inhibitor Irosustat when added to an aromatase inhibitor in ER-positive breast cancer patients. Breast Cancer Research and Treatment, v. 165, n. 2, p. 343-353, 2017. 20 - EL-KARIM, S. S. A., SYAM, Y. M., EL KERDAWY, A. M., ABDELGHANY, T. M. New thiazol-hydrazono-coumarin hybrids targeting human cervical cancer cells: Synthesis, CDK2 inhibition, QSAR and molecular docking studies. Bioorganic Chemistry, v. 86, p. 80-96, 2019. 21 - THOTA, S., RODRIGUES, D. A., PINHEIRO, P. D. S. M., LIMA, L. M., FRAGA, C. A., BARREIRO, E. J. N-Acylhydrazones as drugs. Bioorganic & Medicinal Chemistry Letters, v. 28, p. 2797-2806, 2018. 22 - ROLLAS, S.; KÜÇÜKGÜZEL, S. Biological activities of hydrazone derivatives. Molecules, v. 12, n. 8, p. 1910-1939, 2007. 23 - ELSHEMY, H. A. H.; ZAKI, M. A. Design and synthesis of new coumarin hybrids and insight into their mode of antiproliferative action. Bioorganic & Medicinal Chemistry, v. 25, n. 3, p. 1066-1075, 2017. 24 - NASR, T.; BONDOCK, S.; RASHED, H. M.; FAYAD, W.; YOUNS, M. SAKR, T. M. Novel hydrazide-hydrazone and amide substituted coumarin derivatives: Synthesis, cytotoxicity screening, microarray, radiolabeling and in vivo pharmacokinetic studies. European Journal of Medicinal Chemistry v. 151, p. 723-739, 2018. 25 - NASR, T.; BONDOCK, S.; YOUNS, M. Anticancer activity of new coumarin substituted hydrazide-hydrazone derivatives. European Journal of Medicinal Chemistry v. 76, p. 539-548, 2014. 26 - MEIER-MENCHES, S. M., GERNER, C., BERGER, W., HARTINGER, C. G., KEPPLER, B. K. Structure–activity relationships for ruthenium and osmium anticancer agents-towards clinical development. Chemical Society Reviews, v. 47, n. 3, p. 909-928, 2018. 27 - COLLIER, W. A.; KRAUSS, F.; Zur experimentellen Therapie der Tumoren. Zeitschrift für Krebsforschung, v. 34, p. 526-530, 1931. 28 - ROSENBERG, B., VAN CAMP, L., KRIGAS, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature, v. 205, n. 4972, p. 698-699, 1965. 29 - ALESSIO, E; MESSORI, L. The Deceptively Similar Ruthenium (III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years? In: Metallo-Drugs: Development and Action of Anticancer Agents, v. 18, p. 141, 2018. 30 - BRATSOS, I., JEDNER, S., GIANFERRARA, T., ALESSIO, E. Ruthenium anticancer compounds: challenges and expectations. CHIMIA - International Journal for Chemistry, v. 61, n. 11, p. 692-697, 2007. 31 - CLARKE, M. J.; ZHU, F.; FRASCA, D. R. Non-platinum chemotherapeutic metallopharmaceuticals. Chemical Reviews, v. 99, n. 9, p. 2511-2534, 1999. 32 - MONTI-BRAGADIN, C., RAMANI, L., SAMER, L., MESTRONI, G., ZASSINOVICH, G. Effects of cis-dichlorodiammineplatinum (II) and related transition metal complexes on Escherichia coli. Antimicrobial agents and chemotherapy, v. 7, n. 6, p. 825-827, 1975. 33 - GIRALDI, T., SAVA, G., BERTOLI, G., MESTRONI, G., ZASSINOVICH, G. Antitumor action of two rhodium and ruthenium complexes in comparison with cisdiamminedichloroplatinum (II). Cancer Research, v. 37, n. 8 Part 1, p. 2662-2666, 1977. 34 - SAVA, G., ZORZET, S., GIRALDI, T., MESTRONI, G., ZASSINOVICH, G. Antineoplastic activity and toxicity of an organometallic complex of ruthenium (II) in comparison with cis-PDD in mice bearing solid malignant neoplasms. European Journal of Cancer and Clinical Oncology, v. 20, n. 6, p. 841-847, 1984. 35 - ALESSIO, E., BALDUCCI, G., CALLIGARIS, M., COSTA, G., ATTIA, W. M., MESTRONI, G. Synthesis, molecular structure, and chemical behavior of hydrogen trans-bis (dimethyl sulfoxide) tetrachlororuthenate (III) and mer-trichlorotris (dimethyl sulfoxide) ruthenium (III): the first fully characterized chloride-dimethyl sulfoxide-ruthenium (III) complexes. Inorganic Chemistry, v. 30, n. 4, p. 609-618, 1991. 36 - SAVA, G., PACOR, S., ZORZET, S., ALESSIO, E., MESTRONI, G. Antitumour properties of dimethylsulphoxide ruthenium (II) complexes in the Lewis lung carcinoma system. Pharmacological Research, v. 21, n. 5, p. 617-628, 1989. 37 - BRABEC, V.; KASPARKOVA, J. Ruthenium coordination compounds of biological and biomedical significance. DNA binding agents. Coordination Chemistry Reviews, v. 376, p. 75-94, 2018. 38 - KEPPLER, B. K.; RUPP, W. Antitumor activity of imidazolium-bisimidazoletetrachlororuthenate (III). Journal of Cancer Research and Clinical Oncology, v. 111, n. 2, p. 166-168, 1986. 39 - KEPPLER, B. K., HENN, M., JUHL, U. M., BERGER, M. R., NIEBL, R., WAGNER, F. E. New ruthenium complexes for the treatment of cancer. In: Ruthenium and Other Non-Platinum Metal Complexes in Cancer Chemotherapy. Springer, Berlin, Heidelberg, p. 41-69, 1989. 40 - TRONDL, R.; HEFFETER, P.; KOWOL, C. R.; JAKUPEC, M. A.; BERGER, W.; KEPPLER, B. K. NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chemical Science, v. 5, n. 8, p. 2925-2932, 2014. 41 - ALESSIO, E. Thirty years of the drug candidate NAMI‐A and the myths in the field of ruthenium anticancer compounds: a personal perspective. European Journal of Inorganic Chemistry, v. 2017, n. 12, p. 1549-1560, 2017. 42 - Gagliardi, R., Sava, G., Pacor, S., Mestroni, G., Alessio, E. Antimetastatic action and toxicity on healthy tissues of Na [trans-RuCl 4 (DMSO) Im] in the mouse. Clinical & Experimental Metastasis, v. 12, n. 2, p. 93-100, 1994. 43 - SAVA, G., CAPOZZI, I., CLERICI, K., GAGLIARDI, G., ALESSIO, E., MESTRONI, G. Pharmacological control of lung metastases of solid tumours by a novel ruthenium complex. Clinical & Experimental Metastasis, v. 16, n. 4, p. 371-379, 1998. 44 - COCCHIETTO, M; SAVA, G. Blood Concentration and Toxicity of the Antimetastasis Agent NAMI‐A Following Repeated Intravenous Treatment in Mice. Pharmacology & Toxicology, v. 87, n. 5, p. 193-197, 2000. 45 - PILLOZZI, S., GASPAROLI, L., STEFANINI, M., RISTORI, M., D'AMICO, M., ALESSIO, E., MESSORI, L. NAMI-A is highly cytotoxic toward leukaemia cell lines: evidence of inhibition of KCa 3.1 channels. Dalton Transactions, v. 43, n. 32, p. 12150-12155, 2014. 46 - LIN, K., ZHAO, Z., BO, H., HAO, X., WANG, J. Applications of Ruthenium Complex in Tumor Diagnosis and Therapy. Frontiers in Pharmacology, v. 9, p. 1323-1333, 2018. 47 - HARTINGER, C. G., JAKUPEC, M. A., ZORBAS‐SEIFRIED, S., GROESSL, M., EGGER, A., BERGER, W., KEPPLER, B. K. KP1019, a new redox‐active anticancer agent-Preclinical development and results of a clinical phase I study in tumor patients. Chemistry & Biodiversity, v. 5, n. 10, p. 2140-2155, 2008. 48 - HEFFETER, P., RIABTSEVA, A., SENKIV, Y., KOWOL, C. R., KÖRNER, W., JUNGWITH, U., STOIKA, R. Nanoformulation improves activity of the (pre) clinical anticancer ruthenium complex KP1019. Journal of Biomedical Nanotechnology, v. 10, n. 5, p. 877-884, 2014. 49 - GOLLA, U., SWAGATIKA, S., CHAUHAN, S., TOMAR, R. S. A systematic assessment of chemical, genetic, and epigenetic factors influencing the activity of anticancer drug KP1019 (FFC14A). Oncotarget, v. 8, n. 58, p. 98426-98454, 2017. 50 - THOMPSON, D. S., WEISS, G. J., JONES, S. F., BURRIS, H. A., RAMANATHAN, R. K., INFANTE, J. R., VON HOFF. NKP-1339: Maximum tolerated dose defined for first-inhuman GRP78 targeted agent. Journal of Clinical Oncology, n. 15, p.3033-3033, 2012. 51 - MALINA, J., NOVAKOVA, O., KEPPLER, B. K., ALESSIO, E., BRABEC, V. Biophysical analysis of natural, double-helical DNA modified by anticancer heterocyclic complexes of ruthenium (III) in cell-free media. Journal of Biological Inorganic Chemistry, v. 6, n. 4, p. 435-445, 2001. 52 - SAVA G. Ruthenium compounds in cancer therapy. In: Metal compounds in cancer therapy, p. 65-91, Chapman and Hall London , 1994. 53 - RADEMAKER-LAKHAI, J. M., VAN DEN BONGARD, D., PLUIM, D., BEIJNEN, J. H., SCHELLENS, J. H. A phase I and pharmacological study with imidazolium-trans-DMSOimidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clinical Cancer Research, v. 10, n. 11, p. 3717-3727, 2004. 54 - BERGAMO, A.; SAVA, G. Ruthenium complexes can target determinants of tumour malignancy. Dalton Transactions, n. 13, p. 1267-1272, 2007. 55 - BERGAMO, A., GAIDDON, C., SCHELLENS, J. H. M., BEIJNEN, J. H., SAVA, G. Approaching tumour therapy beyond platinum drugs: status of the art and perspectives of ruthenium drug candidates. Journal of Inorganic Biochemistry, v. 106, n. 1, p. 90-99, 2012. 56 - BRINDELL, M., STAWOSKA, I., SUPEL, J., SKOCZOWSKI, A., STOCHEL, G., VAN ELDIK, R. The reduction of (ImH)[trans-Ru III Cl 4 (dmso)(Im)] under physiological conditions: preferential reaction of the reduced complex with human serum albumin. Journal of Biological Inorganic Chemistry, v. 13, n. 6, p. 909-918, 2008. 57 - GROESSL, M., REISNER, E., HARTINGER, C. G., EICHINGER, R., SEMENOVA, O., TIMERBAEV, A. R., KEPPLER, B. K. Structure− activity relationships for NAMI-A-type complexes (HL)[trans-RuCl4L (S-dmso) ruthenate (III)](L= imidazole, indazole, 1, 2, 4-triazole, 4-amino-1, 2, 4-triazole, and 1-methyl-1, 2, 4-triazole): Aquation, redox properties, protein binding, and antiproliferative activity. Journal of Medicinal Chemistry, v. 50, n. 9, p. 2185-2193, 2007. 58 - SULYOK, M., HANN, S., HARTINGER, C. G., KEPPLER, B. K., STINGEDER, G., KOELLENSPERGER, G. Two dimensional separation schemes for investigation of the interaction of an anticancer ruthenium (III) compound with plasma proteins. Journal of Analytical Atomic Spectrometry, v. 20, n. 9, p. 856-863, 2005. 59 - KEPPLER, B. K. Metal Complexes in Cancer Chemotherapy. VCH, Weinheim, Germany, 1993. 60 - PAL, M.; NANDI, U.; MUKHERJEE, D. Detailed account on activation mechanisms of ruthenium coordination complexes and their role as antineoplastic agents. European Journal of Medicinal Chemistry, v. 150, p. 419-445, 2018. 61 - BIJELIC, A., THEINER, S., KEPPLER, B. K., ROMPEL, A. X-ray structure analysis of indazolium trans-[tetrachlorobis (1-H-indazole) ruthenate (III)](KP1019) bound to human serum albumin reveals two ruthenium binding sites and provides insights into the drug binding mechanism. Journal of Medicinal Chemistry, v. 59, n. 12, p. 5894-5903, 2016. 62 - KAPITZA, S., PONGRATZ, M., JAKUPEC, M. A., HEFFETER, P., BERGER, W., LACKINGER, L., MARIAN, B. Heterocyclic complexes of ruthenium (III) induce apoptosis in colorectal carcinoma cells. Journal of Cancer Research and Clinical Oncology, v. 131, n. 2, p. 101-110, 2005. 63 - PIEPER, T., BORSKY, K., KEPPLER, B. K. Non-platinum antitumor compounds. In: Metallopharmaceuticals I. Springer, Berlin, Heidelberg, 1999. p. 171-199. 64 - GROESSL, M., ZAVA, O., DYSON, P. J. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin. Metallomics, v. 3, n. 6, p. 591-599, 2011. 65 - ANG, W. H., CASINI, A., SAVA, G., DYSON, P. J. Organometallic ruthenium-based antitumor compounds with novel modes of action. Journal of Organometallic Chemistry, v. 696, n. 5, p. 989-998, 2011. 66 - NAZAROV, A. A., HARTINGER, C. G., DYSON, P. J. Opening the lid on piano-stool complexes: an account of ruthenium (II)–arene complexes with medicinal applications. Journal of Organometallic Chemistry, v. 751, p. 251-260, 2014. 67 - MURRAY, B. S., BABAK, M. V., HARTINGER, C. G., DYSON, P. J. The development of RAPTA compounds for the treatment of tumors. Coordination Chemistry Reviews, v. 306, p. 86-114, 2016. 68 - MEDICI, S., PEANA, M., NURCHI, V. M., LACHOWICZ, J. I., CRISPONI, G., ZORODDU, M. A. Noble metals in medicine: Latest advances. Coordination Chemistry Reviews, v. 284, p. 329-350, 2015. 69 - NOWAK-SLIWINSKA, P., VAN BEIJNUM, J. R., CASINI, A., NAZAROV, A. A., WAGNIERES, G., VAN DEN BERGH, H., GRIFFIOEN, A. W. Organometallic ruthenium (II) arene compounds with antiangiogenic activity. Journal of Medicinal Chemistry, v. 54, n. 11, p. 3895-3902, 2011. 70 - WEISS, A., BERNDSEN, R. H., DUBOIS, M., MÜLLER, C., SCHIBLI, R., GRIFFIOEN, A. W., NOWAK-SLIWINSKA, P. In vivo anti-tumor activity of the organometallic ruthenium (II)-arene complex [Ru (η 6-p-cymene) Cl 2 (pta)](RAPTA-C) in human ovarian and colorectal carcinomas. Chemical Science, v. 5, n. 12, p. 4742-4748, 2014. 71 - THOTA, S., RODRIGUES, D. A., CRANS, D. C., BARREIRO, E. J. Ru (II) compounds: next-generation anticancer metallotherapeutics? Journal of Medicinal Chemistry, v. 61, n. 14, p. 5805-5821, 2018. 72 - LAZAREVIĆ, T., RILAK, A., BUGARČIĆ, Ž. D. Platinum, palladium, gold and ruthenium complexes as anticancer agents: Current clinical uses, cytotoxicity studies and future perspectives. European Journal of Medicinal Chemistry, v. 142, p. 8-31, 2017. 73 - GILL, M. R.; THOMAS, J. A. Ruthenium (II) polypyridyl complexes and DNA-from structural probes to cellular imaging and therapeutics. Chemical Society Reviews, v. 41, n. 8, p. 3179-3192, 2012. 74 - YANG, Y.; LIAO, G.; FU, C. Recent Advances on Octahedral Polypyridyl Ruthenium (II) Complexes as Antimicrobial Agents. Polymers, v. 10, n. 6, p. 650-662, 2018. 75 - KILAH, N. L.; MEGGERS, E. Sixty Years Young: The Diverse Biological Activities of Metal Polypyridyl Complexes Pioneered by Francis P. Dwyer. Australian Journal of Chemistry, v. 65, n. 9, p. 1325-1332, 2012. 76 - DWYER, F. P., GYARFAS, E. C., ROGERS, W. P., KOCH, J. H. Biological activity of complex ions. Nature, v. 170, n. 4318, p. 190-191, 1952. 77 - KENNY, R. G.; MARMION, C. J. Toward Multi-Targeted Platinum and Ruthenium Drugs-A New Paradigm in Cancer Drug Treatment Regimens? Chemical reviews, v. 119, n. 2, p. 1058-1137, 2019. 78 - QIU, K., CHEN, Y., REES, T. W., JI, L., CHAO, H. Organelle-targeting metal complexes: From molecular design to bio-applications. Coordination Chemistry Reviews, v. 378, p. 66-86, 2019. 79 - KO, C. N., LI, G., LEUNG, C. H., MA, D. L. Dual function luminescent transition metal complexes for cancer theranostics: The combination of diagnosis and therapy. Coordination Chemistry Reviews, v. 381, p. 79-103, 2019. 80 - MA, G. L., BI, X. D., GAO, F., FENG, Z., ZHAO, D. C., LIN, F. J., ZHANG, H. Novel polypyridyl ruthenium complexes acting as high affinity DNA intercalators, potent transcription inhibitors and antitumor reagents. Journal of Inorganic Biochemistry, v. 185, p. 1-9, 2018. 81 - ZHAO, X., LI, L., YU, G., ZHANG, S., LI, Y., WU, Q., MEI, W. Nucleus-enriched Ruthenium Polypyridine Complex Acts as a Potent Inhibitor to Suppress Triple-negative Breast Cancer Metastasis In vivo. Computational and Structural Biotechnology Journal, v. 17, p. 21-30, 2019. 82 - MONRO, S., COLÓN, K. L., YIN, H., ROQUE, J., KONDA, P., GUJAR, S., MCFARLAND, S. A. Transition metal complexes and photodynamic therapy from a tumorcentered approach: Challenges, opportunities, and highlights from the development of TLD1433. Chemical Reviews, v. 119, n. 2, p. 797-828, 2019. 83 - JAKUBASZEK, M., GOUD, B., FERRARI, S., GASSER, G. Mechanisms of action of Ru (II) polypyridyl complexes in living cells upon light irradiation. Chemical Communications, v. 54, n. 93, p. 13040-13059, 2018. 84 - FONG, J., KASIMOVA, K., ARENAS, Y., KASPLER, P., LAZIC, S., MANDEL, A., LILGE, L. A novel class of ruthenium-based photosensitizers effectively kills in vitro cancer cells and in vivo tumors. Photochemical & Photobiological Sciences, v. 14, n. 11, p. 2014-2023, 2015. 85 - SHI, G., MONRO, S., HENNIGAR, R., COLPITTS, J., FONG, J., KASIMOVA, K. MANDEL, A. Ru (II) dyads derived from α-oligothiophenes: A new class of potent and versatile photosensitizers for PDT. Coordination Chemistry Reviews, v. 282, p. 127-138, 2015. 86 - LIU, X. W., SHEN, Y. M., LI, Z. X., ZHONG, X., CHEN, Y. D., ZHANG, S. B. Study on DNA binding behavior and light switch effect of new coumarin-derived Ru (II) complexes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, v. 149, p. 150-156, 2015. 87 - HARA, D., KOMATSU, H., SON, A., NISHIMOTO, S. I., TANABE, K. Water-soluble phosphorescent ruthenium complex with a fluorescent coumarin unit for ratiometric sensing of oxygen levels in living cells. Bioconjugate Chemistry, v. 26, n. 4, p. 645-649, 2015. 88 - LI, M. J., WONG, K. M. C., YI, C.,YAM, V. W. W. New Ruthenium (II) Complexes Functionalized with Coumarin Derivatives: Synthesis, Energy‐Transfer‐Based Sensing of Esterase, Cytotoxicity, and Imaging Studies. Chemistry–A European Journal, v. 18, n. 28, p. 8724-8730, 2012. 89 - THOTA, S., VALLALA, S., YERRA, R., BARREIRO, E. J. Design, synthesis, characterization, cytotoxic and structure activity relationships of novel Ru (II) complexes. Chinese Chemical Letters, v. 26, n. 6, p. 721-726, 2015. 90 - THOTA, S., VALLALA, S., YERRA, R., RODRIGUES, D. A., RAGHAVENDRA, N. M., BARREIRO, E. J. Synthesis, characterization, DNA binding, DNA cleavage, protein binding and cytotoxic activities of Ru (II) complexes. International Journal of Biological Macromolecules, v. 82, p. 663-670, 2016. 91 - MISHRA, L., YADAW, A. K., BHATTACHARYA, S., DUBEY, S. K. Mixed-ligand Ru (II) complexes with 2, 2′-bipyridine and aryldiazo-β-diketonato auxillary ligands: Synthesis, physico-chemical study and antitumour properties. Journal of Inorganic Biochemistry, v. 99, n. 5, p. 1113-1118, 2005. 92 - TORTORA, G. J., FUNKE, B. R., CASE, C. L., JOHNSON, T. R. Microbiology: An introduction. San Francisco, CA: Benjamin Cummings, 2004. 93 - YILMAZ, Ç.; ÖZCENGIZ, G. Antibiotics: pharmacokinetics, toxicity, resistance and multidrug efflux pumps. Biochemical Pharmacology, v. 133, p. 43-62, 2017. 94 - SILVEIRA, G. P., NOME, F., GESSER, J. C., TERENZI, M. M. S. H. Estratégias utilizadas no combate a resistência bacteriana. Química Nova, v. 29, n. 4, p. 844, 2006. 95 - KAPOOR, G.; SAIGAL, S.; ELONGAVAN, A. Action and resistance mechanisms of antibiotics: A guide for clinicians. Journal of Anaesthesiology and Clinical Pharmacology, v. 33, n. 3, p. 300-305, 2017. 96 - World Health Organization – WHO. Antimicrobial Resistance: Global Report on Surveillance. World Health Organization, 2014. Disponível em: https://www.who.int/drugresistance/documents/surveillancereport/en/ 97 - REGIEL-FUTYRA, A., DĄBROWSKI, J. M., MAZURYK, O., ŚPIEWAK, K., KYZIOŁ, A., PUCELIK, B., STOCHEL, G. Bioinorganic antimicrobial strategies in the resistance era. Coordination Chemistry Reviews, v. 351, p. 76-117, 2017. 98 - World Health Organization – WHO. Global Action Plan on Antimicrobial Resistance. World Health Organization, 2015. Disponível em: https://www.who.int/antimicrobialresistance/ global-action-plan/en/ 99 - JAD, Y. E., ACOSTA, G. A., NAICKER, T., RAMTAHAL, M., EL-FAHAM, A., GOVENDER, T. ALBERICIO, F. Synthesis and biological evaluation of a teixobactin analogue. Organic Letters, v. 17, n. 24, p. 6182-6185, 2015. 100 - HOVER, B. M., KIM, S. H., KATZ, M., CHARLOP-POWERS, Z., OWEN, J. G., TERNEI, M. A., PERLIN, D. S. Culture-independent discovery of the malacidins as calciumdependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nature Microbiology, v. 3, n. 4, p. 415-422, 2018. 101 - LING, L. L., SCHNEIDER, T., PEOPLES, A. J., SPOERING, A. L., ENGELS, I., CONLON, B. P., JONES, M. A new antibiotic kills pathogens without detectable resistance. Nature, v. 517, n. 7535, p. 455-459, 2015. 102 - SMITH, P. A., KOEHLER, M. F., GIRGIS, H. S., YAN, D., CHEN, Y., CHEN, Y., MURRAY, J. Optimized arylomycins are a new class of Gram-negative antibiotics. Nature, v. 561, n. 7722, p. 189-194, 2018. 103 - LI, F.; COLLINS, J. G.; KEENE, F. R. Ruthenium complexes as antimicrobial agents. Chemical Society Reviews, v. 44, n. 8, p. 2529-2542, 2015. 104 - PEREIRA, T. M.; FRANCO, D. P.; VITÓRIO, F.; KUMMERLE, A. E. Coumarin Compounds in Medicinal Chemistry: Some Important Examples from the Last Years. Current Topics in Medicinal Chemistry, v. 18, p. 124-148, 2018. 105 - ALI, R.; MARELLA, A.; ALAM, T.; NAZ, R.; AKHTER, M.; SHAQUIQUZZAMAN, M.; SAHA, R.; TANWAR, O.; ALAM, M.; HOODA, J. Review of biological activities of hydrazones. Indonesian Journal of Pharmacology, v. 23, p. 193-202, 2012. 106 - SANDHU, S.; BANSAL, Y.; SILAKARI, O.; BANSAL, G. Coumarin hybrids as novel therapeutic agents. Bioorganic and Medicinal Chemistry v. 22, n. 15, p. 3806-3814, 2014. 107 - ASHOK, D., GUNDU, S., AAMATE, V. K., DEVULAPALLY, M. G., BATHINI, R., MANGA, V. Dimers of coumarin-1, 2, 3-triazole hybrids bearing alkyl spacer: design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. Journal of Molecular Structure, v. 1157, p. 312-321, 2018. 108 - ANGELOVA, V. T.; VALCHEVA, V.; VASSILEV, N. G.; BUYUKLIEV, R.; MOMEKOV, G.; DIMITROV, I.; SASO, L.; DJUKIC, M.; SHIVACHE, B. Antimycobacterial activity of novel hydrazide-hydrazone derivatives with 2H-chromene and coumarin scaffold. Bioorganic and Medicinal Chemistry Letters v. 27, p. 223-227, 2017. 109 - AMINOV, R. I. A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in Microbiology, v. 1, p. 1-7, 2010. 110 - SOUTHAM, H. M., BUTLER, J. A., CHAPMAN, J. A., POOLE, R. K. The microbiology of ruthenium complexes. In: Advances in Microbial Physiology. p. 1-96, Elsevier Ltd., 1 ed., 2017. 111 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. New Ru(II)-Cl-DMSO complexes with heterocyclic hydrazone ligands towards cancer chemotherapy. Polyhedron v. 27, n. 7, p. 1917-1924, 2008. 112 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. Dimethyl sulfoxide ruthenium(II) complexes of thiosemicarbazones and semicarbazone: Synthesis, characterization and biological studies. Polyhedron, v. 27, n. 7, p. 2743-2750, 2008. 113 - MAHALINGAM, V.; CHITRAPRIYA, N.; FRONCZEK, F. R.; NATARAJAN, K. New Ru(II)–DMSO complexes of ON/SN chelates: Synthesis, behavior of Schiff bases towards hydrolytic cleavage of C=N bond, electrochemistry and biological activities. Polyhedron, v. 29, p. 3363-3371, 2010. 114 - DWYER, F. P., REID, I. K., SHULMAN, A., LAYCOCK, G. M., DIXSON, S. The biological actions of 1, 10‐phenanthroline and 2, 2′‐bipyridine hydrochlorides, quaternary salts and metal chelates and related compounds: 1. Bacteriostatic action on selected gram‐positive, gram‐negative and acid‐fast bacteria. Australian Journal of Experimental Biology and Medical Science, v. 47, n. 2, p. 203-218, 1969. 115 - BOLHUIS, A., HAND, L., MARSHALL, J. E., RICHARDS, A. D., RODGER, A., ALDRICH-WRIGHT, J. Antimicrobial activity of ruthenium-based intercalators. European Journal of Pharmaceutical Sciences, v. 42, n. 4, p. 313-317, 2011. 116 - ARENAS, Y., MONRO, S., SHI, G., MANDEL, A., MCFARLAND, S., LILGE, L. Photodynamic inactivation of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus with Ru (II)-based type I/type II photosensitizers. Photodiagnosis and Photodynamic Therapy, v. 10, n. 4, p. 615-625, 2013. 117 - CHAVES, J. D. S.; TUNES, L. G.; DE J. FRANCO, C. H.; FRANCISCO, T. M.; CORRÊA, C. C.; MURTA, S. M. F.; DE ALMEIDA, M. V. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents. European Journal of Medicinal Chemistry v. 127, p. 727-739, 2017 118 - MOSMANN, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods v. 65, n. 2, p. 55-63, 1983. 119 - SANTOS, A. F. S; SOUZA, M. C. DE; DINIZ, R.; MAIA, J. R. S. Novel zinc (II) derivatives of phenol schiff bases : synthesis , characterization , crystal structure and antimicrobial activity. The Journal of Engineering and Exact Sciences v. 4, p. 19-27, 2018. 120 - DZOTAM, J. K.; TOUANI, F. K.; KUETE, V. Antibacterial and antibioticmodifying activities of three food plants (Xanthosoma mafaffa Lam., Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gramnegative bacteria. Complementary and Alternative Medicine, v. 16, n. 1, p. 9-15, 2016. 121 - CABRERA, E., CERECETTO, H., GONZÁLEZ, M., GAMBINO, D., NOBLIA, P., OTERO, L., DE CERÁIN, A. L. Ruthenium (II) nitrofurylsemicarbazone complexes: new DNA binding agents. European Journal of Medicinal Chemistry, v. 39, n. 4, p. 377-382, 2004. 122 - THOTA, S., IMRAN, M., UDUGULA, M., KARKI, S. S., KANJARLA, N., YERRA, R., DE CLERCQ, E. Synthesis, spectroscopic characterization, antineoplastic, in vitrocytotoxic, and antibacterial activities of mononuclear ruthenium (II) complexes. Journal of Coordination Chemistry, v. 65, n. 5, p. 823-839, 2012. 123 - COLINA-VEGAS, L., DUTRA, J. L., VILLARREAL, W., NETO, J. H. D. A., COMINETTI, M. R., PAVAN, F., BATISTA, A. A. Ru (II)/clotrimazole/diphenylphosphine/bipyridine complexes: Interaction with DNA, BSA and biological potential against tumor cell lines and Mycobacterium tuberculosis. Journal of Inorganic Biochemistry, v. 162, p. 135-145, 2016. 124 - FRENCH, G. L. Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. Journal of Antimicrobial Chemotherapy, v. 58, n. 6, p. 1107-1117, 2006. 125 - LI, F., MULYANA, Y., FETERL, M., WARNER, J. M., COLLINS, J. G., KEENE, F. R. The antimicrobial activity of inert oligonuclear polypyridylruthenium (II) complexes against pathogenic bacteria, including MRSA. Dalton Transactions, v. 40, n. 18, p. 5032-5038, 2011. 126 - ACQUAVIVA, R., MENICHINI, F., RAGUSA, S., GENOVESE, C., AMODEO, A., TUNDIS, R., IAUK, L. Antimicrobial and antioxidant properties of Betula aetnensis Rafin.(Betulaceae) leaves extract. Natural Product Research, v. 27, n. 4-5, p. 475-479, 2013. 127 - FADLI, M., SAAD, A., SAYADI, S., CHEVALIER, J., MEZRIOUI, N. E., PAGÈS, J. M., HASSANI, L. Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine, v. 19, n. 5, p. 464-471, 2012. 128 - MORENO, L. Z., PAIXÃO, R., GOBBI, D. D., RAIMUNDO, D. C., FERREIRA, T. P., MORENO, A. M., MATTÉ, M. H. Characterization of antibiotic resistance in Listeria spp. isolated from slaughterhouse environments, pork and human infections. The Journal of Infection in Developing Countries, v. 8, p. 416-423, 2014. 129 - AARESTRUP, F. M., KNÖCHEL, S., HASMAN, H. Antimicrobial susceptibility of Listeria monocytogenes from food products. Foodborne Pathogens and Disease, v. 4, n. 2, p. 216-221, 2007.
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/1/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/2/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/3/2019%20-%20Patr%c3%adcia%20Saraiva%20Vilas%20Boas%20de%20Almeida.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10245/4/license.txt
bitstream.checksum.fl_str_mv a4a00ffcd114fd0f95fa25916869fabc
106c71dd597726e9dba87d28013e2236
9d3b66e0e8c89792bfdc9f439bad3a1b
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810108114644500480