Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/13342 |
Resumo: | O Liraglutida é um peptídeo análogo do hormônio GLP-1 que promove reduções clinicamente significativas tanto na hemoglobina glicada (HbA1c) quanto na perda de peso e, por isso, vem sendo utilizado no tratamento de uma das principais causas de morbidade e mortalidade do mundo, a Diabetes Mellitus tipo 2 (DM2). O presente estudo se refere ao desenvolvimento de micropartículas poliméricas carregadas com Liraglutida, para uso oral, com o objetivo de promover a liberação controlada do peptídeo, conferindo proteção aos efeitos gastrointestinais e aumentando a adesão do paciente ao tratamento. As formulações foram desenvolvidas através do método de emulsificação dupla seguido de extração do solvente, utilizando o polímero Eudragit® S100 e o fármaco Victoza® (Liraglutida 6mg/mL). As formulações foram avaliadas quanto ao rendimento e a eficiência de encapsulação, análise morfológica através da técnica de microscopia eletrônica de varredura, distribuição de tamanho de partículas, análise termogravimétrica e perfil de liberação in vitro. Após a caracterização, as formulações apresentaram rendimento de aproximadamente 55%, com 91,4% de eficiência de encapsulação e formato esférico. Na análise de distribuição de tamanho, as micropartículas inseridas em pH 4,5, apresentaram concentração suficiente para a realização da leitura no aparelho até o tempo de 40 minutos, comprovando a solubilização nesta faixa de pH. Com a análise de liberação in vitro, pode-se afirmar que o polímero auxiliou na proteção do petídeo em meio ácido (pH 4,5) e que as micropartículas foram solubilizadas em meio básico (pH 8,0), apresentando uma cinética de pseudo primeira ordem com 75% de liberação do peptídeo em 4,5 horas. No entanto, os resultados deste trabalho sustentam a continuidade do estudo para o desenvolvimento da formulação de Liraglutida para uso oral. |
id |
UFRRJ-1_e2760e9ba3ba4064143aee20f913b412 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/13342 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Oliveira, Isabela Hastenreiter Gonçalves deRosado, Luiz Henrique Guerreiro087.398.827-21http://lattes.cnpq.br/6788809407753587Rocha e Lima, Luís Maurício Trambaioli da773.913.906-82http://lattes.cnpq.br/6077250341207130Rosado, Luiz Henrique GuerreiroSilva, Luiz Cláudio Rodrigues Pereira daOliveira, Renata Nunes de146.661.407-27http://lattes.cnpq.br/64620680692181232023-12-22T02:45:41Z2023-12-22T02:45:41Z2020-12-21OLIVEIRA, Isabela Hastenreiter Gonçalves. Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral. 2020. 80 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020.https://rima.ufrrj.br/jspui/handle/20.500.14407/13342O Liraglutida é um peptídeo análogo do hormônio GLP-1 que promove reduções clinicamente significativas tanto na hemoglobina glicada (HbA1c) quanto na perda de peso e, por isso, vem sendo utilizado no tratamento de uma das principais causas de morbidade e mortalidade do mundo, a Diabetes Mellitus tipo 2 (DM2). O presente estudo se refere ao desenvolvimento de micropartículas poliméricas carregadas com Liraglutida, para uso oral, com o objetivo de promover a liberação controlada do peptídeo, conferindo proteção aos efeitos gastrointestinais e aumentando a adesão do paciente ao tratamento. As formulações foram desenvolvidas através do método de emulsificação dupla seguido de extração do solvente, utilizando o polímero Eudragit® S100 e o fármaco Victoza® (Liraglutida 6mg/mL). As formulações foram avaliadas quanto ao rendimento e a eficiência de encapsulação, análise morfológica através da técnica de microscopia eletrônica de varredura, distribuição de tamanho de partículas, análise termogravimétrica e perfil de liberação in vitro. Após a caracterização, as formulações apresentaram rendimento de aproximadamente 55%, com 91,4% de eficiência de encapsulação e formato esférico. Na análise de distribuição de tamanho, as micropartículas inseridas em pH 4,5, apresentaram concentração suficiente para a realização da leitura no aparelho até o tempo de 40 minutos, comprovando a solubilização nesta faixa de pH. Com a análise de liberação in vitro, pode-se afirmar que o polímero auxiliou na proteção do petídeo em meio ácido (pH 4,5) e que as micropartículas foram solubilizadas em meio básico (pH 8,0), apresentando uma cinética de pseudo primeira ordem com 75% de liberação do peptídeo em 4,5 horas. No entanto, os resultados deste trabalho sustentam a continuidade do estudo para o desenvolvimento da formulação de Liraglutida para uso oral.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorLiraglutide is a peptide similar to the hormone GLP-1 that clinically promotes significant reductions both in glycated hemoglobin (HbA1c) and in weight loss, has been used in the treatment of one of the main causes of morbidity and mortality in the world, Diabetes Mellitus type 2 (DM2). The present study refers to the development of polymeric microparticles loaded with Liraglutide, for oral use, with the aim of promoting the controlled release of the peptide, providing protection from gastrointestinal effects and increasing patient compliance with treatment. The formulations were developed using the double emulsification method followed by solvent extraction, using the polymer Eudragit® S100 and the drug Victoza® (Liraglutide 6mg/mL). The formulations were evaluated according to yield and encapsulation efficiency, morphological analysis (SEM), particle size distribution, thermogravimetric analysis and in vitro release profile. After characterization, the formulations showed a yield of approximately 55%, with 91.4% encapsulation efficiency and spherical shape. In the size distribution analysis, the microparticles inserted in pH 4,5 medium showed sufficient concentration to carry out the readiness in the device up to 40 minutes, proving the solubilization in this pH range. With the in vitro release analysis, it can be said that the polymer helped to protect the petid in a simulated acid medium and that the microparticles were solubilized in a simulated basic medium, presenting a pseudo first order kinetics with 75% of the peptide release in 4.5 hours. However, the results of this work support the continuity of the study for the development of the formulation of Liraglutide for oral use.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUFRRJBrasilInstituto de TecnologiaLiraglutidaDiabetesEudragitMicroencapsulaçãoLiraglutideMicroencapsulationEngenharia QuímicaDesenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oralinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAGARWAL, V.; REDDY, I. K.; KHAN, M. A. Polymethyacrylate based microparticulates of insulin for oral delivery: Preparation and in vitro dissolution stability in the presence of enzyme inhibitors. International Journal of Pharmaceutics, v. 225, n. 1, p. 31–39, 28 ago. 2001. ALBERS, A. P. F. et al. Um método simples de caracterização de argilominerais por difração de raios X. Cerâmica, v. 48, n. 305, p. 34–37, mar. 2002. ARUNACHALAM, A. et al. Floating drug delivery systems: A review. International Journal of Research in Pharmaceutical Sciences, v. 2, n. 1, p. 76–83, 20 jan. 2011. ASSOCIATION, A. D. Introduction: Standards of Medical Care in Diabetes—2018. Diabetes Care, v. 41, n. Supplement 1, p. S1–S2, 1 jan. 2018. ASTRUP, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, doubleblind, placebo-controlled study. The Lancet, v. 374, n. 9701, p. 1606–1616, 7 nov. 2009. BARRINGTON, P. et al. A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, v. 13, n. 5, p. 426–433, 2011. BARROS, S. S. Desenvolvimento de micropartículas de eudragit rl 100 contendo tamoxifeno como agente antitumoral. 2014. BASU, S. K.; ADHIYAMAN, R. Preparation and Characterization of Nitrendipine-loaded Eudragit RL 100 Microspheres Prepared by an Emulsion-Solvent Evaporation Method. Tropical Journal of Pharmaceutical Research, v. 7, n. 3, p. 1033–1041, 11 set. 2008. BERNKOP-SCHNÜRCH, A.; SCERBE-SAIKO, A. Synthesis and In Vitro Evaluation of Chi tosan-EDTA-Protease-Inhibitor Conjugates Which Might Be Useful in Oral Delivery of Peptides and Proteins. Pharmaceutical Research, v. 15, n. 2, p. 263–269, 1 fev. 1998. BIRNBAUM, D. T.; BRANNON-PEPPAS, L. Microparticle Drug Delivery Systems. In: BROWN, D. M. (Ed.). . Drug Delivery Systems in Cancer Therapy. Cancer Drug Discovery and Development. Totowa, NJ: Humana Press, 2004. p. 117–135. BLANCO-PRIETO, M.-J. et al. Nouvelles approches pour l’encapsulation de peptides au sein de microsphères de PLG. Nouvelles approches pour l’encapsulation de peptides au sein de microsphères de PLG, v. 56, n. 6, p. 256–263, 1998. BREWSTER, D.; WALTHAM, K. TRH degradation rates vary widely between different animal species. Biochemical Pharmacology, v. 30, n. 6, p. 619–622, 15 mar. 1981. BUSE, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). The Lancet, v. 374, n. 9683, p. 39–47, 4 jul. 2009. BUSH, M. A. et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes, Obesity and Metabolism, v. 11, n. 5, p. 498–505, 2009. CHAMBERLAIN, J. J. et al. Pharmacologic Therapy for Type 2 Diabetes: Synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Annals of Internal Medicine, v. 166, n. 8, p. 572, 18 abr. 2017. CHAN, L.; PISANO, M. Edoxaban (Savaysa): A Factor Xa Inhibitor. Pharmacy and Therapeutics, v. 40, n. 10, p. 651–695, out. 2015. CHEN, H.; LANGER, R. Oral particulate delivery: status and future trends. Advanced Drug Delivery Reviews, Oral Particulates. v. 34, n. 2, p. 339–350, 1 dez. 1998. CHO, N. H. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, v. 138, p. 271–281, 1 abr. 2018. CHOURASIA, M. K.; JAIN, S. K. Pharmaceutical approaches to colon targeted drug delivery systems. p. 34, 2003. CHRISTENSEN, M. et al. Lixisenatide for type 2 diabetes mellitus. Expert Opinion on Investigational Drugs, v. 20, n. 4, p. 549–557, 1 abr. 2011. CÓZAR-BERNAL, M. J. et al. Insulin-loaded PLGA microparticles: flow focusing versus double emulsion/solvent evaporation. Journal of Microencapsulation, v. 28, n. 5, p. 430– 441, 1 ago. 2011. CROOM, K. F.; MCCORMACK, P. L. Liraglutide. Drugs, v. 69, n. 14, p. 1985–2004, 1 out. 2009. DA CONCEIÇÃO, R. A.; DA SILVA, P. N.; BARBOSA, M. L. C. Drugs for the Treatment of Type II Diabetes: A Visit to the Past and a Look to the Future. Revista Virtual de Química, p. 514–534, 2017. DAS, S. K. et al. MICROENCAPSULATION TECHNIQUES AND ITS PRACTICE. v. 6, p. 24, 2011. DES RIEUX, A. et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, v. 116, n. 1, p. 1–27, 10 nov. 2006. DESHMUKH, R. K.; NAIK, J. B. Diclofenac Sodium-Loaded Eudragit® Microspheres: Optimization Using Statistical Experimental Design. Journal of Pharmaceutical Innovation, v. 8, n. 4, p. 276–287, 1 dez. 2013. DIONNE, B. Key Principles of Antiretroviral Pharmacology. Infectious Disease Clinics of North America, HIV. v. 33, n. 3, p. 787–805, 1 set. 2019. DRUCKER, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. The Lancet, v. 372, n. 9645, p. 1240–1250, 4 out. 2008. FALA, L. Entresto (Sacubitril/Valsartan): First-in-Class Angiotensin Receptor Neprilysin Inhibitor FDA Approved for Patients with Heart Failure. American Health & Drug Benefits, v. 8, n. 6, p. 330–334, set. 2015. FELTON, L. A. et al. Physical and enteric properties of soft gelatin capsules coated with eudragit ® L 30 D-55. International Journal of Pharmaceutics, v. 113, n. 1, p. 17–24, 2 jan. 1995. FENÁNDEZ, A. et al. Tamoxifen-loaded microspheres based on mixtures of poly(D,Llactide- co-glycolide) and poly(D,L-lactide) polymers: Effect of polymeric composition on drug release and in vitro antitumoral activity. Journal of Applied Polymer Science, v. 124, n. 4, p. 2987–2998, 2012. FIGUEIREDO, D. M.; RABELO, F. L. A. Diabetes insipidus: principais aspectos e análise comparativa com diabetes mellitus. Semina: Ciências Biológicas e da Saúde, v. 30, n. 2, p. 155–162, 15 dez. 2009. FIX, J. A. Oral Controlled Release Technology for Peptides: Status and Future Prospects. Pharmaceutical Research, v. 13, n. 12, p. 1760–1764, 1 dez. 1996. GARG, R.; GUPTA, G. D. Progress in Controlled Gastroretentive Delivery Systems. Tropical Journal of Pharmaceutical Research, v. 7, n. 3, p. 1055-1066–1066, 1 jan. 2008. GLAESNER, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes/Metabolism Research and Reviews, v. 26, n. 4, p. 287–296, 2010. GÓMEZ, C. C. T.; RESTREPO, M. M.; BRUERA, E. Vías alternativas a la vía oral para administración sistémica de opioides en Cuidados Paliativos. Revisión de la literatura. Medicina Paliativa, v. 12, n. 2, p. 108–122, 1 abr. 2005. GUPTA, V. Glucagon-like peptide-1 analogues: An overview. Indian Journal of Endocrinology and Metabolism, v. 17, n. 3, p. 413, 2013. HERNÁNDEZ-JIMÉNEZ, S.; AGUILAR-SALINAS, C. A.; GÓMEZ-PÉREZ, F. J. Tiazolidinedionas. Beneficios y riesgos reales. Revista de Endocrinología y Nutrición, v. 10, n. 2, p. 69–76, 2002. HOUCHIN, M. L.; TOPP, E. M. Chemical Degradation of Peptides and Proteins in PLGA: A Review of Reactions and Mechanisms. Journal of Pharmaceutical Sciences, v. 97, n. 7, p. 2395–2404, 1 jul. 2008. INZUCCHI, S. E. et al. Efficacy and Metabolic Effects of Metformin and Troglitazone in Type II Diabetes Mellitus. New England Journal of Medicine, v. 338, n. 13, p. 867–873, 26 mar. 1998. IQBAL, M. et al. Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, v. 496, n. 2, p. 173–190, 30 dez. 2015. IWATA, M.; MCGINITY, J. W. Preparation of multi-phase microspheres of poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) containing a W/O emulsion by a multiple emulsion solvent evaporation technique. Journal of Microencapsulation, v. 9, n. 2, p. 201– 214, 1 jan. 1991. JACOBSEN, L. V. et al. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. British Journal of Clinical Pharmacology, v. 68, n. 6, p. 898–905, 2009. JACOBSEN, L. V. et al. Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics. Clinical Pharmacokinetics, v. 55, n. 6, p. 657–672, 1 jun. 2016. JAIN, D.; PANDA, A. K.; MAJUMDAR, D. K. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech, v. 6, n. 1, p. E100–E107, 1 mar. 2005. JELVEHGARI, M. et al. Development of pH-sensitive Insulin Nanoparticles using Eudragit L100-55 and Chitosan with Different Molecular Weights. AAPS PharmSciTech, v. 11, n. 3, p. 1237–1242, 1 set. 2010. JELVEHGARI, M.; MONTAZAM, S. H. Comparison of Microencapsulation by Emulsion- Solvent Extraction/Evaporation Technique Using Derivatives Cellulose and Acrylate- Methacrylate Copolymer as Carriers. Jundishapur Journal of Natural Pharmaceutical Products, v. 7, n. 4, p. 144–152, 2012. JENNEWEIN, H. M.; WALDECK, F.; KONZ, W. The absorption of tetragastrin from different sites in rats and dogs. Arzneimittel-Forschung, v. 24, n. 8, p. 1225–1228, ago. 1974. JYOTHI, N. V. N. et al. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, v. 27, n. 3, p. 187–197, 1 maio 2010. KAPITZA, C. et al. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. The Journal of Clinical Pharmacology, v. 55, n. 5, p. 497–504, 2015. KAZAKOS, K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Research and Clinical Practice, Insulin: from its discovery to its role in state-of-the-art management of diabetes mellitus. v. 93, p. S32–S36, 1 ago. 2011. KINTZING, J. R.; COCHRAN, J. R. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Current Opinion in Chemical Biology, Synthetic Biology * Synthetic Biomolecules. v. 34, p. 143–150, 1 out. 2016. KLEEMANN, C. R. et al. Development and Characterization of Synthetic Chalcones-Loaded Eudragit RS 100 Microparticles for Oral Delivery. Journal of the Brazilian Chemical Society, v. 28, n. 6, p. 1074–1080, jun. 2017. Kollicoat MAE grades | Tablet (Pharmacy) | Solubility. Disponível em: <https://www.scribd.com/document/5682786/Kollicoat-MAE-grades>. Acesso em: 28 jan. 2020. LAU, J. et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. Journal of Medicinal Chemistry, v. 58, n. 18, p. 7370–7380, 24 set. 2015. LEE, S.; LEE, D. Y. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Annals of Pediatric Endocrinology & Metabolism, v. 22, n. 1, p. 15–26, mar. 2017. LEWIS, D. H. Controlled release of bioactive agents from lactide/glycolide polymers. Biodegradable polymers as drug delivery systems., p. 1–41, 1990. LI, M.; ROUAUD, O.; PONCELET, D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. International Journal of Pharmaceutics, v. 363, n. 1–2, p. 26–39, 3 nov. 2008. LIU, L. et al. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials, v. 24, n. 19, p. 3333–3343, 1 ago. 2003. LOPES, V. P. et al. FARMACOLOGIA DO DIABETES MELLITUS TIPO 2: ANTIDIABÉTICOS ORAIS, INSULINA E INOVAÇÕES TERAPÊUTICAS. Revista Eletrônica de Farmácia, v. 9, n. 4, p. 22–22, 30 dez. 2012. MCEVOY, B. W. Missing data in clinical trials for weight management. Journal of Biopharmaceutical Statistics, v. 26, n. 1, p. 30–36, 2 jan. 2016. MEDICSUPPLY. Síndrome da imunodeficiência adquirida – Genvoya. Disponível em: <http://medicsupply.net/sindrome-da-imunodeficiencia-adquirida/>. Acesso em: 15 jan. 2020. MELO, C. S.; SILVA-CUNHA, A.; FIALHO, S. L. Formas farmacêuticas poliméricas para a administração de peptídeos e proteínas terapêuticos. Revista de Ciências Farmacêuticas Básica e Aplicada, v. 33, n. 4, p. 469-477–477, 26 fev. 2013. MENDES, J. B. E. DESENVOLVIMENTO E AVALIAÇÃO DE MICROPARTÍCULAS POLIMÉRICAS CONTENDO RESVERATROL. 17 set. 2011. MONTGOMERY, M. et al. Daclatasvir (Daklinza). Pharmacy and Therapeutics, v. 41, n. 12, p. 751–755, dez. 2016. MORÇÖL, T. et al. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. International Journal of Pharmaceutics, Selected Papers from The 11th International Pharmaceutical Technology Symposium. v. 277, n. 1, p. 91–97, 11 jun. 2004. MOREIRA, G. F. et al. Aplicação da Calorimetria Exploratória Diferencial (DSC) para Determinação da Pureza de Fármacos. Produto & Produção, v. 11, n. 1, 19 jan. 2010. MOUSTAFINE, R. I.; KEMENOVA, V. A.; VAN DEN MOOTER, G. Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate. International Journal of Pharmaceutics, v. 294, n. 1, p. 113–120, 27 abr. 2005. MOUSTAFINE, R. I.; ZAHAROV, I. M.; KEMENOVA, V. A. Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes. European Journal of Pharmaceutics and Biopharmaceutics, v. 63, n. 1, p. 26–36, 1 maio 2006. MULLIGAN, R. C. The basic science of gene therapy. Science, v. 260, n. 5110, p. 926–932, 14 maio 1993. NGUYEN, D. A.; FOGLER, H. S. Facilitated diffusion in the dissolution of carboxylic polymers. AIChE Journal, v. 51, n. 2, p. 415–425, 1 fev. 2005. NIKAM, V. K. et al. EUDRAGIT A VERSATILE POLYMER : A REVIEW. p. 13, 2011. NIU, C.-H.; CHIU, Y.-Y. FDA perspective on peptide formulation and stability issues. Journal of Pharmaceutical Sciences, v. 87, n. 11, p. 1331–1334, 1998. PEPPAS, N. A. Devices based on intelligent biopolymers for oral protein delivery. International Journal of Pharmaceutics, Selected Papers from The 11th International Pharmaceutical Technology Symposium. v. 277, n. 1, p. 11–17, 11 jun. 2004. PERIGNON, C. et al. Microencapsulation by interfacial polymerisation: membrane formation and structure. Journal of Microencapsulation, v. 32, n. 1, p. 1–15, 2015. PRASAD-REDDY, L.; ISAACS, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs in Context, v. 4, 9 jul. 2015. RAEDLER, L. A. Viekira Pak (Ombitasvir, Paritaprevir, and Ritonavir Tablets; Dasabuvir Tablets): All-Oral Fixed Combination Approved for Genotype 1 Chronic Hepatitis C Infection. American Health & Drug Benefits, v. 8, n. Spec Feature, p. 142–147, mar. 2015. RAHMAN, MD. A.; ALI, J. Development and in vitro Evaluation of Enteric Coated Multiparticulate System for Resistant Tuberculosis. Indian Journal of Pharmaceutical Sciences, v. 70, n. 4, p. 477–481, 2008. RATRA, A.; LOFTUS, R. Stevens-Johnson Syndrome in a Chronic Hepatitis C Patient Treated With Zepatier (Elbasvir/Grazoprevir): 2311. American Journal of Gastroenterology, v. 112, p. S1264, out. 2017. ROLIN, B. et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases β-cell mass in diabetic mice. American Journal of Physiology-Endocrinology and Metabolism, v. 283, n. 4, p. E745–E752, 1 out. 2002. ROSCA, I. D.; WATARI, F.; UO, M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. Journal of Controlled Release, v. 99, n. 2, p. 271– 280, 30 set. 2004. SAFFRAN, M. et al. A new approach to the oral administration of insulin and other peptide drugs. Science, v. 233, n. 4768, p. 1081–1084, 5 set. 1986. SAFFRAN, M. et al. Vasopressin: A model for the study of effects of additives on the oral and rectal administration of peptide drugs. Journal of Pharmaceutical Sciences, v. 77, n. 1, p. 33–38, 1 jan. 1988. SANTOS, G. B. DOS. Estudos de síntese total de peptídeos cíclicos naturais. Doutorado em Produtos Naturais e Sintéticos—Ribeirão Preto: Universidade de São Paulo, 18 jan. 2018. SCHWARTZ, S. S. et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell–Centric Classification Schema. Diabetes Care, v. 39, n. 2, p. 179–186, 1 fev. 2016. SEINO, Y. et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Journal of Diabetes Investigation, v. 1, n. 5, p. 212–228, 2010. SEMALTY1, A. et al. Properties and formulation of oral drug delivery systems of protein and peptides. Indian Journal of Pharmaceutical Sciences, v. 69, n. 6, p. 741, 2007. SHOUKRI, R. A.; AHMED, I. S.; SHAMMA, R. N. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. European Journal of Pharmaceutics and Biopharmaceutics, v. 73, n. 1, p. 162–171, 1 set. 2009. SILVA, C. et al. Administração oral de peptídeos e proteínas: II. Aplicação de métodos de microencapsulação. Revista Brasileira de Ciências Farmacêuticas, v. 39, n. 1, p. 1–20, mar. 2003. SILVEIRO, S. P.; SATLER, F. Rotinas em Endocrinologia. [s.l.] Artmed Editora, 2015. SINHA, V. R.; KUMRIA, R. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, v. 224, n. 1, p. 19–38, 14 ago. 2001. SOFIA, M. J.; LINK, J. O. 8.23 - Harvoni: A Combination Therapy for Curing HCV. In: CHACKALAMANNIL, S.; ROTELLA, D.; WARD, S. E. (Eds.). . Comprehensive Medicinal Chemistry III. Oxford: Elsevier, 2017. p. 558–582. SOPPIMATH, K. S. et al. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, v. 70, n. 1, p. 1–20, 29 jan. 2001. SOSNIK, A.; SEREMETA, K. P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, v. 223, p. 40–54, 1 set. 2015. TEWES, F. et al. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. European Journal of Pharmaceutics and Biopharmaceutics, v. 66, n. 3, p. 488–492, 1 jun. 2007. THAKRAL, S.; THAKRAL, N. K.; MAJUMDAR, D. K. Eudragit®: a technology evaluation. Expert Opinion on Drug Delivery, v. 10, n. 1, p. 131–149, 1 jan. 2013. TUAN GIAM CHUANG, V.; KRAGH-HANSEN, U.; OTAGIRI, M. Pharmaceutical Strategies Utilizing Recombinant Human Serum Albumin. Pharmaceutical Research, v. 19, n. 5, p. 569–577, 1 maio 2002. VANDAMME, TH. F. et al. The use of polysaccharides to target drugs to the colon. Carbohydrate Polymers, v. 48, n. 3, p. 219–231, 15 maio 2002. VILSBØLL, T. Liraglutide: a once-daily GLP-1 analogue for the treatment of Type 2 diabetes mellitus. Expert Opinion on Investigational Drugs, v. 16, n. 2, p. 231–237, 1 fev. 2007. WYVRATT, M. J.; PATCHETT, A. A. Recent developments in the design of angiotensinconverting enzyme inhibitors. Medicinal Research Reviews, v. 5, n. 4, p. 483–531, 1985. YONCHEVA, K.; LIZARRAGA, E.; IRACHE, J. M. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. European Journal of Pharmaceutical Sciences, v. 24, n. 5, p. 411–419, 1 abr. 2005. YU, M. et al. Battle of GLP-1 delivery technologies. Advanced drug delivery reviews, v. 130, 12 jul. 2018. ZAJĄC, M. et al. Hepatitis C – New drugs and treatment prospects. European Journal of Medicinal Chemistry, v. 165, p. 225–249, 1 mar. 2019.https://tede.ufrrj.br/retrieve/71472/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6154Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-12-19T17:15:40Z No. of bitstreams: 1 2020 - Isabela Hastenreiter Gonçalves de Oliveira.pdf: 2425450 bytes, checksum: 8544f8a2f14740569f8a47b1d09d8231 (MD5)Made available in DSpace on 2022-12-19T17:15:40Z (GMT). No. of bitstreams: 1 2020 - Isabela Hastenreiter Gonçalves de Oliveira.pdf: 2425450 bytes, checksum: 8544f8a2f14740569f8a47b1d09d8231 (MD5) Previous issue date: 2020-12-21info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2020 - Isabela Hastenreiter Gonçalves de Oliveira.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/1/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2020 - Isabela Hastenreiter Gonçalves de Oliveira.pdf.txtExtracted Texttext/plain135779https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/2/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf.txt82a7bae5861eaa4c75e2b10c46997109MD52ORIGINAL2020 - Isabela Hastenreiter Gonçalves de Oliveira.pdfapplication/pdf2425450https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/3/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf8544f8a2f14740569f8a47b1d09d8231MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/133422023-12-21 23:45:42.004oai:rima.ufrrj.br:20.500.14407/13342Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T02:45:42Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
title |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
spellingShingle |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral Oliveira, Isabela Hastenreiter Gonçalves de Liraglutida Diabetes Eudragit Microencapsulação Liraglutide Microencapsulation Engenharia Química |
title_short |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
title_full |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
title_fullStr |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
title_full_unstemmed |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
title_sort |
Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral |
author |
Oliveira, Isabela Hastenreiter Gonçalves de |
author_facet |
Oliveira, Isabela Hastenreiter Gonçalves de |
author_role |
author |
dc.contributor.author.fl_str_mv |
Oliveira, Isabela Hastenreiter Gonçalves de |
dc.contributor.advisor1.fl_str_mv |
Rosado, Luiz Henrique Guerreiro |
dc.contributor.advisor1ID.fl_str_mv |
087.398.827-21 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6788809407753587 |
dc.contributor.advisor-co1.fl_str_mv |
Rocha e Lima, Luís Maurício Trambaioli da |
dc.contributor.advisor-co1ID.fl_str_mv |
773.913.906-82 |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/6077250341207130 |
dc.contributor.referee1.fl_str_mv |
Rosado, Luiz Henrique Guerreiro |
dc.contributor.referee2.fl_str_mv |
Silva, Luiz Cláudio Rodrigues Pereira da |
dc.contributor.referee3.fl_str_mv |
Oliveira, Renata Nunes de |
dc.contributor.authorID.fl_str_mv |
146.661.407-27 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6462068069218123 |
contributor_str_mv |
Rosado, Luiz Henrique Guerreiro Rocha e Lima, Luís Maurício Trambaioli da Rosado, Luiz Henrique Guerreiro Silva, Luiz Cláudio Rodrigues Pereira da Oliveira, Renata Nunes de |
dc.subject.por.fl_str_mv |
Liraglutida Diabetes Eudragit Microencapsulação |
topic |
Liraglutida Diabetes Eudragit Microencapsulação Liraglutide Microencapsulation Engenharia Química |
dc.subject.eng.fl_str_mv |
Liraglutide Microencapsulation |
dc.subject.cnpq.fl_str_mv |
Engenharia Química |
description |
O Liraglutida é um peptídeo análogo do hormônio GLP-1 que promove reduções clinicamente significativas tanto na hemoglobina glicada (HbA1c) quanto na perda de peso e, por isso, vem sendo utilizado no tratamento de uma das principais causas de morbidade e mortalidade do mundo, a Diabetes Mellitus tipo 2 (DM2). O presente estudo se refere ao desenvolvimento de micropartículas poliméricas carregadas com Liraglutida, para uso oral, com o objetivo de promover a liberação controlada do peptídeo, conferindo proteção aos efeitos gastrointestinais e aumentando a adesão do paciente ao tratamento. As formulações foram desenvolvidas através do método de emulsificação dupla seguido de extração do solvente, utilizando o polímero Eudragit® S100 e o fármaco Victoza® (Liraglutida 6mg/mL). As formulações foram avaliadas quanto ao rendimento e a eficiência de encapsulação, análise morfológica através da técnica de microscopia eletrônica de varredura, distribuição de tamanho de partículas, análise termogravimétrica e perfil de liberação in vitro. Após a caracterização, as formulações apresentaram rendimento de aproximadamente 55%, com 91,4% de eficiência de encapsulação e formato esférico. Na análise de distribuição de tamanho, as micropartículas inseridas em pH 4,5, apresentaram concentração suficiente para a realização da leitura no aparelho até o tempo de 40 minutos, comprovando a solubilização nesta faixa de pH. Com a análise de liberação in vitro, pode-se afirmar que o polímero auxiliou na proteção do petídeo em meio ácido (pH 4,5) e que as micropartículas foram solubilizadas em meio básico (pH 8,0), apresentando uma cinética de pseudo primeira ordem com 75% de liberação do peptídeo em 4,5 horas. No entanto, os resultados deste trabalho sustentam a continuidade do estudo para o desenvolvimento da formulação de Liraglutida para uso oral. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-12-21 |
dc.date.accessioned.fl_str_mv |
2023-12-22T02:45:41Z |
dc.date.available.fl_str_mv |
2023-12-22T02:45:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
OLIVEIRA, Isabela Hastenreiter Gonçalves. Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral. 2020. 80 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13342 |
identifier_str_mv |
OLIVEIRA, Isabela Hastenreiter Gonçalves. Desenvolvimento de micropartículas poliméricas carregadas com Liraglutida para uso oral. 2020. 80 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2020. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13342 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
AGARWAL, V.; REDDY, I. K.; KHAN, M. A. Polymethyacrylate based microparticulates of insulin for oral delivery: Preparation and in vitro dissolution stability in the presence of enzyme inhibitors. International Journal of Pharmaceutics, v. 225, n. 1, p. 31–39, 28 ago. 2001. ALBERS, A. P. F. et al. Um método simples de caracterização de argilominerais por difração de raios X. Cerâmica, v. 48, n. 305, p. 34–37, mar. 2002. ARUNACHALAM, A. et al. Floating drug delivery systems: A review. International Journal of Research in Pharmaceutical Sciences, v. 2, n. 1, p. 76–83, 20 jan. 2011. ASSOCIATION, A. D. Introduction: Standards of Medical Care in Diabetes—2018. Diabetes Care, v. 41, n. Supplement 1, p. S1–S2, 1 jan. 2018. ASTRUP, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, doubleblind, placebo-controlled study. The Lancet, v. 374, n. 9701, p. 1606–1616, 7 nov. 2009. BARRINGTON, P. et al. A 5-week study of the pharmacokinetics and pharmacodynamics of LY2189265, a novel, long-acting glucagon-like peptide-1 analogue, in patients with type 2 diabetes. Diabetes, Obesity and Metabolism, v. 13, n. 5, p. 426–433, 2011. BARROS, S. S. Desenvolvimento de micropartículas de eudragit rl 100 contendo tamoxifeno como agente antitumoral. 2014. BASU, S. K.; ADHIYAMAN, R. Preparation and Characterization of Nitrendipine-loaded Eudragit RL 100 Microspheres Prepared by an Emulsion-Solvent Evaporation Method. Tropical Journal of Pharmaceutical Research, v. 7, n. 3, p. 1033–1041, 11 set. 2008. BERNKOP-SCHNÜRCH, A.; SCERBE-SAIKO, A. Synthesis and In Vitro Evaluation of Chi tosan-EDTA-Protease-Inhibitor Conjugates Which Might Be Useful in Oral Delivery of Peptides and Proteins. Pharmaceutical Research, v. 15, n. 2, p. 263–269, 1 fev. 1998. BIRNBAUM, D. T.; BRANNON-PEPPAS, L. Microparticle Drug Delivery Systems. In: BROWN, D. M. (Ed.). . Drug Delivery Systems in Cancer Therapy. Cancer Drug Discovery and Development. Totowa, NJ: Humana Press, 2004. p. 117–135. BLANCO-PRIETO, M.-J. et al. Nouvelles approches pour l’encapsulation de peptides au sein de microsphères de PLG. Nouvelles approches pour l’encapsulation de peptides au sein de microsphères de PLG, v. 56, n. 6, p. 256–263, 1998. BREWSTER, D.; WALTHAM, K. TRH degradation rates vary widely between different animal species. Biochemical Pharmacology, v. 30, n. 6, p. 619–622, 15 mar. 1981. BUSE, J. B. et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). The Lancet, v. 374, n. 9683, p. 39–47, 4 jul. 2009. BUSH, M. A. et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes, Obesity and Metabolism, v. 11, n. 5, p. 498–505, 2009. CHAMBERLAIN, J. J. et al. Pharmacologic Therapy for Type 2 Diabetes: Synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Annals of Internal Medicine, v. 166, n. 8, p. 572, 18 abr. 2017. CHAN, L.; PISANO, M. Edoxaban (Savaysa): A Factor Xa Inhibitor. Pharmacy and Therapeutics, v. 40, n. 10, p. 651–695, out. 2015. CHEN, H.; LANGER, R. Oral particulate delivery: status and future trends. Advanced Drug Delivery Reviews, Oral Particulates. v. 34, n. 2, p. 339–350, 1 dez. 1998. CHO, N. H. et al. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice, v. 138, p. 271–281, 1 abr. 2018. CHOURASIA, M. K.; JAIN, S. K. Pharmaceutical approaches to colon targeted drug delivery systems. p. 34, 2003. CHRISTENSEN, M. et al. Lixisenatide for type 2 diabetes mellitus. Expert Opinion on Investigational Drugs, v. 20, n. 4, p. 549–557, 1 abr. 2011. CÓZAR-BERNAL, M. J. et al. Insulin-loaded PLGA microparticles: flow focusing versus double emulsion/solvent evaporation. Journal of Microencapsulation, v. 28, n. 5, p. 430– 441, 1 ago. 2011. CROOM, K. F.; MCCORMACK, P. L. Liraglutide. Drugs, v. 69, n. 14, p. 1985–2004, 1 out. 2009. DA CONCEIÇÃO, R. A.; DA SILVA, P. N.; BARBOSA, M. L. C. Drugs for the Treatment of Type II Diabetes: A Visit to the Past and a Look to the Future. Revista Virtual de Química, p. 514–534, 2017. DAS, S. K. et al. MICROENCAPSULATION TECHNIQUES AND ITS PRACTICE. v. 6, p. 24, 2011. DES RIEUX, A. et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, v. 116, n. 1, p. 1–27, 10 nov. 2006. DESHMUKH, R. K.; NAIK, J. B. Diclofenac Sodium-Loaded Eudragit® Microspheres: Optimization Using Statistical Experimental Design. Journal of Pharmaceutical Innovation, v. 8, n. 4, p. 276–287, 1 dez. 2013. DIONNE, B. Key Principles of Antiretroviral Pharmacology. Infectious Disease Clinics of North America, HIV. v. 33, n. 3, p. 787–805, 1 set. 2019. DRUCKER, D. J. et al. Exenatide once weekly versus twice daily for the treatment of type 2 diabetes: a randomised, open-label, non-inferiority study. The Lancet, v. 372, n. 9645, p. 1240–1250, 4 out. 2008. FALA, L. Entresto (Sacubitril/Valsartan): First-in-Class Angiotensin Receptor Neprilysin Inhibitor FDA Approved for Patients with Heart Failure. American Health & Drug Benefits, v. 8, n. 6, p. 330–334, set. 2015. FELTON, L. A. et al. Physical and enteric properties of soft gelatin capsules coated with eudragit ® L 30 D-55. International Journal of Pharmaceutics, v. 113, n. 1, p. 17–24, 2 jan. 1995. FENÁNDEZ, A. et al. Tamoxifen-loaded microspheres based on mixtures of poly(D,Llactide- co-glycolide) and poly(D,L-lactide) polymers: Effect of polymeric composition on drug release and in vitro antitumoral activity. Journal of Applied Polymer Science, v. 124, n. 4, p. 2987–2998, 2012. FIGUEIREDO, D. M.; RABELO, F. L. A. Diabetes insipidus: principais aspectos e análise comparativa com diabetes mellitus. Semina: Ciências Biológicas e da Saúde, v. 30, n. 2, p. 155–162, 15 dez. 2009. FIX, J. A. Oral Controlled Release Technology for Peptides: Status and Future Prospects. Pharmaceutical Research, v. 13, n. 12, p. 1760–1764, 1 dez. 1996. GARG, R.; GUPTA, G. D. Progress in Controlled Gastroretentive Delivery Systems. Tropical Journal of Pharmaceutical Research, v. 7, n. 3, p. 1055-1066–1066, 1 jan. 2008. GLAESNER, W. et al. Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes/Metabolism Research and Reviews, v. 26, n. 4, p. 287–296, 2010. GÓMEZ, C. C. T.; RESTREPO, M. M.; BRUERA, E. Vías alternativas a la vía oral para administración sistémica de opioides en Cuidados Paliativos. Revisión de la literatura. Medicina Paliativa, v. 12, n. 2, p. 108–122, 1 abr. 2005. GUPTA, V. Glucagon-like peptide-1 analogues: An overview. Indian Journal of Endocrinology and Metabolism, v. 17, n. 3, p. 413, 2013. HERNÁNDEZ-JIMÉNEZ, S.; AGUILAR-SALINAS, C. A.; GÓMEZ-PÉREZ, F. J. Tiazolidinedionas. Beneficios y riesgos reales. Revista de Endocrinología y Nutrición, v. 10, n. 2, p. 69–76, 2002. HOUCHIN, M. L.; TOPP, E. M. Chemical Degradation of Peptides and Proteins in PLGA: A Review of Reactions and Mechanisms. Journal of Pharmaceutical Sciences, v. 97, n. 7, p. 2395–2404, 1 jul. 2008. INZUCCHI, S. E. et al. Efficacy and Metabolic Effects of Metformin and Troglitazone in Type II Diabetes Mellitus. New England Journal of Medicine, v. 338, n. 13, p. 867–873, 26 mar. 1998. IQBAL, M. et al. Double emulsion solvent evaporation techniques used for drug encapsulation. International Journal of Pharmaceutics, v. 496, n. 2, p. 173–190, 30 dez. 2015. IWATA, M.; MCGINITY, J. W. Preparation of multi-phase microspheres of poly(D,L-lactic acid) and poly(D,L-lactic-co-glycolic acid) containing a W/O emulsion by a multiple emulsion solvent evaporation technique. Journal of Microencapsulation, v. 9, n. 2, p. 201– 214, 1 jan. 1991. JACOBSEN, L. V. et al. Effect of renal impairment on the pharmacokinetics of the GLP-1 analogue liraglutide. British Journal of Clinical Pharmacology, v. 68, n. 6, p. 898–905, 2009. JACOBSEN, L. V. et al. Liraglutide in Type 2 Diabetes Mellitus: Clinical Pharmacokinetics and Pharmacodynamics. Clinical Pharmacokinetics, v. 55, n. 6, p. 657–672, 1 jun. 2016. JAIN, D.; PANDA, A. K.; MAJUMDAR, D. K. Eudragit S100 entrapped insulin microspheres for oral delivery. AAPS PharmSciTech, v. 6, n. 1, p. E100–E107, 1 mar. 2005. JELVEHGARI, M. et al. Development of pH-sensitive Insulin Nanoparticles using Eudragit L100-55 and Chitosan with Different Molecular Weights. AAPS PharmSciTech, v. 11, n. 3, p. 1237–1242, 1 set. 2010. JELVEHGARI, M.; MONTAZAM, S. H. Comparison of Microencapsulation by Emulsion- Solvent Extraction/Evaporation Technique Using Derivatives Cellulose and Acrylate- Methacrylate Copolymer as Carriers. Jundishapur Journal of Natural Pharmaceutical Products, v. 7, n. 4, p. 144–152, 2012. JENNEWEIN, H. M.; WALDECK, F.; KONZ, W. The absorption of tetragastrin from different sites in rats and dogs. Arzneimittel-Forschung, v. 24, n. 8, p. 1225–1228, ago. 1974. JYOTHI, N. V. N. et al. Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation, v. 27, n. 3, p. 187–197, 1 maio 2010. KAPITZA, C. et al. Semaglutide, a once-weekly human GLP-1 analog, does not reduce the bioavailability of the combined oral contraceptive, ethinylestradiol/levonorgestrel. The Journal of Clinical Pharmacology, v. 55, n. 5, p. 497–504, 2015. KAZAKOS, K. Incretin effect: GLP-1, GIP, DPP4. Diabetes Research and Clinical Practice, Insulin: from its discovery to its role in state-of-the-art management of diabetes mellitus. v. 93, p. S32–S36, 1 ago. 2011. KINTZING, J. R.; COCHRAN, J. R. Engineered knottin peptides as diagnostics, therapeutics, and drug delivery vehicles. Current Opinion in Chemical Biology, Synthetic Biology * Synthetic Biomolecules. v. 34, p. 143–150, 1 out. 2016. KLEEMANN, C. R. et al. Development and Characterization of Synthetic Chalcones-Loaded Eudragit RS 100 Microparticles for Oral Delivery. Journal of the Brazilian Chemical Society, v. 28, n. 6, p. 1074–1080, jun. 2017. Kollicoat MAE grades | Tablet (Pharmacy) | Solubility. Disponível em: <https://www.scribd.com/document/5682786/Kollicoat-MAE-grades>. Acesso em: 28 jan. 2020. LAU, J. et al. Discovery of the Once-Weekly Glucagon-Like Peptide-1 (GLP-1) Analogue Semaglutide. Journal of Medicinal Chemistry, v. 58, n. 18, p. 7370–7380, 24 set. 2015. LEE, S.; LEE, D. Y. Glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists in the treatment of type 2 diabetes. Annals of Pediatric Endocrinology & Metabolism, v. 22, n. 1, p. 15–26, mar. 2017. LEWIS, D. H. Controlled release of bioactive agents from lactide/glycolide polymers. Biodegradable polymers as drug delivery systems., p. 1–41, 1990. LI, M.; ROUAUD, O.; PONCELET, D. Microencapsulation by solvent evaporation: state of the art for process engineering approaches. International Journal of Pharmaceutics, v. 363, n. 1–2, p. 26–39, 3 nov. 2008. LIU, L. et al. Pectin-based systems for colon-specific drug delivery via oral route. Biomaterials, v. 24, n. 19, p. 3333–3343, 1 ago. 2003. LOPES, V. P. et al. FARMACOLOGIA DO DIABETES MELLITUS TIPO 2: ANTIDIABÉTICOS ORAIS, INSULINA E INOVAÇÕES TERAPÊUTICAS. Revista Eletrônica de Farmácia, v. 9, n. 4, p. 22–22, 30 dez. 2012. MCEVOY, B. W. Missing data in clinical trials for weight management. Journal of Biopharmaceutical Statistics, v. 26, n. 1, p. 30–36, 2 jan. 2016. MEDICSUPPLY. Síndrome da imunodeficiência adquirida – Genvoya. Disponível em: <http://medicsupply.net/sindrome-da-imunodeficiencia-adquirida/>. Acesso em: 15 jan. 2020. MELO, C. S.; SILVA-CUNHA, A.; FIALHO, S. L. Formas farmacêuticas poliméricas para a administração de peptídeos e proteínas terapêuticos. Revista de Ciências Farmacêuticas Básica e Aplicada, v. 33, n. 4, p. 469-477–477, 26 fev. 2013. MENDES, J. B. E. DESENVOLVIMENTO E AVALIAÇÃO DE MICROPARTÍCULAS POLIMÉRICAS CONTENDO RESVERATROL. 17 set. 2011. MONTGOMERY, M. et al. Daclatasvir (Daklinza). Pharmacy and Therapeutics, v. 41, n. 12, p. 751–755, dez. 2016. MORÇÖL, T. et al. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin. International Journal of Pharmaceutics, Selected Papers from The 11th International Pharmaceutical Technology Symposium. v. 277, n. 1, p. 91–97, 11 jun. 2004. MOREIRA, G. F. et al. Aplicação da Calorimetria Exploratória Diferencial (DSC) para Determinação da Pureza de Fármacos. Produto & Produção, v. 11, n. 1, 19 jan. 2010. MOUSTAFINE, R. I.; KEMENOVA, V. A.; VAN DEN MOOTER, G. Characteristics of interpolyelectrolyte complexes of Eudragit E 100 with sodium alginate. International Journal of Pharmaceutics, v. 294, n. 1, p. 113–120, 27 abr. 2005. MOUSTAFINE, R. I.; ZAHAROV, I. M.; KEMENOVA, V. A. Physicochemical characterization and drug release properties of Eudragit® E PO/Eudragit® L 100-55 interpolyelectrolyte complexes. European Journal of Pharmaceutics and Biopharmaceutics, v. 63, n. 1, p. 26–36, 1 maio 2006. MULLIGAN, R. C. The basic science of gene therapy. Science, v. 260, n. 5110, p. 926–932, 14 maio 1993. NGUYEN, D. A.; FOGLER, H. S. Facilitated diffusion in the dissolution of carboxylic polymers. AIChE Journal, v. 51, n. 2, p. 415–425, 1 fev. 2005. NIKAM, V. K. et al. EUDRAGIT A VERSATILE POLYMER : A REVIEW. p. 13, 2011. NIU, C.-H.; CHIU, Y.-Y. FDA perspective on peptide formulation and stability issues. Journal of Pharmaceutical Sciences, v. 87, n. 11, p. 1331–1334, 1998. PEPPAS, N. A. Devices based on intelligent biopolymers for oral protein delivery. International Journal of Pharmaceutics, Selected Papers from The 11th International Pharmaceutical Technology Symposium. v. 277, n. 1, p. 11–17, 11 jun. 2004. PERIGNON, C. et al. Microencapsulation by interfacial polymerisation: membrane formation and structure. Journal of Microencapsulation, v. 32, n. 1, p. 1–15, 2015. PRASAD-REDDY, L.; ISAACS, D. A clinical review of GLP-1 receptor agonists: efficacy and safety in diabetes and beyond. Drugs in Context, v. 4, 9 jul. 2015. RAEDLER, L. A. Viekira Pak (Ombitasvir, Paritaprevir, and Ritonavir Tablets; Dasabuvir Tablets): All-Oral Fixed Combination Approved for Genotype 1 Chronic Hepatitis C Infection. American Health & Drug Benefits, v. 8, n. Spec Feature, p. 142–147, mar. 2015. RAHMAN, MD. A.; ALI, J. Development and in vitro Evaluation of Enteric Coated Multiparticulate System for Resistant Tuberculosis. Indian Journal of Pharmaceutical Sciences, v. 70, n. 4, p. 477–481, 2008. RATRA, A.; LOFTUS, R. Stevens-Johnson Syndrome in a Chronic Hepatitis C Patient Treated With Zepatier (Elbasvir/Grazoprevir): 2311. American Journal of Gastroenterology, v. 112, p. S1264, out. 2017. ROLIN, B. et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases β-cell mass in diabetic mice. American Journal of Physiology-Endocrinology and Metabolism, v. 283, n. 4, p. E745–E752, 1 out. 2002. ROSCA, I. D.; WATARI, F.; UO, M. Microparticle formation and its mechanism in single and double emulsion solvent evaporation. Journal of Controlled Release, v. 99, n. 2, p. 271– 280, 30 set. 2004. SAFFRAN, M. et al. A new approach to the oral administration of insulin and other peptide drugs. Science, v. 233, n. 4768, p. 1081–1084, 5 set. 1986. SAFFRAN, M. et al. Vasopressin: A model for the study of effects of additives on the oral and rectal administration of peptide drugs. Journal of Pharmaceutical Sciences, v. 77, n. 1, p. 33–38, 1 jan. 1988. SANTOS, G. B. DOS. Estudos de síntese total de peptídeos cíclicos naturais. Doutorado em Produtos Naturais e Sintéticos—Ribeirão Preto: Universidade de São Paulo, 18 jan. 2018. SCHWARTZ, S. S. et al. The Time Is Right for a New Classification System for Diabetes: Rationale and Implications of the β-Cell–Centric Classification Schema. Diabetes Care, v. 39, n. 2, p. 179–186, 1 fev. 2016. SEINO, Y. et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. Journal of Diabetes Investigation, v. 1, n. 5, p. 212–228, 2010. SEMALTY1, A. et al. Properties and formulation of oral drug delivery systems of protein and peptides. Indian Journal of Pharmaceutical Sciences, v. 69, n. 6, p. 741, 2007. SHOUKRI, R. A.; AHMED, I. S.; SHAMMA, R. N. In vitro and in vivo evaluation of nimesulide lyophilized orally disintegrating tablets. European Journal of Pharmaceutics and Biopharmaceutics, v. 73, n. 1, p. 162–171, 1 set. 2009. SILVA, C. et al. Administração oral de peptídeos e proteínas: II. Aplicação de métodos de microencapsulação. Revista Brasileira de Ciências Farmacêuticas, v. 39, n. 1, p. 1–20, mar. 2003. SILVEIRO, S. P.; SATLER, F. Rotinas em Endocrinologia. [s.l.] Artmed Editora, 2015. SINHA, V. R.; KUMRIA, R. Polysaccharides in colon-specific drug delivery. International Journal of Pharmaceutics, v. 224, n. 1, p. 19–38, 14 ago. 2001. SOFIA, M. J.; LINK, J. O. 8.23 - Harvoni: A Combination Therapy for Curing HCV. In: CHACKALAMANNIL, S.; ROTELLA, D.; WARD, S. E. (Eds.). . Comprehensive Medicinal Chemistry III. Oxford: Elsevier, 2017. p. 558–582. SOPPIMATH, K. S. et al. Biodegradable polymeric nanoparticles as drug delivery devices. Journal of Controlled Release, v. 70, n. 1, p. 1–20, 29 jan. 2001. SOSNIK, A.; SEREMETA, K. P. Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers. Advances in Colloid and Interface Science, v. 223, p. 40–54, 1 set. 2015. TEWES, F. et al. Comparative study of doxorubicin-loaded poly(lactide-co-glycolide) nanoparticles prepared by single and double emulsion methods. European Journal of Pharmaceutics and Biopharmaceutics, v. 66, n. 3, p. 488–492, 1 jun. 2007. THAKRAL, S.; THAKRAL, N. K.; MAJUMDAR, D. K. Eudragit®: a technology evaluation. Expert Opinion on Drug Delivery, v. 10, n. 1, p. 131–149, 1 jan. 2013. TUAN GIAM CHUANG, V.; KRAGH-HANSEN, U.; OTAGIRI, M. Pharmaceutical Strategies Utilizing Recombinant Human Serum Albumin. Pharmaceutical Research, v. 19, n. 5, p. 569–577, 1 maio 2002. VANDAMME, TH. F. et al. The use of polysaccharides to target drugs to the colon. Carbohydrate Polymers, v. 48, n. 3, p. 219–231, 15 maio 2002. VILSBØLL, T. Liraglutide: a once-daily GLP-1 analogue for the treatment of Type 2 diabetes mellitus. Expert Opinion on Investigational Drugs, v. 16, n. 2, p. 231–237, 1 fev. 2007. WYVRATT, M. J.; PATCHETT, A. A. Recent developments in the design of angiotensinconverting enzyme inhibitors. Medicinal Research Reviews, v. 5, n. 4, p. 483–531, 1985. YONCHEVA, K.; LIZARRAGA, E.; IRACHE, J. M. Pegylated nanoparticles based on poly(methyl vinyl ether-co-maleic anhydride): preparation and evaluation of their bioadhesive properties. European Journal of Pharmaceutical Sciences, v. 24, n. 5, p. 411–419, 1 abr. 2005. YU, M. et al. Battle of GLP-1 delivery technologies. Advanced drug delivery reviews, v. 130, 12 jul. 2018. ZAJĄC, M. et al. Hepatitis C – New drugs and treatment prospects. European Journal of Medicinal Chemistry, v. 165, p. 225–249, 1 mar. 2019. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/1/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/2/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/3/2020%20-%20Isabela%20Hastenreiter%20Gon%c3%a7alves%20de%20Oliveira.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13342/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 82a7bae5861eaa4c75e2b10c46997109 8544f8a2f14740569f8a47b1d09d8231 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108173633191936 |