A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos

Detalhes bibliográficos
Autor(a) principal: Santos, Raoni da Conceição dos
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UFRRJ
Texto Completo: https://rima.ufrrj.br/jspui/handle/20.500.14407/9427
Resumo: A grelina é um hormônio orexigênico produzido principalmente pelo estômago. Além de seu efeito indutor da fome a grelina também afeta uma série de variáveis fisiológicas como o controle neuroendócrino, a função autonômica e cardiovascular, a resposta ao estresse e os comportamentos análogos à ansiedade e depressão. O núcleo paraventricular do hipotálamo (PVN) e a amígdala basolateral (BLA) são núcleos encefálicos importantes na integração de diversos dos efeitos da grelina. Para elucidar os efeitos da grelina sobre a atividade de neurônios do PVN nós utilizamos registros eletrofisiológicos extracelulares e intracelulares em fatias de encéfalo ex vivo, e observamos que a grelina pode aumentar ou diminuir a frequência de disparos dos neurônios do PVN, porém, os efeitos excitatórios são diretos, enquanto os efeitos inibitórios são indiretos. Verificamos também que a grelina afeta a maioria dos neurônios desse núcleo sejam eles pré-autonômicos, neuroendócrinos parvocelulares ou neuroendócrinos magnocelulares; e que a maioria dos neurônios TRH, CRH e OT do PVN é hiperpolarizada pela grelina. Similarmente, realizamos registros intracelulares de neurônios da BLA e verificamos que a grelina é capaz de aumentar ou diminuir o potencial de membrana de neurônios deste núcleo. Em seguida, analisamos as alterações comportamentais causadas pela privação alimentar, um estímulo fisiológico que aumenta a grelina plasmática, e da administração exógena de grelina sobre os comportamentos análogos à ansiedade e sobre a atividade exploratória. Nestes experimentos verificamos que a privação alimentar diminui o comportamento análogo à ansiedade no labirinto em cruz elevado (4,55 ± 0,97 vs 13,82 ± 3,02 %; p = 0,01; teste t não pareado) e não altera a atividade exploratória no campo aberto e no campo aberto modificado. No entanto, a grelina não afetou o comportamento análogo à ansiedade no labirinto em cruz elevado. Em conjunto os resultados descritos nessa tese demonstram que a grelina afeta núcleos encefálicos envolvidos com o controle de diversas funções fisiológicas, e provê um substrato neurobiológico para algumas funções deste hormônio. No entanto, não observamos efeitos comportamentais da grelina, o que sugere a necessidade de estudos futuros para elucidar a participação do hormônio nas respostas comportamentais que medeiam a resposta à situações de déficit calórico, como a privação alimentar.
id UFRRJ-1_ddbc02ce61b42efa64d17ae863b3528a
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/9427
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Santos, Raoni da Conceição dosReis, Luis CarlosCPF: 484.252.577-00Côrtes, Wellington da SilvaMalvar, David do CarmoTrevenzoli, lsis HaraBorges, Danilo LustrinoCPF: 123.652.537-09http://lattes.cnpq.br/81672797709015382023-12-21T18:39:14Z2023-12-21T18:39:14Z2019-02-15SANTOS, Raoni da Conceição dos. A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos. 2019. 140 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.https://rima.ufrrj.br/jspui/handle/20.500.14407/9427A grelina é um hormônio orexigênico produzido principalmente pelo estômago. Além de seu efeito indutor da fome a grelina também afeta uma série de variáveis fisiológicas como o controle neuroendócrino, a função autonômica e cardiovascular, a resposta ao estresse e os comportamentos análogos à ansiedade e depressão. O núcleo paraventricular do hipotálamo (PVN) e a amígdala basolateral (BLA) são núcleos encefálicos importantes na integração de diversos dos efeitos da grelina. Para elucidar os efeitos da grelina sobre a atividade de neurônios do PVN nós utilizamos registros eletrofisiológicos extracelulares e intracelulares em fatias de encéfalo ex vivo, e observamos que a grelina pode aumentar ou diminuir a frequência de disparos dos neurônios do PVN, porém, os efeitos excitatórios são diretos, enquanto os efeitos inibitórios são indiretos. Verificamos também que a grelina afeta a maioria dos neurônios desse núcleo sejam eles pré-autonômicos, neuroendócrinos parvocelulares ou neuroendócrinos magnocelulares; e que a maioria dos neurônios TRH, CRH e OT do PVN é hiperpolarizada pela grelina. Similarmente, realizamos registros intracelulares de neurônios da BLA e verificamos que a grelina é capaz de aumentar ou diminuir o potencial de membrana de neurônios deste núcleo. Em seguida, analisamos as alterações comportamentais causadas pela privação alimentar, um estímulo fisiológico que aumenta a grelina plasmática, e da administração exógena de grelina sobre os comportamentos análogos à ansiedade e sobre a atividade exploratória. Nestes experimentos verificamos que a privação alimentar diminui o comportamento análogo à ansiedade no labirinto em cruz elevado (4,55 ± 0,97 vs 13,82 ± 3,02 %; p = 0,01; teste t não pareado) e não altera a atividade exploratória no campo aberto e no campo aberto modificado. No entanto, a grelina não afetou o comportamento análogo à ansiedade no labirinto em cruz elevado. Em conjunto os resultados descritos nessa tese demonstram que a grelina afeta núcleos encefálicos envolvidos com o controle de diversas funções fisiológicas, e provê um substrato neurobiológico para algumas funções deste hormônio. No entanto, não observamos efeitos comportamentais da grelina, o que sugere a necessidade de estudos futuros para elucidar a participação do hormônio nas respostas comportamentais que medeiam a resposta à situações de déficit calórico, como a privação alimentar.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorGhrelin is an orexigenic hormone produced by the stomach. Additional to its effects on food intake, ghrelin also affects a series of physiological variables, such as the neuroendocrine control, autonomic and cardiovascular function, the response to stress, and anxiety-like and depression-like behaviors. The paraventricular hypothalamic nucleus (PVN) and the basolateral amygdala (BLA) are brain nuclei involved in the integration of several of ghrelin’s effects. To elucidate the effects of ghrelin on the activity of PVN neurons we used extracellular and intracellular electrophysiological recordings in ex vivo brain slices and observed that ghrelin may increase or decrease the spike frequency of PVN neurons; however, the excitatory effects are direct while the inhibitory effects are indirect. We also observed that ghrelin affects the majority of neurons in this nucleus, whether they are pre-autonomic, neuroendocrine parvocellular or neuroendocrine magnocellular; and that the most TRH, CRH and OT PVN neurons are hyperpolarized in response to ghrelin. Similarly, we performed intracellular recordings in BLA neurons and showed that ghrelin increases or decreases the membrane potential in neurons in this nucleus. Next, we analyzed the behavioral alterations caused by food deprivation, a physiological stimulus that increases plasma ghrelin, and the exogenous administration of ghrelin on anxiety-like behaviors and exploratory activity. In these experiments we showed that food deprivation decreases anxiety-like behavior in the elevated plus maze (4.55 ± 0.97 vs 13.82 ± 3.02 %; p = 0.01; unpaired t test) and does not change exploratory activity on the open field and modified open field. However, ghrelin did not affect anxiety-like behavior in the elevated plus maze. Taken together the results described in this thesis showed that ghrelin affects brain nuclei involved in the control of several physiological functions, thus providing a neurobiological substrate for ghrelin’s effects for some functions of this hormone. However, we did not observe behavioral alterations caused by ghrelin, which suggests that future studies are necessary to elucidate the participation of ghrelin on the behavioral responses that mediate the response to situations of caloric deficits, such as food deprivation.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Ciências FisiológicasUFRRJBrasilInstituto de Ciências Biológicas e da Saúdegrelinacontrole da ingestão alimentarcomportamento análogo à ansiedadeamígdala basolateralnúcleo paraventricular do hipotálamoghrelinfood intake controlanxiety-like behaviorbasolateral amygdalaparaventricular hypothalamic nucleusFisiologiaFarmacologiaA influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratosThe influence of ghrelin on anxietylike behavior and the activity of paraventricular hypothalamic nucleus and basolateral amygdala neurons in ratsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABTAHI, S. et al. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. General and Comparative Endocrinology, v. 250, p. 9–14, 2017. ABTAHI, S. et al. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. General and Comparative Endocrinology, out. 2018. ALLSOP, S. A. et al. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in behavioral neuroscience, v. 8, p. 241, 2014. ALVAREZ-CRESPO, M. et al. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PloS one, v. 7, n. 10, p. e46321, 2012. ANDREWS, Z. B. et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature, v. 454, n. 7206, p. 846–51, 14 ago. 2008. APONTE, Y.; ATASOY, D.; STERNSON, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature neuroscience, v. 14, n. 3, p. 351–5, mar. 2011. ARVAT, E. et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. The Journal of clinical endocrinology and metabolism, v. 86, n. 3, p. 1169–74, mar. 2001. ASAKAWA, A. et al. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology, v. 74, n. 3, p. 143–7, set. 2001. BANKS, W. A. et al. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. The Journal of pharmacology and experimental therapeutics, v. 302, n. 2, p. 822–7, ago. 2002. BLANCHARD, D. C.; BLANCHARD, R. J. Ethoexperimental approaches to the biology of emotion. Annual review of psychology, v. 39, p. 43–68, 1988. BOMBERG, E. M. et al. Central ghrelin induces feeding driven by energy needs not by reward. NeuroReport, v. 18, n. 6, p. 591–595, 2007. BROCKWAY, E. T. et al. Impact of [d-Lys3]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides, v. 79, p. 95–102, 2016a. BROCKWAY, E. T. et al. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides, v. 79, p. 95–102, maio 2016b. CABRAL, A. et al. Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE, v. 7, n. 2, p. 1–10, 20 fev. 2012. CABRAL, A. et al. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology, v. 67, p. 27–39, maio 2016. CABRAL, A. et al. Circulating Ghrelin Acts on GABA Neurons of the Area Postrema and Mediates Gastric Emptying in Male Mice. Endocrinology, v. 158, n. 5, p. 1436–1449, 2017a. CABRAL, A. et al. Is Ghrelin Synthesized in the Central Nervous System? International journal of molecular sciences, v. 18, n. 3, 15 mar. 2017b. CABRAL, A.; FERNANDEZ, G.; PERELLO, M. Analysis of brain nuclei accessible to ghrelin present in the cerebrospinal fluid. Neuroscience, v. 253, p. 406–15, 3 dez. 2013. CAMINOS, J. E. et al. Influence of thyroid status and growth hormone deficiency on ghrelin. European journal of endocrinology, v. 147, n. 1, p. 159–63, jul. 2002. CARLINI, V. P. et al. Ghrelin increases anxiety-like behavior and memory retention in rats. Biochemical and biophysical research communications, v. 299, n. 5, p. 739–43, 20 dez. 2002. CARLINI, V. P. et al. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochemical and biophysical research communications, v. 313, n. 3, p. 635–41, 16 jan. 2004. CARLINI, V. P. et al. Acute ghrelin administration reverses depressive-like behavior induced by bilateral olfactory bulbectomy in mice. Peptides, v. 35, n. 2, p. 160–5, jun. 2012. CHEN, X. et al. Effects of ghrelin on hypothalamic glucose responding neurons in rats. Brain Research, v. 1055, n. 1–2, p. 131–136, set. 2005. CHOUZOURIS, T. M. et al. Effects of pregnancy and short-lasting acute feed restriction on total ghrelin concentration and metabolic parameters in dairy cattle. Theriogenology, v. 106, p. 141–148, 15 jan. 2018. COIRO, V. et al. Adrenocorticotropin/cortisol and arginine-vasopressin secretory patterns in response to ghrelin in normal men. Neuroendocrinology, v. 81, n. 2, p. 103–6, 2005. COIRO, V. et al. Oxytocin does not modify GH, ACTH, cortisol and prolactin responses to Ghrelin in normal men. Neuropeptides, v. 45, n. 2, p. 139–42, abr. 2011. COLLDEN, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Molecular Metabolism, v. 4, n. 1, p. 15–24, 2015. CÔTÉ, C. D. et al. Hormonal signaling in the gut. The Journal of biological chemistry, v. 289, n. 17, p. 11642–9, 25 abr. 2014. COWLEY, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, v. 37, n. 4, p. 649–661, 20 fev. 2003. CURRIE, P. J. et al. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. American journal of physiology. Regulatory, integrative and comparative physiology, v. 289, n. 2, p. R353–R358, ago. 2005. CURRIE, P. J. et al. Hypothalamic paraventricular 5-hydroxytryptamine inhibits the effects of ghrelin on eating and energy substrate utilization. Pharmacology Biochemistry and Behavior, v. 97, n. 1, p. 152–155, nov. 2010. CURRIE, P. J. et al. Urocortin I inhibits the effects of ghrelin and neuropeptide Y on feeding and energy substrate utilization. Brain research, v. 1385, p. 127–134, 18 abr. 2011. CURRIE, P. J. et al. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behavioural Brain Research, v. 226, n. 1, p. 96–105, 1 jan. 2012. DA SILVA, M. P. et al. In vitro differentiation between oxytocin- and vasopressin-secreting magnocellular neurons requires more than one experimental criterion. Molecular and cellular endocrinology, v. 400, p. 102–11, 15 jan. 2015. DATE, Y. et al. The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, v. 123, n. 4, p. 1120–1128, out. 2002. DATE, Y. et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology, v. 146, n. 8, p. 3518–25, ago. 2005. DE VRIESE, C. et al. Ghrelin Degradation by Serum and Tissue Homogenates: Identification of the Cleavage Sites. Endocrinology, v. 145, n. 11, p. 4997–5005, nov. 2004. DIANO, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature neuroscience, v. 9, n. 3, p. 381–8, mar. 2006. DIETZE, S. et al. Food Deprivation, Body Weight Loss and Anxiety-Related Behavior in Rats. Animals : an open access journal from MDPI, v. 6, n. 1, 7 jan. 2016. DRAZEN, D. L. et al. Effects of a fixed meal pattern on ghrelin secretion: Evidence for a learned response independent of nutrient status. Endocrinology, v. 147, n. 1, p. 23–30, jan. 2006. DUERRSCHMID, C. et al. Asprosin is a centrally acting orexigenic hormone. Nature medicine, v. 23, n. 12, p. 1444–1453, dez. 2017. EDWARDS, A.; ABIZAID, A. Clarifying the ghrelin system’s ability to regulate feeding behaviours despite enigmatic spatial separation of the GHSR and its endogenous ligand. International Journal of Molecular Sciences, v. 18, n. 4, 2017. ETKIN, A.; WAGER, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American journal of psychiatry, v. 164, n. 10, p. 1476–88, out. 2007. FERGUSON, A. V.; LATCHFORD, K. J.; SAMSON, W. K. The paraventricular nucleus of the hypothalamus – a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, v. 12, n. 6, p. 717–727, 15 jun. 2008. FERNANDEZ, G. et al. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin- Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. Journal of Neuroendocrinology, v. 28, n. 2, p. n/a-n/a, fev. 2016a. FERNANDEZ, G. et al. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin- Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. Journal of neuroendocrinology, v. 28, n. 2, p. 12349, fev. 2016b. FERRARIO, C. R. et al. Homeostasis Meets Motivation in the Battle to Control Food Intake. The Journal of Neuroscience, v. 36, n. 45, p. 11469–11481, 2016. FERRINI, F. et al. Ghrelin in Central Neurons. Current Neuropharmacology, v. 7, n. 1, p. 37–49, 1 mar. 2009. FRY, M.; FERGUSON, A. V. Ghrelin modulates electrical activity of area postrema neurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 296, n. 3, p. R485-92, mar. 2009. FRY, M.; FERGUSON, A. V. Ghrelin: central nervous system sites of action in regulation of energy balance. International journal of peptides, v. 2010, jan. 2010. GÁLFI, M. et al. Ghrelin-Induced Enhancement of Vasopressin and Oxytocin Secretion in Rat Neurohypophyseal Cell Cultures. Journal of molecular neuroscience : MN, v. 60, n. 4, p. 525–530, dez. 2016. GENN, R. F. et al. Age-associated sex differences in response to food deprivation in two animal tests of anxiety. Neuroscience and biobehavioral reviews, v. 27, n. 1–2, p. 155–61, 2003. GHAMARI-LANGROUDI, M. et al. Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Molecular endocrinology (Baltimore, Md.), v. 24, n. 12, p. 2366–81, dez. 2010. GIMÉNEZ-PALOP, O. et al. Circulating ghrelin in thyroid dysfunction is related to insulin resistance and not to hunger, food intake or anthropometric changes. European journal of endocrinology, v. 153, n. 1, p. 73–9, jul. 2005. GRAEFF, F. G. [Anxiety, panic and the hypothalamic-pituitary-adrenal axis]. Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999), v. 29 Suppl 1, p. S3-6, maio 2007. GRAY, T. S. Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Annals of the New York Academy of Sciences, v. 697, p. 53–60, 29 out. 1993. GUAN, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain research. Molecular brain research, v. 48, n. 1, p. 23–9, ago. 1997. GUO, F. et al. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology, v. 145, n. 5, p. 2221–7, maio 2004. HAAM, J. et al. GABA Is Excitatory in Adult Vasopressinergic Neuroendocrine Cells. Journal of Neuroscience, v. 32, n. 2, p. 572–582, 11 jan. 2012. HAAM, J. et al. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal-Glial Stimulation of Excitatory GABA Circuits. Journal of Neuroscience, v. 34, n. 18, p. 6201–6213, 2014. HAHN, T. M. et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, v. 1, n. 4, p. 271–272, 1 ago. 1998. HANSSON, C. et al. Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence. Neuroscience, v. 180, p. 201–211, abr. 2011. HARROLD, J. A. et al. Autoradiographic analysis of ghrelin receptors in the rat hypothalamus. Brain Research, v. 1196, p. 59–64, 27 fev. 2008. HASHIMOTO, H. et al. Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology, v. 148, n. 4, p. 1638–47, abr. 2007. HERNÁNDEZ, V. S. et al. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus. Frontiers in neuroanatomy, v. 9, n. October, p. 130, 2015. HERNÁNDEZ, V. S. et al. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Frontiers in neural circuits, v. 10, p. 92, 2016. HERRY, C. et al. Switching on and off fear by distinct neuronal circuits. Nature, v. 454, n. 7204, p. 600–6, 31 jul. 2008. HOLST, B. et al. High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Molecular endocrinology (Baltimore, Md.), v. 17, n. 11, p. 2201–10, nov. 2003. HOSODA, H. et al. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochemical and biophysical research communications, v. 279, n. 3, p. 909–13, 29 dez. 2000. HOYDA, T. D.; SAMSON, W. K.; FERGUSON, A. V. Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology, v. 150, n. 2, p. 832–40, fev. 2009. HRABOVSZKY, E. et al. Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology, v. 146, n. 1, p. 341–7, jan. 2005. HUANG, H.-J. et al. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents. Behavioural brain research, v. 326, p. 33–43, 30 maio 2017. HULBERT, A. J. Thyroid hormones and their effects: a new perspective. Biological reviews of the Cambridge Philosophical Society, v. 75, n. 4, p. 519–631, nov. 2000. INOUE, K. et al. Reduction of anxiety after restricted feeding in the rat: implication for eating disorders. Biological psychiatry, v. 55, n. 11, p. 1075–81, 1 jun. 2004. ISHIZAKI, S. et al. Role of ghrelin in the regulation of vasopressin release in conscious rats. Endocrinology, v. 143, n. 5, p. 1589–93, maio 2002. JENSEN, M. et al. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala. The international journal of neuropsychopharmacology, v. 19, n. 5, maio 2016. JEWETT, D. C. et al. Intraparaventricular neuropeptide Y and ghrelin induce learned behaviors that report food deprivation in rats. NeuroReport, v. 17, n. 7, p. 733–737, 2006. JOSEPH-BRAVO, P. et al. 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. The Journal of endocrinology, v. 226, n. 2, p. T85–T100, ago. 2015. KAGEYAMA, K. et al. Ghrelin stimulates corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells. Stress, v. 14, n. 5, p. 520–529, set. 2011. KAGEYAMA, K. et al. Dexamethasone stimulates the expression of ghrelin and its receptor in rat hypothalamic 4B cells. Regulatory Peptides, v. 174, n. 1–3, p. 12–17, 2012. KAMEGAI, J. et al. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology, v. 141, n. 12, p. 4797–800, dez. 2000. KAMEGAI, J. et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes, v. 50, n. 11, p. 2438–43, nov. 2001. KAWAKAMI, A. et al. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress. Stress, v. 11, n. 5, p. 363–369, 2008. KELLER-WOOD, M. Hypothalamic-Pituitary--Adrenal Axis-Feedback Control. Comprehensive Physiology, v. 5, n. 3, p. 1161–82, 1 jul. 2015. KLUGE, M. et al. Ghrelin affects the hypothalamus-pituitary-thyroid axis in humans by increasing free thyroxine and decreasing TSH in plasma. European journal of endocrinology, v. 162, n. 6, p. 1059–65, jun. 2010. KLUGE, M. et al. Ghrelin suppresses nocturnal secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in patients with major depression. Journal of psychiatric research, v. 47, n. 9, p. 1236–9, set. 2013. KOBELT, P. et al. CCK inhibits the orexigenic effect of peripheral ghrelin. American journal of physiology. Regulatory, integrative and comparative physiology, v. 288, n. 3, p. R751-8, 2005. KOBELT, P. et al. Bombesin, but not amylin, blocks the orexigenic effect of peripheral ghrelin. American journal of physiology. Regulatory, integrative and comparative physiology, v. 291, n. 4, p. R903-13, 2006. KOBELT, P. et al. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain research, v. 1204, n. 1, p. 77–86, 14 abr. 2008. KOJIMA, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, v. 402, n. 6762, p. 656–60, 9 dez. 1999. KOKKINOS, A. et al. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone. Endocrine, v. 32, n. 1, p. 30–2, ago. 2007. KOLA, B. et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE, v. 3, n. 3, p. e1797, 12 mar. 2008. KORDI, F.; KHAZALI, H. The effect of ghrelin and estradiol on mean concentration of thyroid hormones. International journal of endocrinology and metabolism, v. 13, n. 1, p. e17988, jan. 2015. KRASHES, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. The Journal of clinical investigation, v. 121, n. 4, p. 1424–8, abr. 2011. KUO, Y.-T. et al. The Temporal Sequence of Gut Peptide CNS Interactions Tracked In Vivo by Magnetic Resonance Imaging. Journal of Neuroscience, v. 27, n. 45, p. 12341–12348, 7 nov. 2007. LATCHFORD, K. J.; FERGUSON, A. V. ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 286, n. 5, p. R894- 902, maio 2004. LAWRENCE, C. B. et al. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology, v. 143, n. 1, p. 155–62, jan. 2002. LÓPEZ SOTO, E. J. et al. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. The Journal of general physiology, v. 146, n. 3, p. 205–19, set. 2015. LOZIĆ, M. et al. Over-expression of V1A receptors in PVN modulates autonomic cardiovascular control. Pharmacological research, v. 114, p. 185–195, dez. 2016. LUO, S. X. et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, v. 361, n. 6397, p. 76–81, 2018. LUTHER, J. A. et al. Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. Journal of neuroendocrinology, v. 14, n. 12, p. 929–32, dez. 2002. LUTTER, M. et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature neuroscience, v. 11, n. 7, p. 752–3, jul. 2008. MAHMOUDI, F. et al. The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iranian journal of pharmaceutical research : IJPR, v. 10, n. 3, p. 627–32, 2011. MALAGÓN, M. M. et al. Intracellular signaling mechanisms mediating ghrelin-stimulated growth hormone release in somatotropes. Endocrinology, v. 144, n. 12, p. 5372–80, dez. 2003. MANI, B. K. et al. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. The Journal of comparative neurology, v. 522, n. 16, p. 3644–66, 1 nov. 2014. MANISCALCO, J. W. et al. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats. Journal of Neuroscience, v. 35, n. 30, p. 10701–10714, 29 jul. 2015. MANO-OTAGIRI, A. et al. Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. Journal of Endocrinology, v. 201, n. 3, p. 341–349, jun. 2009. MAO, Y.; TOKUDOME, T.; KISHIMOTO, I. Ghrelin and Blood Pressure Regulation. Current hypertension reports, v. 18, n. 2, p. 15, fev. 2016. MARTIN-IVERSON, M. T.; STEVENSON, K. N. Apomorphine effects on emotional modulation of the startle reflex in rats. Psychopharmacology, v. 181, n. 1, p. 60–70, ago. 2005. MATSUMURA, K. et al. Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension (Dallas, Tex. : 1979), v. 40, n. 5, p. 694–9, nov. 2002. MCILWAIN, K. L. et al. The use of behavioral test batteries: effects of training history. Physiology & behavior, v. 73, n. 5, p. 705–17, ago. 2001. MECAWI, A. DE S. et al. Neuroendocrine Regulation of Hydromineral Homeostasis. Comprehensive Physiology, v. 5, n. 3, p. 1465–516, 1 jul. 2015. MELIS, M. R. R. R. et al. Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neuroscience Letters, v. 329, n. 3, p. 339–343, 6 set. 2002. MENYHÉRT, J. et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Research, v. 1125, n. 1, p. 31–36, 2006. MIETLICKI, E. G.; NOWAK, E. L.; DANIELS, D. The effect of ghrelin on water intake during dipsogenic conditions. Physiology & behavior, v. 96, n. 1, p. 37–43, 8 jan. 2009. MITCHELL, V. et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. The Journal of comparative neurology, v. 429, n. 3, p. 469–89, 15 jan. 2001. MIYATA, S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in neuroscience, v. 9, p. 390, 2015. MORTON, G. J. et al. Central nervous system control of food intake and body weight. Nature, v. 443, n. 7109, p. 289–295, 21 set. 2006. MOZID, A. M. et al. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, v. 35, n. 8, p. 455–9, ago. 2003. MÜLLER, T. D. et al. Ghrelin. Molecular Metabolism, v. 4, n. 6, p. 437–460, jun. 2015. NAKAZATO, M. et al. A role for ghrelin in the central regulation of feeding. Nature, v. 409, n. 6817, p. 194–8, 11 jan. 2001. NEMOTO, T. et al. The effects of ghrelin/GHSs on AVP mRNA expression and release in cultured hypothalamic cells in rats. Peptides, v. 32, n. 6, p. 1281–8, jun. 2011. OLSON, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides, v. 12, n. 1, p. 113–8, 1991. OLSZEWSKI, P. K. et al. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides, v. 24, n. 4, p. 597–602, 2003a. OLSZEWSKI, P. K. et al. Hypothalamic paraventricular injections of ghrelin: Effect on feeding and c-Fos immunoreactivity. Peptides, v. 24, n. 6, p. 919–923, jun. 2003b. OLSZEWSKI, P. K. et al. α-Melanocyte stimulating hormone and ghrelin: Central interaction in feeding control. Peptides, v. 28, n. 10, p. 2084–2089, 2007a. OLSZEWSKI, P. K. et al. Intraventricular ghrelin activates oxytocin neurons: implications in feeding behavior. Neuroreport, v. 18, n. 5, p. 499–503, 26 mar. 2007b. PARK, J. B. et al. Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. The Journal of physiology, v. 582, n. Pt 2, p. 539–51, 15 jul. 2007. PATTERSON, Z. R. et al. Interruption of ghrelin signaling in the PVN increases high-fat diet intake and body weight in stressed and non-stressed C57BL6J male mice. Frontiers in Neuroscience, v. 7, n. 7 SEP, p. 1–7, 2013a. PATTERSON, Z. R. et al. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress. Endocrinology, v. 154, n. 3, p. 1080– 1091, 2013b. PEKARY, A. E.; SATTIN, A. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by ghrelin and 3-TRP-ghrelin. Peptides, v. 36, n. 2, p. 157–67, ago. 2012. PELLOW, S. et al. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods, v. 14, n. 3, p. 149–67, ago. 1985. PERELLO, M. et al. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. The Journal of comparative neurology, v. 520, n. 2, p. 281–94, 1 fev. 2012. PERELLO, M.; DICKSON, S. L. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. Journal of neuroendocrinology, v. 27, n. 6, p. 424–34, jun. 2015. PERELLO, M.; RAINGO, J. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents. PloS one, v. 8, n. 3, p. e59625, 2013. PIRES DA SILVA, M. et al. Nitric Oxide Modulates HCN Channels in Magnocellular Neurons of the Supraoptic Nucleus of Rats by an S-Nitrosylation-Dependent Mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 36, n. 44, p. 11320–11330, 2 nov. 2016. PIRNIK, Z. et al. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochemistry International, v. 59, n. 6, p. 889–895, 2011. PRICE, C. J.; HOYDA, T. D.; FERGUSON, A. V. The area postrema: a brain monitor and integrator of systemic autonomic state. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, v. 14, n. 2, p. 182–94, abr. 2008. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology, v. 463, n. 1–3, p. 3– 33, 28 fev. 2003. PU, S. et al. Interactions between neuropeptide Y and gamma-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinology, v. 140, n. 2, p. 933–40, fev. 1999. PULMAN, K. J. et al. The subfornical organ: a central target for circulating feeding signals. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 26, n. 7, p. 2022–30, 15 fev. 2006. REX, A. et al. Pharmacological Evaluation of a Modified Open-Field Test Sensitive to Anxiolytic Drugs. Pharmacology Biochemistry and Behavior, v. 59, n. 3, p. 677–683, mar. 1998. RIBEIRO, L. F. et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 1, p. E149-58, 7 jan. 2014. RIIS, A. L. D. et al. Hyperthyroidism is associated with suppressed circulating ghrelin levels. The Journal of clinical endocrinology and metabolism, v. 88, n. 2, p. 853–7, fev. 2003. RIOUX, V. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids. OCL, v. 23, n. 3, p. D304, 10 maio 2016. RÖJDMARK, S. et al. Hunger-satiety signals in patients with Graves’ thyrotoxicosis before, during, and after long-term pharmacological treatment. Endocrine, v. 27, n. 1, p. 55–61, jun. 2005. ROOZENDAAL, B.; MCEWEN, B. S.; CHATTARJI, S. Stress, memory and the amygdala. Nature reviews. Neuroscience, v. 10, n. 6, p. 423–33, jun. 2009. RUSSO, C. et al. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake? Neuroscience letters, v. 653, p. 126–131, 13 jul. 2017. RÜTER, J. et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Research, v. 991, n. 1–2, p. 26– 33, 21 nov. 2003. SÁRVÁRI, M. et al. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat. PLoS ONE, v. 9, n. 5, 2014. SATO, T. et al. Structure, regulation and function of ghrelin. Journal of biochemistry, v. 151, n. 2, p. 119–28, mar. 2012. SATOU, M. et al. Identification and characterization of acyl-protein thioesterase 1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal bovine serum and conditioned medium. Endocrinology, v. 151, n. 10, p. 4765–75, out. 2010. SCHAEFFER, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetitemodifying neurons. Proceedings of the National Academy of Sciences, v. 110, n. 4, p. 1512–1517, 2013. SCHMIDT, M. V. et al. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. Journal of Neuroendocrinology, v. 18, n. 11, p. 865–874, 2006. SCHUHLER, S. et al. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. Journal of neuroendocrinology, v. 19, n. 4, p. 239–49, abr. 2007. SCHWARTZ, M. W. et al. Central nervous system control of food intake. Nature, v. 404, n. 6778, p. 661–71, 6 abr. 2000. SCOTT, V.; MCDADE, D. M.; LUCKMAN, S. M. Rapid changes in the sensitivity of arcuate nucleus neurons to central ghrelin in relation to feeding status. Physiology and Behavior, v. 90, n. 1, p. 180–185, 2007. SHARP, B. M. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational psychiatry, v. 7, n. 8, p. e1194, 8 ago. 2017. SHRESTHA, Y. B.; WICKWIRE, K.; GIRAUDO, S. Q. Action of MT-II on ghrelin-induced feeding in the paraventricular nucleus of the hypothalamus. NeuroReport, v. 15, n. 8, p. 1365–1367, 7 jun. 2004. SHRESTHA, Y. B.; WICKWIRE, K.; GIRAUDO, S. Q. Role of AgRP on Ghrelin-induced feeding in the hypothalamic paraventricular nucleus. Regulatory Peptides, v. 133, n. 1–3, p. 68–73, 2006. SHRESTHA, Y. B. Y.; WICKWIRE, K.; GIRAUDO, S. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance. Peptides, v. 30, n. 7, p. 1336–1341, jul. 2009. SIMMONS, D. M.; SWANSON, L. W. High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neuroscience letters, v. 438, n. 1, p. 85–9, 13 jun. 2008. SMITH, S. M.; VALE, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in clinical neuroscience, v. 8, n. 4, p. 383–95, 2006. SO, M. et al. Inhibition of ghrelin-induced feeding in rats by pretreatment with a novel dual orexin receptor antagonist. Journal of Physiological Sciences, v. 68, n. 2, p. 129–136, 2018. SOBRINO CRESPO, C. et al. Peptides and food intake. Frontiers in endocrinology, v. 5, n. APR, p. 58, jan. 2014. SOLOMON, A.; DE FANTI, B. A.; ALFREDO MARTÍNEZ, J. Peripheral Ghrelin participates in glucostatic feeding mechanisms and in the anorexigenic signalling mediated by CART and CRF neurons. Nutritional Neuroscience, v. 8, n. 5–6, p. 287–295, 2 out. 2005. SOMINSKY, L. et al. Early life disruption to the ghrelin system with over-eating is resolved in adulthood in male rats. Neuropharmacology, v. 113, p. 21–30, fev. 2017. SOMINSKY, L.; SPENCER, S. J. Eating behavior and stress: A pathway to obesity. Frontiers in Psychology, v. 5, n. MAY, p. 1–8, 2014. SON, S. J. et al. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron, v. 78, n. 6, p. 1036–49, 19 jun. 2013. SORIA-GÓMEZ, E. et al. Cannabinoid type-1 receptors in the paraventricular nucleus of the hypothalamus inhibit stimulated food intake. Neuroscience, v. 263, p. 46–53, 2014. SOSIĆ-JURJEVIĆ, B. et al. Central ghrelin affects pituitary-thyroid axis: histomorphological and hormonal study in rats. Neuroendocrinology, v. 89, n. 3, p. 327–36, 2009. SPENCER, S. J. et al. Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress. Biological Psychiatry, v. 72, n. 6, p. 457–465, 15 set. 2012. SPENCER, S. J. et al. Ghrelin’s Role in the Hypothalamic-Pituitary-Adrenal Axis Stress Response: Implications for Mood Disorders. Biological psychiatry, v. 78, n. 1, p. 19–27, 1 jul. 2015. SPETTER, M. S.; HALLSCHMID, M. Current findings on the role of oxytocin in the regulation of food intake. Physiology & behavior, v. 176, p. 31–39, 1 jul. 2017. STARK, R. et al. Des-acyl ghrelin and ghrelin O-acyltransferase regulate hypothalamicpituitary- adrenal axis activation and anxiety in response to acute stress. Endocrinology, v. 157, n. 10, p. 3946–3957, 2016. STEIN, M. B. et al. Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. The American journal of psychiatry, v. 164, n. 2, p. 318–27, 1 fev. 2007. STERN, J. E. Electrophysiological and morphological properties of pre-autonomic neurones in the rat hypothalamic paraventricular nucleus. The Journal of physiology, v. 537, n. Pt 1, p. 161–77, 15 nov. 2001. STERN, J. E. Neuroendocrine-autonomic integration in the paraventricular nucleus: novel roles for dendritically released neuropeptides. Journal of neuroendocrinology, v. 27, n. 6, p. 487–97, jun. 2015. STEWARD, C. A. et al. Central administration of thyrotropin releasing hormone (TRH) and related peptides inhibits feeding behavior in the Siberian hamster. Neuroreport, v. 14, n. 5, p. 687–91, 15 abr. 2003. SUTTON, A. K.; MYERS, M. G.; OLSON, D. P. The Role of PVH Circuits in Leptin Action and Energy Balance. Annual Review of Physiology, v. 78, n. 1, p. 207–221, 10 fev. 2016. SZENTIRMAI, E. et al. Ghrelin microinjection into forebrain sites induces wakefulness and feeding in rats. American journal of physiology. Regulatory, integrative and comparative physiology, v. 292, n. 1, p. R575-85, jan. 2007. TAKAYA, K. et al. Ghrelin strongly stimulates growth hormone release in humans. The Journal of clinical endocrinology and metabolism, v. 85, n. 12, p. 4908–11, dez. 2000. TANIDA, M. et al. Involvement of the histaminergic system in renal sympathetic and cardiovascular responses to leptin and ghrelin. Neuroscience letters, v. 413, n. 1, p. 88–92, 8 fev. 2007. TASKER, J. G.; DUDEK, F. E. Electrophysiological properties of neurones in the region of the paraventricular nucleus in slices of rat hypothalamus. The Journal of physiology, v. 434, p. 271–93, mar. 1991. TER HORST, G. J. et al. Ascending projections from the solitary tract nucleus to the hypothalamus. A Phaseolus vulgaris lectin tracing study in the rat. Neuroscience, v. 31, n. 3, p. 785–97, 1989. THEANDER-CARRILLO, C. et al. Ghrelin action in the brain controls adipocyte metabolism. The Journal of clinical investigation, v. 116, n. 7, p. 1983–93, jul. 2006. THOMAS, M. A.; RYU, V.; BARTNESS, T. J. Central ghrelin increases food foraging/hoarding that is blocked by GHSR antagonism and attenuates hypothalamic paraventricular nucleus neuronal activation. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, v. 310, n. 3, p. R275–R285, 1 fev. 2016. TOLLE, V. et al. Ultradian rhythmicity of ghrelin secretion in relation with gh, feeding behavior, and sleep-wake patterns in rats. Endocrinology, v. 143, n. 4, p. 1353–1361, abr. 2002. TORRES, P. J. et al. The role of intragestational ghrelin on postnatal development and reproductive programming in mice. Reproduction (Cambridge, England), v. 156, n. 4, p. 331–341, 1 out. 2018. TSCHÖP, M. et al. Ghrelin induces adiposity in rodents. Nature, v. 407, n. 6806, p. 908–913, 19 out. 2000. TSUJII, S.; BRAY, G. A. GABA-related feeding control in genetically obese rats. Brain research, v. 540, n. 1–2, p. 48–54, 1 fev. 1991. TUCCI, S. A. et al. The cannabinoid CB1 receptor antagonist SR141716 blocks the orexigenic effects of intrahypothalamic ghrelin. British journal of pharmacology, v. 143, n. 5, p. 520–3, nov. 2004. URIARTE, M. et al. Evidence Supporting a Role for the Blood-Cerebrospinal Fluid Barrier Transporting Circulating Ghrelin into the Brain. Molecular neurobiology, v. 3, n. 10, p. 3323–31, 2 out. 2018. VALASSI, E.; SCACCHI, M.; CAVAGNINI, F. Neuroendocrine control of food intake. Nutrition, Metabolism and Cardiovascular Diseases, v. 18, n. 2, p. 158–168, 2008. VILA, G. et al. Systemic administration of oxytocin reduces basal and lipopolysaccharideinduced ghrelin levels in healthy men. The Journal of endocrinology, v. 203, n. 1, p. 175–9, out. 2009. VOIGT, J.-P.; FINK, H. Serotonin controlling feeding and satiety. Behavioural brain research, v. 277, p. 14–31, 15 jan. 2015. WANG, J. et al. Effects of ghrelin, corticotrophin-releasing hormone, and melanotan-II on food intake in rats with paraventricular nucleus lesions. Experimental and Clinical Endocrinology and Diabetes, v. 115, n. 10, p. 669–673, nov. 2007. WANG, J. et al. Neuropeptide y loses its orexigenic effect in rats with lesions of the hypothalamic paraventricular nucleus. Endocrine Research, v. 38, n. 1, p. 8–14, 17 maio 2013. WANG, Y. et al. Extrinsic ghrelin in the paraventricular nucleus increases small intestinal motility in rats by activating central growth hormone secretagogue and enteric cholinergic receptors. Peptides, v. 74, p. 43–9, dez. 2015. WAUSON, S. E. R. et al. Midbrain raphe 5-HT1A receptor activation alters the effects of ghrelin on appetite and performance in the elevated plus maze. Journal of psychopharmacology (Oxford, England), v. 29, n. 7, p. 836–44, jul. 2015. WHITLOCK, G. et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet, v. 373, n. 9669, p. 1083–96, 28 mar. 2009. WREN, A. M. et al. The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology, v. 141, n. 11, p. 4325–8, nov. 2000. WREN, A. M. et al. Ghrelin causes hyperphagia and obesity in rats. Diabetes, v. 50, n. 11, p. 2540–7, nov. 2001. WREN, A. M. et al. The hypothalamic mechanisms of the hypophysiotropic action of ghrelin. Neuroendocrinology, v. 76, n. 5, p. 316–24, nov. 2002. XU, J. et al. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. Journal of Neuroscience, v. 36, n. 34, p. 8902–8920, 2016. YASUDA, T. et al. Centrally administered ghrelin suppresses sympathetic nerve activity in brown adipose tissue of rats. Neuroscience letters, v. 349, n. 2, p. 75–8, 2 out. 2003. YI, C.-X.; TSCHÖP, M. H. Brain-gut-adipose-tissue communication pathways at a glance. Disease models & mechanisms, v. 5, n. 5, p. 583–7, set. 2012. YOKOTE, R. et al. Molecular cloning and gene expression of growth hormone-releasing peptide receptor in rat tissues. Peptides, v. 19, n. 1, p. 15–20, 1998. YOKOYAMA, T. et al. Ghrelin Potentiates Miniature Excitatory Postsynaptic Currents in Supraoptic Magnocellular Neurones. Journal of Neuroendocrinology, v. 21, n. 11, p. 910– 920, nov. 2009. ZHANG, J. et al. Optimal locations and parameters of gastric electrical stimulation in altering ghrelin and oxytocin in the hypothalamus of rats. Neuroscience Research, v. 62, n. 4, p. 262– 269, dez. 2008. ZHANG, L. et al. Thirst Is Associated with Suppression of Habenula Output and Active Stress Coping: Is there a Role for a Non-canonical Vasopressin-Glutamate Pathway? Frontiers in neural circuits, v. 10, p. 13, 2016. ZHANG, X.; VAN DEN POL, A. N. Hypothalamic arcuate nucleus tyrosine hydroxylase neurons play orexigenic role in energy homeostasis. Nature Neuroscience, v. 19, n. 10, p. 1341–1347, 2016. ZIGMAN, J. M. et al. Expression of ghrelin receptor mRNA in the rat and the mouse brain. Journal of Comparative Neurology, v. 494, n. 3, p. 528–48, 2006.https://tede.ufrrj.br/retrieve/67965/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/5339Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-01-28T00:58:13Z No. of bitstreams: 1 2019 - Raoni da Conceição dos Santos.pdf: 7195833 bytes, checksum: e1693d86332a3c14382f151efffe7301 (MD5)Made available in DSpace on 2022-01-28T00:58:13Z (GMT). No. of bitstreams: 1 2019 - Raoni da Conceição dos Santos.pdf: 7195833 bytes, checksum: e1693d86332a3c14382f151efffe7301 (MD5) Previous issue date: 2019-02-15info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2019 - Raoni da Conceição dos Santos.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/1/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2019 - Raoni da Conceição dos Santos.pdf.txtExtracted Texttext/plain339063https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/2/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf.txted1a77d671509de0b134f924c3538d0eMD52ORIGINAL2019 - Raoni da Conceição dos Santos.pdfapplication/pdf7195833https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/3/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdfe1693d86332a3c14382f151efffe7301MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/94272023-12-21 15:39:14.594oai:rima.ufrrj.br:20.500.14407/9427Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-21T18:39:14Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
dc.title.alternative.eng.fl_str_mv The influence of ghrelin on anxietylike behavior and the activity of paraventricular hypothalamic nucleus and basolateral amygdala neurons in rats
title A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
spellingShingle A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
Santos, Raoni da Conceição dos
grelina
controle da ingestão alimentar
comportamento análogo à ansiedade
amígdala basolateral
núcleo paraventricular do hipotálamo
ghrelin
food intake control
anxiety-like behavior
basolateral amygdala
paraventricular hypothalamic nucleus
Fisiologia
Farmacologia
title_short A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
title_full A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
title_fullStr A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
title_full_unstemmed A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
title_sort A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos
author Santos, Raoni da Conceição dos
author_facet Santos, Raoni da Conceição dos
author_role author
dc.contributor.author.fl_str_mv Santos, Raoni da Conceição dos
dc.contributor.advisor1.fl_str_mv Reis, Luis Carlos
dc.contributor.advisor1ID.fl_str_mv CPF: 484.252.577-00
dc.contributor.referee1.fl_str_mv Côrtes, Wellington da Silva
dc.contributor.referee2.fl_str_mv Malvar, David do Carmo
dc.contributor.referee3.fl_str_mv Trevenzoli, lsis Hara
dc.contributor.referee4.fl_str_mv Borges, Danilo Lustrino
dc.contributor.authorID.fl_str_mv CPF: 123.652.537-09
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8167279770901538
contributor_str_mv Reis, Luis Carlos
Côrtes, Wellington da Silva
Malvar, David do Carmo
Trevenzoli, lsis Hara
Borges, Danilo Lustrino
dc.subject.por.fl_str_mv grelina
controle da ingestão alimentar
comportamento análogo à ansiedade
amígdala basolateral
núcleo paraventricular do hipotálamo
topic grelina
controle da ingestão alimentar
comportamento análogo à ansiedade
amígdala basolateral
núcleo paraventricular do hipotálamo
ghrelin
food intake control
anxiety-like behavior
basolateral amygdala
paraventricular hypothalamic nucleus
Fisiologia
Farmacologia
dc.subject.eng.fl_str_mv ghrelin
food intake control
anxiety-like behavior
basolateral amygdala
paraventricular hypothalamic nucleus
dc.subject.cnpq.fl_str_mv Fisiologia
Farmacologia
description A grelina é um hormônio orexigênico produzido principalmente pelo estômago. Além de seu efeito indutor da fome a grelina também afeta uma série de variáveis fisiológicas como o controle neuroendócrino, a função autonômica e cardiovascular, a resposta ao estresse e os comportamentos análogos à ansiedade e depressão. O núcleo paraventricular do hipotálamo (PVN) e a amígdala basolateral (BLA) são núcleos encefálicos importantes na integração de diversos dos efeitos da grelina. Para elucidar os efeitos da grelina sobre a atividade de neurônios do PVN nós utilizamos registros eletrofisiológicos extracelulares e intracelulares em fatias de encéfalo ex vivo, e observamos que a grelina pode aumentar ou diminuir a frequência de disparos dos neurônios do PVN, porém, os efeitos excitatórios são diretos, enquanto os efeitos inibitórios são indiretos. Verificamos também que a grelina afeta a maioria dos neurônios desse núcleo sejam eles pré-autonômicos, neuroendócrinos parvocelulares ou neuroendócrinos magnocelulares; e que a maioria dos neurônios TRH, CRH e OT do PVN é hiperpolarizada pela grelina. Similarmente, realizamos registros intracelulares de neurônios da BLA e verificamos que a grelina é capaz de aumentar ou diminuir o potencial de membrana de neurônios deste núcleo. Em seguida, analisamos as alterações comportamentais causadas pela privação alimentar, um estímulo fisiológico que aumenta a grelina plasmática, e da administração exógena de grelina sobre os comportamentos análogos à ansiedade e sobre a atividade exploratória. Nestes experimentos verificamos que a privação alimentar diminui o comportamento análogo à ansiedade no labirinto em cruz elevado (4,55 ± 0,97 vs 13,82 ± 3,02 %; p = 0,01; teste t não pareado) e não altera a atividade exploratória no campo aberto e no campo aberto modificado. No entanto, a grelina não afetou o comportamento análogo à ansiedade no labirinto em cruz elevado. Em conjunto os resultados descritos nessa tese demonstram que a grelina afeta núcleos encefálicos envolvidos com o controle de diversas funções fisiológicas, e provê um substrato neurobiológico para algumas funções deste hormônio. No entanto, não observamos efeitos comportamentais da grelina, o que sugere a necessidade de estudos futuros para elucidar a participação do hormônio nas respostas comportamentais que medeiam a resposta à situações de déficit calórico, como a privação alimentar.
publishDate 2019
dc.date.issued.fl_str_mv 2019-02-15
dc.date.accessioned.fl_str_mv 2023-12-21T18:39:14Z
dc.date.available.fl_str_mv 2023-12-21T18:39:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, Raoni da Conceição dos. A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos. 2019. 140 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/9427
identifier_str_mv SANTOS, Raoni da Conceição dos. A influência da grelina sobre o comportamento análogo à ansiedade e a atividade de neurônios do núcleo paraventricular do hipotálamo e da amígdala basolateral em ratos. 2019. 140 f. Tese (Doutorado em Ciências Fisiológicas) - Instituto de Ciências Biológicas e da Saúde, Departamento de Ciências Fisiológicas, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2019.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/9427
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv ABTAHI, S. et al. Ghrelin enhances food intake and carbohydrate oxidation in a nitric oxide dependent manner. General and Comparative Endocrinology, v. 250, p. 9–14, 2017. ABTAHI, S. et al. Exendin-4 antagonizes the metabolic action of acylated ghrelinergic signaling in the hypothalamic paraventricular nucleus. General and Comparative Endocrinology, out. 2018. ALLSOP, S. A. et al. Optogenetic insights on the relationship between anxiety-related behaviors and social deficits. Frontiers in behavioral neuroscience, v. 8, p. 241, 2014. ALVAREZ-CRESPO, M. et al. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PloS one, v. 7, n. 10, p. e46321, 2012. ANDREWS, Z. B. et al. UCP2 mediates ghrelin’s action on NPY/AgRP neurons by lowering free radicals. Nature, v. 454, n. 7206, p. 846–51, 14 ago. 2008. APONTE, Y.; ATASOY, D.; STERNSON, S. M. AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nature neuroscience, v. 14, n. 3, p. 351–5, mar. 2011. ARVAT, E. et al. Endocrine activities of ghrelin, a natural growth hormone secretagogue (GHS), in humans: comparison and interactions with hexarelin, a nonnatural peptidyl GHS, and GH-releasing hormone. The Journal of clinical endocrinology and metabolism, v. 86, n. 3, p. 1169–74, mar. 2001. ASAKAWA, A. et al. A role of ghrelin in neuroendocrine and behavioral responses to stress in mice. Neuroendocrinology, v. 74, n. 3, p. 143–7, set. 2001. BANKS, W. A. et al. Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. The Journal of pharmacology and experimental therapeutics, v. 302, n. 2, p. 822–7, ago. 2002. BLANCHARD, D. C.; BLANCHARD, R. J. Ethoexperimental approaches to the biology of emotion. Annual review of psychology, v. 39, p. 43–68, 1988. BOMBERG, E. M. et al. Central ghrelin induces feeding driven by energy needs not by reward. NeuroReport, v. 18, n. 6, p. 591–595, 2007. BROCKWAY, E. T. et al. Impact of [d-Lys3]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides, v. 79, p. 95–102, 2016a. BROCKWAY, E. T. et al. Impact of [d-Lys(3)]-GHRP-6 and feeding status on hypothalamic ghrelin-induced stress activation. Peptides, v. 79, p. 95–102, maio 2016b. CABRAL, A. et al. Ghrelin indirectly activates hypophysiotropic CRF neurons in rodents. PLoS ONE, v. 7, n. 2, p. 1–10, 20 fev. 2012. CABRAL, A. et al. Ghrelin activates hypophysiotropic corticotropin-releasing factor neurons independently of the arcuate nucleus. Psychoneuroendocrinology, v. 67, p. 27–39, maio 2016. CABRAL, A. et al. Circulating Ghrelin Acts on GABA Neurons of the Area Postrema and Mediates Gastric Emptying in Male Mice. Endocrinology, v. 158, n. 5, p. 1436–1449, 2017a. CABRAL, A. et al. Is Ghrelin Synthesized in the Central Nervous System? International journal of molecular sciences, v. 18, n. 3, 15 mar. 2017b. CABRAL, A.; FERNANDEZ, G.; PERELLO, M. Analysis of brain nuclei accessible to ghrelin present in the cerebrospinal fluid. Neuroscience, v. 253, p. 406–15, 3 dez. 2013. CAMINOS, J. E. et al. Influence of thyroid status and growth hormone deficiency on ghrelin. European journal of endocrinology, v. 147, n. 1, p. 159–63, jul. 2002. CARLINI, V. P. et al. Ghrelin increases anxiety-like behavior and memory retention in rats. Biochemical and biophysical research communications, v. 299, n. 5, p. 739–43, 20 dez. 2002. CARLINI, V. P. et al. Differential role of the hippocampus, amygdala, and dorsal raphe nucleus in regulating feeding, memory, and anxiety-like behavioral responses to ghrelin. Biochemical and biophysical research communications, v. 313, n. 3, p. 635–41, 16 jan. 2004. CARLINI, V. P. et al. Acute ghrelin administration reverses depressive-like behavior induced by bilateral olfactory bulbectomy in mice. Peptides, v. 35, n. 2, p. 160–5, jun. 2012. CHEN, X. et al. Effects of ghrelin on hypothalamic glucose responding neurons in rats. Brain Research, v. 1055, n. 1–2, p. 131–136, set. 2005. CHOUZOURIS, T. M. et al. Effects of pregnancy and short-lasting acute feed restriction on total ghrelin concentration and metabolic parameters in dairy cattle. Theriogenology, v. 106, p. 141–148, 15 jan. 2018. COIRO, V. et al. Adrenocorticotropin/cortisol and arginine-vasopressin secretory patterns in response to ghrelin in normal men. Neuroendocrinology, v. 81, n. 2, p. 103–6, 2005. COIRO, V. et al. Oxytocin does not modify GH, ACTH, cortisol and prolactin responses to Ghrelin in normal men. Neuropeptides, v. 45, n. 2, p. 139–42, abr. 2011. COLLDEN, G. et al. Neonatal overnutrition causes early alterations in the central response to peripheral ghrelin. Molecular Metabolism, v. 4, n. 1, p. 15–24, 2015. CÔTÉ, C. D. et al. Hormonal signaling in the gut. The Journal of biological chemistry, v. 289, n. 17, p. 11642–9, 25 abr. 2014. COWLEY, M. A. et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, v. 37, n. 4, p. 649–661, 20 fev. 2003. CURRIE, P. J. et al. Ghrelin is an orexigenic and metabolic signaling peptide in the arcuate and paraventricular nuclei. American journal of physiology. Regulatory, integrative and comparative physiology, v. 289, n. 2, p. R353–R358, ago. 2005. CURRIE, P. J. et al. Hypothalamic paraventricular 5-hydroxytryptamine inhibits the effects of ghrelin on eating and energy substrate utilization. Pharmacology Biochemistry and Behavior, v. 97, n. 1, p. 152–155, nov. 2010. CURRIE, P. J. et al. Urocortin I inhibits the effects of ghrelin and neuropeptide Y on feeding and energy substrate utilization. Brain research, v. 1385, p. 127–134, 18 abr. 2011. CURRIE, P. J. et al. Ghrelin is an orexigenic peptide and elicits anxiety-like behaviors following administration into discrete regions of the hypothalamus. Behavioural Brain Research, v. 226, n. 1, p. 96–105, 1 jan. 2012. DA SILVA, M. P. et al. In vitro differentiation between oxytocin- and vasopressin-secreting magnocellular neurons requires more than one experimental criterion. Molecular and cellular endocrinology, v. 400, p. 102–11, 15 jan. 2015. DATE, Y. et al. The role of the gastric afferent vagal nerve in Ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, v. 123, n. 4, p. 1120–1128, out. 2002. DATE, Y. et al. Peripheral interaction of ghrelin with cholecystokinin on feeding regulation. Endocrinology, v. 146, n. 8, p. 3518–25, ago. 2005. DE VRIESE, C. et al. Ghrelin Degradation by Serum and Tissue Homogenates: Identification of the Cleavage Sites. Endocrinology, v. 145, n. 11, p. 4997–5005, nov. 2004. DIANO, S. et al. Ghrelin controls hippocampal spine synapse density and memory performance. Nature neuroscience, v. 9, n. 3, p. 381–8, mar. 2006. DIETZE, S. et al. Food Deprivation, Body Weight Loss and Anxiety-Related Behavior in Rats. Animals : an open access journal from MDPI, v. 6, n. 1, 7 jan. 2016. DRAZEN, D. L. et al. Effects of a fixed meal pattern on ghrelin secretion: Evidence for a learned response independent of nutrient status. Endocrinology, v. 147, n. 1, p. 23–30, jan. 2006. DUERRSCHMID, C. et al. Asprosin is a centrally acting orexigenic hormone. Nature medicine, v. 23, n. 12, p. 1444–1453, dez. 2017. EDWARDS, A.; ABIZAID, A. Clarifying the ghrelin system’s ability to regulate feeding behaviours despite enigmatic spatial separation of the GHSR and its endogenous ligand. International Journal of Molecular Sciences, v. 18, n. 4, 2017. ETKIN, A.; WAGER, T. D. Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. The American journal of psychiatry, v. 164, n. 10, p. 1476–88, out. 2007. FERGUSON, A. V.; LATCHFORD, K. J.; SAMSON, W. K. The paraventricular nucleus of the hypothalamus – a potential target for integrative treatment of autonomic dysfunction. Expert Opinion on Therapeutic Targets, v. 12, n. 6, p. 717–727, 15 jun. 2008. FERNANDEZ, G. et al. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin- Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. Journal of Neuroendocrinology, v. 28, n. 2, p. n/a-n/a, fev. 2016a. FERNANDEZ, G. et al. Des-Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin- Receptor Independent Manner and Impairs the Orexigenic Effect of Ghrelin. Journal of neuroendocrinology, v. 28, n. 2, p. 12349, fev. 2016b. FERRARIO, C. R. et al. Homeostasis Meets Motivation in the Battle to Control Food Intake. The Journal of Neuroscience, v. 36, n. 45, p. 11469–11481, 2016. FERRINI, F. et al. Ghrelin in Central Neurons. Current Neuropharmacology, v. 7, n. 1, p. 37–49, 1 mar. 2009. FRY, M.; FERGUSON, A. V. Ghrelin modulates electrical activity of area postrema neurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 296, n. 3, p. R485-92, mar. 2009. FRY, M.; FERGUSON, A. V. Ghrelin: central nervous system sites of action in regulation of energy balance. International journal of peptides, v. 2010, jan. 2010. GÁLFI, M. et al. Ghrelin-Induced Enhancement of Vasopressin and Oxytocin Secretion in Rat Neurohypophyseal Cell Cultures. Journal of molecular neuroscience : MN, v. 60, n. 4, p. 525–530, dez. 2016. GENN, R. F. et al. Age-associated sex differences in response to food deprivation in two animal tests of anxiety. Neuroscience and biobehavioral reviews, v. 27, n. 1–2, p. 155–61, 2003. GHAMARI-LANGROUDI, M. et al. Regulation of thyrotropin-releasing hormone-expressing neurons in paraventricular nucleus of the hypothalamus by signals of adiposity. Molecular endocrinology (Baltimore, Md.), v. 24, n. 12, p. 2366–81, dez. 2010. GIMÉNEZ-PALOP, O. et al. Circulating ghrelin in thyroid dysfunction is related to insulin resistance and not to hunger, food intake or anthropometric changes. European journal of endocrinology, v. 153, n. 1, p. 73–9, jul. 2005. GRAEFF, F. G. [Anxiety, panic and the hypothalamic-pituitary-adrenal axis]. Revista brasileira de psiquiatria (Sao Paulo, Brazil : 1999), v. 29 Suppl 1, p. S3-6, maio 2007. GRAY, T. S. Amygdaloid CRF pathways. Role in autonomic, neuroendocrine, and behavioral responses to stress. Annals of the New York Academy of Sciences, v. 697, p. 53–60, 29 out. 1993. GUAN, X. M. et al. Distribution of mRNA encoding the growth hormone secretagogue receptor in brain and peripheral tissues. Brain research. Molecular brain research, v. 48, n. 1, p. 23–9, ago. 1997. GUO, F. et al. Leptin signaling targets the thyrotropin-releasing hormone gene promoter in vivo. Endocrinology, v. 145, n. 5, p. 2221–7, maio 2004. HAAM, J. et al. GABA Is Excitatory in Adult Vasopressinergic Neuroendocrine Cells. Journal of Neuroscience, v. 32, n. 2, p. 572–582, 11 jan. 2012. HAAM, J. et al. Nutritional State-Dependent Ghrelin Activation of Vasopressin Neurons via Retrograde Trans-Neuronal-Glial Stimulation of Excitatory GABA Circuits. Journal of Neuroscience, v. 34, n. 18, p. 6201–6213, 2014. HAHN, T. M. et al. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neuroscience, v. 1, n. 4, p. 271–272, 1 ago. 1998. HANSSON, C. et al. Central administration of ghrelin alters emotional responses in rats: behavioural, electrophysiological and molecular evidence. Neuroscience, v. 180, p. 201–211, abr. 2011. HARROLD, J. A. et al. Autoradiographic analysis of ghrelin receptors in the rat hypothalamus. Brain Research, v. 1196, p. 59–64, 27 fev. 2008. HASHIMOTO, H. et al. Centrally and peripherally administered ghrelin potently inhibits water intake in rats. Endocrinology, v. 148, n. 4, p. 1638–47, abr. 2007. HERNÁNDEZ, V. S. et al. Extra-neurohypophyseal axonal projections from individual vasopressin-containing magnocellular neurons in rat hypothalamus. Frontiers in neuroanatomy, v. 9, n. October, p. 130, 2015. HERNÁNDEZ, V. S. et al. Hypothalamic Vasopressinergic Projections Innervate Central Amygdala GABAergic Neurons: Implications for Anxiety and Stress Coping. Frontiers in neural circuits, v. 10, p. 92, 2016. HERRY, C. et al. Switching on and off fear by distinct neuronal circuits. Nature, v. 454, n. 7204, p. 600–6, 31 jul. 2008. HOLST, B. et al. High constitutive signaling of the ghrelin receptor--identification of a potent inverse agonist. Molecular endocrinology (Baltimore, Md.), v. 17, n. 11, p. 2201–10, nov. 2003. HOSODA, H. et al. Ghrelin and des-acyl ghrelin: two major forms of rat ghrelin peptide in gastrointestinal tissue. Biochemical and biophysical research communications, v. 279, n. 3, p. 909–13, 29 dez. 2000. HOYDA, T. D.; SAMSON, W. K.; FERGUSON, A. V. Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology, v. 150, n. 2, p. 832–40, fev. 2009. HRABOVSZKY, E. et al. Hypophysiotropic thyrotropin-releasing hormone and corticotropin-releasing hormone neurons of the rat contain vesicular glutamate transporter-2. Endocrinology, v. 146, n. 1, p. 341–7, jan. 2005. HUANG, H.-J. et al. Ghrelin alleviates anxiety- and depression-like behaviors induced by chronic unpredictable mild stress in rodents. Behavioural brain research, v. 326, p. 33–43, 30 maio 2017. HULBERT, A. J. Thyroid hormones and their effects: a new perspective. Biological reviews of the Cambridge Philosophical Society, v. 75, n. 4, p. 519–631, nov. 2000. INOUE, K. et al. Reduction of anxiety after restricted feeding in the rat: implication for eating disorders. Biological psychiatry, v. 55, n. 11, p. 1075–81, 1 jun. 2004. ISHIZAKI, S. et al. Role of ghrelin in the regulation of vasopressin release in conscious rats. Endocrinology, v. 143, n. 5, p. 1589–93, maio 2002. JENSEN, M. et al. Anxiolytic-Like Effects of Increased Ghrelin Receptor Signaling in the Amygdala. The international journal of neuropsychopharmacology, v. 19, n. 5, maio 2016. JEWETT, D. C. et al. Intraparaventricular neuropeptide Y and ghrelin induce learned behaviors that report food deprivation in rats. NeuroReport, v. 17, n. 7, p. 733–737, 2006. JOSEPH-BRAVO, P. et al. 60 YEARS OF NEUROENDOCRINOLOGY: TRH, the first hypophysiotropic releasing hormone isolated: control of the pituitary-thyroid axis. The Journal of endocrinology, v. 226, n. 2, p. T85–T100, ago. 2015. KAGEYAMA, K. et al. Ghrelin stimulates corticotropin-releasing factor and vasopressin gene expression in rat hypothalamic 4B cells. Stress, v. 14, n. 5, p. 520–529, set. 2011. KAGEYAMA, K. et al. Dexamethasone stimulates the expression of ghrelin and its receptor in rat hypothalamic 4B cells. Regulatory Peptides, v. 174, n. 1–3, p. 12–17, 2012. KAMEGAI, J. et al. Central effect of ghrelin, an endogenous growth hormone secretagogue, on hypothalamic peptide gene expression. Endocrinology, v. 141, n. 12, p. 4797–800, dez. 2000. KAMEGAI, J. et al. Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes, v. 50, n. 11, p. 2438–43, nov. 2001. KAWAKAMI, A. et al. Leptin inhibits and ghrelin augments hypothalamic noradrenaline release after stress. Stress, v. 11, n. 5, p. 363–369, 2008. KELLER-WOOD, M. Hypothalamic-Pituitary--Adrenal Axis-Feedback Control. Comprehensive Physiology, v. 5, n. 3, p. 1161–82, 1 jul. 2015. KLUGE, M. et al. Ghrelin affects the hypothalamus-pituitary-thyroid axis in humans by increasing free thyroxine and decreasing TSH in plasma. European journal of endocrinology, v. 162, n. 6, p. 1059–65, jun. 2010. KLUGE, M. et al. Ghrelin suppresses nocturnal secretion of luteinizing hormone (LH) and thyroid stimulating hormone (TSH) in patients with major depression. Journal of psychiatric research, v. 47, n. 9, p. 1236–9, set. 2013. KOBELT, P. et al. CCK inhibits the orexigenic effect of peripheral ghrelin. American journal of physiology. Regulatory, integrative and comparative physiology, v. 288, n. 3, p. R751-8, 2005. KOBELT, P. et al. Bombesin, but not amylin, blocks the orexigenic effect of peripheral ghrelin. American journal of physiology. Regulatory, integrative and comparative physiology, v. 291, n. 4, p. R903-13, 2006. KOBELT, P. et al. Peripheral injection of ghrelin induces Fos expression in the dorsomedial hypothalamic nucleus in rats. Brain research, v. 1204, n. 1, p. 77–86, 14 abr. 2008. KOJIMA, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, v. 402, n. 6762, p. 656–60, 9 dez. 1999. KOKKINOS, A. et al. Possible implications of leptin, adiponectin and ghrelin in the regulation of energy homeostasis by thyroid hormone. Endocrine, v. 32, n. 1, p. 30–2, ago. 2007. KOLA, B. et al. The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system. PLoS ONE, v. 3, n. 3, p. e1797, 12 mar. 2008. KORDI, F.; KHAZALI, H. The effect of ghrelin and estradiol on mean concentration of thyroid hormones. International journal of endocrinology and metabolism, v. 13, n. 1, p. e17988, jan. 2015. KRASHES, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. The Journal of clinical investigation, v. 121, n. 4, p. 1424–8, abr. 2011. KUO, Y.-T. et al. The Temporal Sequence of Gut Peptide CNS Interactions Tracked In Vivo by Magnetic Resonance Imaging. Journal of Neuroscience, v. 27, n. 45, p. 12341–12348, 7 nov. 2007. LATCHFORD, K. J.; FERGUSON, A. V. ANG II-induced excitation of paraventricular nucleus magnocellular neurons: a role for glutamate interneurons. American journal of physiology. Regulatory, integrative and comparative physiology, v. 286, n. 5, p. R894- 902, maio 2004. LAWRENCE, C. B. et al. Acute central ghrelin and GH secretagogues induce feeding and activate brain appetite centers. Endocrinology, v. 143, n. 1, p. 155–62, jan. 2002. LÓPEZ SOTO, E. J. et al. Constitutive and ghrelin-dependent GHSR1a activation impairs CaV2.1 and CaV2.2 currents in hypothalamic neurons. The Journal of general physiology, v. 146, n. 3, p. 205–19, set. 2015. LOZIĆ, M. et al. Over-expression of V1A receptors in PVN modulates autonomic cardiovascular control. Pharmacological research, v. 114, p. 185–195, dez. 2016. LUO, S. X. et al. Regulation of feeding by somatostatin neurons in the tuberal nucleus. Science, v. 361, n. 6397, p. 76–81, 2018. LUTHER, J. A. et al. Neurosecretory and non-neurosecretory parvocellular neurones of the hypothalamic paraventricular nucleus express distinct electrophysiological properties. Journal of neuroendocrinology, v. 14, n. 12, p. 929–32, dez. 2002. LUTTER, M. et al. The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress. Nature neuroscience, v. 11, n. 7, p. 752–3, jul. 2008. MAHMOUDI, F. et al. The effect of central injection of ghrelin and bombesin on mean plasma thyroid hormones concentration. Iranian journal of pharmaceutical research : IJPR, v. 10, n. 3, p. 627–32, 2011. MALAGÓN, M. M. et al. Intracellular signaling mechanisms mediating ghrelin-stimulated growth hormone release in somatotropes. Endocrinology, v. 144, n. 12, p. 5372–80, dez. 2003. MANI, B. K. et al. Neuroanatomical characterization of a growth hormone secretagogue receptor-green fluorescent protein reporter mouse. The Journal of comparative neurology, v. 522, n. 16, p. 3644–66, 1 nov. 2014. MANISCALCO, J. W. et al. Negative Energy Balance Blocks Neural and Behavioral Responses to Acute Stress by “Silencing” Central Glucagon-Like Peptide 1 Signaling in Rats. Journal of Neuroscience, v. 35, n. 30, p. 10701–10714, 29 jul. 2015. MANO-OTAGIRI, A. et al. Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. Journal of Endocrinology, v. 201, n. 3, p. 341–349, jun. 2009. MAO, Y.; TOKUDOME, T.; KISHIMOTO, I. Ghrelin and Blood Pressure Regulation. Current hypertension reports, v. 18, n. 2, p. 15, fev. 2016. MARTIN-IVERSON, M. T.; STEVENSON, K. N. Apomorphine effects on emotional modulation of the startle reflex in rats. Psychopharmacology, v. 181, n. 1, p. 60–70, ago. 2005. MATSUMURA, K. et al. Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension (Dallas, Tex. : 1979), v. 40, n. 5, p. 694–9, nov. 2002. MCILWAIN, K. L. et al. The use of behavioral test batteries: effects of training history. Physiology & behavior, v. 73, n. 5, p. 705–17, ago. 2001. MECAWI, A. DE S. et al. Neuroendocrine Regulation of Hydromineral Homeostasis. Comprehensive Physiology, v. 5, n. 3, p. 1465–516, 1 jul. 2015. MELIS, M. R. R. R. et al. Ghrelin injected into the paraventricular nucleus of the hypothalamus of male rats induces feeding but not penile erection. Neuroscience Letters, v. 329, n. 3, p. 339–343, 6 set. 2002. MENYHÉRT, J. et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus. Brain Research, v. 1125, n. 1, p. 31–36, 2006. MIETLICKI, E. G.; NOWAK, E. L.; DANIELS, D. The effect of ghrelin on water intake during dipsogenic conditions. Physiology & behavior, v. 96, n. 1, p. 37–43, 8 jan. 2009. MITCHELL, V. et al. Comparative distribution of mRNA encoding the growth hormone secretagogue-receptor (GHS-R) in Microcebus murinus (Primate, lemurian) and rat forebrain and pituitary. The Journal of comparative neurology, v. 429, n. 3, p. 469–89, 15 jan. 2001. MIYATA, S. New aspects in fenestrated capillary and tissue dynamics in the sensory circumventricular organs of adult brains. Frontiers in neuroscience, v. 9, p. 390, 2015. MORTON, G. J. et al. Central nervous system control of food intake and body weight. Nature, v. 443, n. 7109, p. 289–295, 21 set. 2006. MOZID, A. M. et al. Ghrelin is released from rat hypothalamic explants and stimulates corticotrophin-releasing hormone and arginine-vasopressin. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, v. 35, n. 8, p. 455–9, ago. 2003. MÜLLER, T. D. et al. Ghrelin. Molecular Metabolism, v. 4, n. 6, p. 437–460, jun. 2015. NAKAZATO, M. et al. A role for ghrelin in the central regulation of feeding. Nature, v. 409, n. 6817, p. 194–8, 11 jan. 2001. NEMOTO, T. et al. The effects of ghrelin/GHSs on AVP mRNA expression and release in cultured hypothalamic cells in rats. Peptides, v. 32, n. 6, p. 1281–8, jun. 2011. OLSON, B. R. et al. Oxytocin and an oxytocin agonist administered centrally decrease food intake in rats. Peptides, v. 12, n. 1, p. 113–8, 1991. OLSZEWSKI, P. K. et al. Neural basis of orexigenic effects of ghrelin acting within lateral hypothalamus. Peptides, v. 24, n. 4, p. 597–602, 2003a. OLSZEWSKI, P. K. et al. Hypothalamic paraventricular injections of ghrelin: Effect on feeding and c-Fos immunoreactivity. Peptides, v. 24, n. 6, p. 919–923, jun. 2003b. OLSZEWSKI, P. K. et al. α-Melanocyte stimulating hormone and ghrelin: Central interaction in feeding control. Peptides, v. 28, n. 10, p. 2084–2089, 2007a. OLSZEWSKI, P. K. et al. Intraventricular ghrelin activates oxytocin neurons: implications in feeding behavior. Neuroreport, v. 18, n. 5, p. 499–503, 26 mar. 2007b. PARK, J. B. et al. Dual GABAA receptor-mediated inhibition in rat presympathetic paraventricular nucleus neurons. The Journal of physiology, v. 582, n. Pt 2, p. 539–51, 15 jul. 2007. PATTERSON, Z. R. et al. Interruption of ghrelin signaling in the PVN increases high-fat diet intake and body weight in stressed and non-stressed C57BL6J male mice. Frontiers in Neuroscience, v. 7, n. 7 SEP, p. 1–7, 2013a. PATTERSON, Z. R. et al. Central ghrelin signaling mediates the metabolic response of C57BL/6 male mice to chronic social defeat stress. Endocrinology, v. 154, n. 3, p. 1080– 1091, 2013b. PEKARY, A. E.; SATTIN, A. Rapid modulation of TRH and TRH-like peptide release in rat brain and peripheral tissues by ghrelin and 3-TRP-ghrelin. Peptides, v. 36, n. 2, p. 157–67, ago. 2012. PELLOW, S. et al. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of neuroscience methods, v. 14, n. 3, p. 149–67, ago. 1985. PERELLO, M. et al. Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain. The Journal of comparative neurology, v. 520, n. 2, p. 281–94, 1 fev. 2012. PERELLO, M.; DICKSON, S. L. Ghrelin signalling on food reward: a salient link between the gut and the mesolimbic system. Journal of neuroendocrinology, v. 27, n. 6, p. 424–34, jun. 2015. PERELLO, M.; RAINGO, J. Leptin activates oxytocin neurons of the hypothalamic paraventricular nucleus in both control and diet-induced obese rodents. PloS one, v. 8, n. 3, p. e59625, 2013. PIRES DA SILVA, M. et al. Nitric Oxide Modulates HCN Channels in Magnocellular Neurons of the Supraoptic Nucleus of Rats by an S-Nitrosylation-Dependent Mechanism. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 36, n. 44, p. 11320–11330, 2 nov. 2016. PIRNIK, Z. et al. Ghrelin agonists impact on Fos protein expression in brain areas related to food intake regulation in male C57BL/6 mice. Neurochemistry International, v. 59, n. 6, p. 889–895, 2011. PRICE, C. J.; HOYDA, T. D.; FERGUSON, A. V. The area postrema: a brain monitor and integrator of systemic autonomic state. The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry, v. 14, n. 2, p. 182–94, abr. 2008. PRUT, L.; BELZUNG, C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. European journal of pharmacology, v. 463, n. 1–3, p. 3– 33, 28 fev. 2003. PU, S. et al. Interactions between neuropeptide Y and gamma-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinology, v. 140, n. 2, p. 933–40, fev. 1999. PULMAN, K. J. et al. The subfornical organ: a central target for circulating feeding signals. The Journal of neuroscience : the official journal of the Society for Neuroscience, v. 26, n. 7, p. 2022–30, 15 fev. 2006. REX, A. et al. Pharmacological Evaluation of a Modified Open-Field Test Sensitive to Anxiolytic Drugs. Pharmacology Biochemistry and Behavior, v. 59, n. 3, p. 677–683, mar. 1998. RIBEIRO, L. F. et al. Ghrelin triggers the synaptic incorporation of AMPA receptors in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, v. 111, n. 1, p. E149-58, 7 jan. 2014. RIIS, A. L. D. et al. Hyperthyroidism is associated with suppressed circulating ghrelin levels. The Journal of clinical endocrinology and metabolism, v. 88, n. 2, p. 853–7, fev. 2003. RIOUX, V. Fatty acid acylation of proteins: specific roles for palmitic, myristic and caprylic acids. OCL, v. 23, n. 3, p. D304, 10 maio 2016. RÖJDMARK, S. et al. Hunger-satiety signals in patients with Graves’ thyrotoxicosis before, during, and after long-term pharmacological treatment. Endocrine, v. 27, n. 1, p. 55–61, jun. 2005. ROOZENDAAL, B.; MCEWEN, B. S.; CHATTARJI, S. Stress, memory and the amygdala. Nature reviews. Neuroscience, v. 10, n. 6, p. 423–33, jun. 2009. RUSSO, C. et al. Hippocampal Ghrelin-positive neurons directly project to arcuate hypothalamic and medial amygdaloid nuclei. Could they modulate food-intake? Neuroscience letters, v. 653, p. 126–131, 13 jul. 2017. RÜTER, J. et al. Intraperitoneal injection of ghrelin induces Fos expression in the paraventricular nucleus of the hypothalamus in rats. Brain Research, v. 991, n. 1–2, p. 26– 33, 21 nov. 2003. SÁRVÁRI, M. et al. Ghrelin modulates the fMRI BOLD response of homeostatic and hedonic brain centers regulating energy balance in the rat. PLoS ONE, v. 9, n. 5, 2014. SATO, T. et al. Structure, regulation and function of ghrelin. Journal of biochemistry, v. 151, n. 2, p. 119–28, mar. 2012. SATOU, M. et al. Identification and characterization of acyl-protein thioesterase 1/lysophospholipase I as a ghrelin deacylation/lysophospholipid hydrolyzing enzyme in fetal bovine serum and conditioned medium. Endocrinology, v. 151, n. 10, p. 4765–75, out. 2010. SCHAEFFER, M. et al. Rapid sensing of circulating ghrelin by hypothalamic appetitemodifying neurons. Proceedings of the National Academy of Sciences, v. 110, n. 4, p. 1512–1517, 2013. SCHMIDT, M. V. et al. Metabolic signals modulate hypothalamic-pituitary-adrenal axis activation during maternal separation of the neonatal mouse. Journal of Neuroendocrinology, v. 18, n. 11, p. 865–874, 2006. SCHUHLER, S. et al. Thyrotrophin-releasing hormone decreases feeding and increases body temperature, activity and oxygen consumption in Siberian hamsters. Journal of neuroendocrinology, v. 19, n. 4, p. 239–49, abr. 2007. SCHWARTZ, M. W. et al. Central nervous system control of food intake. Nature, v. 404, n. 6778, p. 661–71, 6 abr. 2000. SCOTT, V.; MCDADE, D. M.; LUCKMAN, S. M. Rapid changes in the sensitivity of arcuate nucleus neurons to central ghrelin in relation to feeding status. Physiology and Behavior, v. 90, n. 1, p. 180–185, 2007. SHARP, B. M. Basolateral amygdala and stress-induced hyperexcitability affect motivated behaviors and addiction. Translational psychiatry, v. 7, n. 8, p. e1194, 8 ago. 2017. SHRESTHA, Y. B.; WICKWIRE, K.; GIRAUDO, S. Q. Action of MT-II on ghrelin-induced feeding in the paraventricular nucleus of the hypothalamus. NeuroReport, v. 15, n. 8, p. 1365–1367, 7 jun. 2004. SHRESTHA, Y. B.; WICKWIRE, K.; GIRAUDO, S. Q. Role of AgRP on Ghrelin-induced feeding in the hypothalamic paraventricular nucleus. Regulatory Peptides, v. 133, n. 1–3, p. 68–73, 2006. SHRESTHA, Y. B. Y.; WICKWIRE, K.; GIRAUDO, S. Effect of reducing hypothalamic ghrelin receptor gene expression on energy balance. Peptides, v. 30, n. 7, p. 1336–1341, jul. 2009. SIMMONS, D. M.; SWANSON, L. W. High-resolution paraventricular nucleus serial section model constructed within a traditional rat brain atlas. Neuroscience letters, v. 438, n. 1, p. 85–9, 13 jun. 2008. SMITH, S. M.; VALE, W. W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues in clinical neuroscience, v. 8,
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Ciências Fisiológicas
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Biológicas e da Saúde
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/1/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf.jpg
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/2/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/3/2019%20-%20Raoni%20da%20Concei%c3%a7%c3%a3o%20dos%20Santos.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/9427/4/license.txt
bitstream.checksum.fl_str_mv cc73c4c239a4c332d642ba1e7c7a9fb2
ed1a77d671509de0b134f924c3538d0e
e1693d86332a3c14382f151efffe7301
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1810107999943917568