Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/13322 |
Resumo: | O principal objetivo deste trabalho foi o desenvolvimento de uma nova metodologia para determinação de dados de equilíbrio termodinâmico em misturas líquidas e poliméricas. Três metodologias foram propostas utilizando a Microextração em Fase Sólida (SPME) para determinação dos coeficientes de atividade em diluição infinita (γ∞) de sistemas líquidos. Os valores de γ∞ de 9 hidrocarbonetos foram determinados em furfural nas temperaturas de 25, 35 e 45 °C. Foram determinados valores de coeficiente de partição líquid-gás (KLg) em cada uma das temperaturas estudadas. Nos experimentos envolvendo as misturas líquidas, foi observada uma alta taxa de sorção de solvente podendo ocasionar o inchamento e possível quebramento das fibras de SPME. Para verificar o possível inchamento, foram conduzidos testes estatísticos antes e depois de cada amostragem. Foi proposto ainda uma metodologia para determinar os parâmetros de Flory em polidimetilsiloxano (PDMS) e poliacrilato (PA) utilizando a SPME. Nesse caso, os mesmos 9 hidrocarbonetos tiveram seus parâmetros de Flory determinados na faixa de temperatura 25 a 80 °C para o PDMS e de 50 a 90 °C para o PA. As metodologias foram avaliadas através da comparação dos dados obtidos com dados da literatura. Todos os resultados foram satisfatórios, sendo ainda obtidos os valores dos parâmetros de solubilidade de Hildebrandt, que para o poliacrilato, eram inexistentes na literatura |
id |
UFRRJ-1_ee0f2409adc1524759e3015f2a2d4141 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/13322 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Furtado, Filipe ArantesCoelho, Gerson Luiz Vieira376.071.627-04http://lattes.cnpq.br/3629371878927592Tavares, Frederico WanderleyAlmeida , André de120.997.237-96http://lattes.cnpq.br/15825997627243242023-12-22T02:45:35Z2023-12-22T02:45:35Z2012-07-26FURTADO, Filipe Arantes. Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME - GC/FID. 2012. 131 f. Dissertação (Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica.https://rima.ufrrj.br/jspui/handle/20.500.14407/13322O principal objetivo deste trabalho foi o desenvolvimento de uma nova metodologia para determinação de dados de equilíbrio termodinâmico em misturas líquidas e poliméricas. Três metodologias foram propostas utilizando a Microextração em Fase Sólida (SPME) para determinação dos coeficientes de atividade em diluição infinita (γ∞) de sistemas líquidos. Os valores de γ∞ de 9 hidrocarbonetos foram determinados em furfural nas temperaturas de 25, 35 e 45 °C. Foram determinados valores de coeficiente de partição líquid-gás (KLg) em cada uma das temperaturas estudadas. Nos experimentos envolvendo as misturas líquidas, foi observada uma alta taxa de sorção de solvente podendo ocasionar o inchamento e possível quebramento das fibras de SPME. Para verificar o possível inchamento, foram conduzidos testes estatísticos antes e depois de cada amostragem. Foi proposto ainda uma metodologia para determinar os parâmetros de Flory em polidimetilsiloxano (PDMS) e poliacrilato (PA) utilizando a SPME. Nesse caso, os mesmos 9 hidrocarbonetos tiveram seus parâmetros de Flory determinados na faixa de temperatura 25 a 80 °C para o PDMS e de 50 a 90 °C para o PA. As metodologias foram avaliadas através da comparação dos dados obtidos com dados da literatura. Todos os resultados foram satisfatórios, sendo ainda obtidos os valores dos parâmetros de solubilidade de Hildebrandt, que para o poliacrilato, eram inexistentes na literaturaConselho Nacional de Desenvolvimento Científico e Tecnológico - CNPqThe main objective of this work was the development of a methodoly using the Solid Phase Microextraction (SPME) on determinations of thermodynamic equilibrium data of liquid and polymeric mixtures. Three methodologies were proposed for determination of infinite dilution activity coefficient of solutes in liquid mixtures (γ∞). The γ∞ values were determined for 9 hydrocarbons in the solvent furfural at temperatures of 25, 35 and 45 °C. The liquid-gas partition coefficients were also determined in each studied temperature. On the experiments involving liquid mixtures, high sorption of solvent was observed, which may lead to swelling the polymer coating phase. Statistical tests were conducted after each experiments to measure possible damages on fiber coatings. There was also proposed a methodology using the SPME to determine the Flory Huggins parameter of the nine hydrocarbons used as solutes in polydimethylsiloxane (PDMS) and polyacrylate (PA). The Flory parameter were determined at temperature range of 25 to 80 °C for the PDMS and 50 to 90 °C for the PA. The proposed methodologies were evaluated through comparison of the obtained data with literature. All the results agreed with literature data. The Hildebrandt solubility parameter for PA was not available on literature and was determined on these experiments for the first timeapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUFRRJBrasilInstituto de TecnologiaChemical Engineering, ,ThermodynamicsChromatographic AnalysisEngenharia Química, ,TermodinâmicaAnálise cromatográficaEngenhariasDeterminação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FIDDetermination of activity coefficients at infinite dilution for hydrocarbons in furfural and flory parameters in polymeric systems using HS-SPMEGC/ FIDinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis7 – REFERÊNCIAS BIBLIOGRÁFICAS ASHWORTH, A.J.; PRICE, G.J.; Comparison of Static with Gas Chromatographic Interaction Parameters and Estimation of the Solubility Parameter for Poly(dimethylsi1oxane), Macromolecules, 19, 362-363, 1986. BAO, J.B.; HAN, S.J.; Infinite dilution activity coefficients for various types of systems, Fluid Phase Equilibria, 112, 307-316, 1995. BLANKS, R.F.; PRAUSNITZ, J.M.; Thermodynamics of Polymer Solubility in Polar and Nonpolar Systems, Industrial and Engineering Chemistry Fundamentals, 3, 1-8, 1964. COTO, B.; GRIEKEN,R.; PEÑA, J.L.; ESPADA J.J.; A generalized model to predict the liquid–liquid equilibrium in the systems furfural+lubricating oils, Chemical Engineering Science, 61, 8028-8039, 2006. CRUICKSHANK, A.J.B., GAINEY, B.W., HICKS, C.P., LETCHER, T.M., MOODY, R.W., YOUNG, C.L., Gas – Liquid Chromatographic Determination of Cross – Term Second Virial Coefficients using Glycerol. Benzene + nitrogen and benzene + carbon dioxide at 50°C, Trans. Faraday Soc., 65, 1014 – 1031, 1969. DANNER, R.P.; HIGH, M.S.; Handbook of Polymer Solution Thermodynamics, New York, American Institute of Chemical Engineers, 1993. DÍEZ, E.; OVEJERO, M.; DÍAZ, I. Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements, Fluid Phase Equilibria, 308, 107-113, 2011. EVERETT, D.H., Effect of Gas Imperfection on G.L.C. Measurements: a refined Method for Determining Activity Coefficients and Second Virial Coefficients, Trans. Faraday soc., 61, 1637 – 1645, 1965. FONSECA, D.B.; COELHO, G.L.V.; Determinação do coeficiente de atividade na diluição infinita (γ∞) através da microextração em fase sólida (SPME), Quim. Nova, 7, 1606-1608, 2007. FURTADO, F.A.; COELHO, G.L.V.; Determinação do coeficiente de atividade em diluição infinita de hidrocarbonetos em furfural a 298,15 k por SPME–GC/FID, Quim. Nova, 33, 1905-1909, 2010. FURTADO, F.A.; COELHO, G.L.V.; Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K, J. Chem. Thermodynamics, 49, 119-127, 2012. GILL, K.; BROWN, A.; Extending the Solid-Phase Microextraction Technique To High Analyte Concentrations: Measurements and Thermodynamic Analysis, Anal. Chem., 74, 1031-1037, 2002. GMEHLING, G.; Kolbe, B.; Thermodynamik, George Thieme Verlag, Sttutgart, 1988. 87 GNANOU, Y.; FONTANILLE, M.; Organic and Physical Chemistry Of Polymers, USA, Wiley-VHC, 2008. GRAY, G.D.; Gas Chromatographic measurements of polymer structure and interactions, Prog. Polym. Sci, 5, 1-60, 1977. HAIMI, P.; UUSI-KYYNY, P.; POKKI, J.P.; AITTAMAA, J.; KESKINEN, K.I.; Infinite dilution activity coefficient measurements by inert gas stripping method, Fluid Phase Equilibria, 243, 126 – 132, 2006. HARBERHAUER-TROYER, C.; CRNOJA, M.; ROSENBERG, E.; Surface characterization of commercial fibers for solid-phase microextraction and related problems in their application, Fresenius J Anal Chem, 336, 329-331, 2000. HIELERMANN, A.; RICCO, A.J.; BODENHÖFER, K.; DOMINIK, A.; GÖPEL, W.; Conferring Selectivity to Chemical Sensors via Polymer Side – Chain Selection: Thermodynamics of Vapor Sorption by a Set of Polysiloxanes on Thicness – Shear Mode Resonators, Anal. Chem., 72, 3696 – 3708, 2000. HOYDONCKX,H.E.; VAN RHIJN, W.M.; VAN RHIJN, W.; DE VOS, D. E.; JACOBS, P.A.; Ullmann’s Encyclopedia of Industrial Chemistry: Furfural and Derivatives, Wiley- VHC, 2007. KISTER, H.Z.; Distillation design, 1st ed., McGraw-Hill, 1992. KLOSKOWSKI, A.; CHRZANOWSKI, W.; PILARCZYK, M.; NAMIESNIK, J.; Partition coefficients of selected enviromentally important volatile organic compounds determined by gás – liquid chromatography with polydimethilsiloxane stationary phase, J. Chem. Thermodynamics, 37, 21 – 29, 2005. KNOOP, C.; TIEGS, D.; GMEHLING, J.; Measurement of γ∞ Using Gas-Liquid Chromatography. 3. Results for the Stationary Phases 10-Nonadecanone, NFormylmorpholine, 1-Pentanol, m-Xylene, and Toluene, J. Chem. Eng. Data, 34, 240-247, 1989. KOJIMA, K.; ZHANG, S.; HIAKI, T.; Measuring methods of infinite dilution activity coefficients and a database for systems including water, Fluid Phase Equilibria, 131, 145- 179, 1997. KRUMMEN, M.; GRUBER, D.; GMEHLING, J.; Measurement of Activity Coefficients at Infinite Dilution in Solvent Mixtures Using the Dilutor Technique, Ind. Eng. Chem. Res., 39, 2114-2123, 2000. KRUMMEN, M.; GRUBER, D.; GMEHLING, J; Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography. 12. Results for Various Solutes with the Stationary Phases N-Ethylacetamide, N,N-Diethylacetamide, Diethylphthalate, and Glutaronitrile, J. Chem. Eng. Data, 45, 771-775, 2000. 88 LETCHER, T.M.; MOOLLAN, W.C.; The determination of activity coefficients at infnite dilution using g.l.c. with a moderately volatile solvent (dodecane) at the temperatures 179.04 K and 187.04 K, J. Chem. Thermodynamics, 27, 1025-1032,1995. LETCHER, T. M.; KOZLOWSKA M. K.; ZELASNA, U. D. The Determination of activity coefficients at infinite dilution using g.l.c. for hydrocarbons in furfural at T = 278,15 K and T = 298,15 K, J. Chem. Thermodynamics, 36, 37 – 40, 2004. MARCINIAK, A.; Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide, J. Chem. Thermodynamics, 43, 1446-1452, 2011. MARTOS, P.A.; PAWLISZYN, J.; Calibration of Solid Phase Microextraction for Air Analyses Based on Physical Chemical Properties of the Coating, Anal. Chem., 69, 206 – 215, 1997. MARTOS, P.A.; SARAULLO, A.; PAWLISZYN, J.; Estimation of Air/Coating Distribution Coefficients for Solid Phase Microextraction Using Retention Time Indexes from Linear Temperature – Programmed Capilary Gas Chromatography. Aplication to the Sampling and Analysis of Total Petroleum Hydrocarbons in Air, Anal. Chem., 69, 402 – 408, 1997. McCABE, W.L.; SMITH, J.C.; HARRIOTT, P.; Unit Operations of Chemical Enngineering, 5th ed., Singapore, McGraw-Hill, 1993. OKABE, M.; WADA, R.; TAZAKI, M.; HOMMA, T.; The Flory−Huggins Interaction Parameter and Thermoreversible Gelation of Poly(vinylidene fluoride) in Organic Solvents, Polymer Journal, 35, 798-803, 2003. OLIVER, E.; LETCHER, T.M.; NAIDOO, P.; RAMJUGERNATH, D.; Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-butyl-3-methylimidazolium hexafluoroantimonate using gas–liquid chromatography at T = (313.15, 323.15, and 333.15) K, J. Chem. Thermodynamics, 43, 829-833, 2011. ORWOLL, R.A.; ARNOLD, P.A.; Physical Properties of Polymers Handbook, 2nd ed., editado por J. E. Mark. AIP Press, Woodbury, N.Y., p. 233-257, 1996. OVEJERO, G.; PÉREZ, P.; ROMERO, M.D.; DÍAZ, I.; DÍEZ, E.; SEBS triblock copolymer– solvent interaction parameters from inverse gas chromatography measurements, European Polymer Journal, 45, 590-594, 2009. PAWLISZYN, J., Solid Phase Microextraction, Theory and Patice. 1ª Edição, New York, Wylei – VCH, 1987. PRAUSNITZ, J.M.; LICHTETHALER, N.; AZEVEDO, E.G.; Molecular Thermodynamics of Fluid Phase Equilibria, 3ª Edição, Prentice-Hall, 1999. PERRY, R.H.; GREEN, D.W.; Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw- Hill, New York, 1997. 89 REDDY, P.; CHIYEN, K.J.; DEENADAYALU, N.; RAMJUGERNATH, D.; Determination of activity coefficients at infinite dilution of water and organic solutes (polar and non-polar) in the Ammoeng 100 ionic liquid, J. Chem. Thermodynamics, 43, 1178-1184, 2011. REID, R.C., PRAUSNITZ, J.M., POLING, B.E., The Properties of Gases and Liquids. 4ª Edição, New York, Mc Graw Hill, 1987. ROTH, M.; Solubility Parameter of Poly(dimethylsiloxane) as a Function of Temperature and Chain Length, Journal of Polymer Science Part B: Polymer Physics, 28, 2715-2719, 1990. SANDLER, S.I., Infinite Dilution Activity Coefficients in Chemical, Environmental and Biochemical Engineering, Fluid Phase Equilibria, 116, 343-353, 1996. SANTACESARIA, E.; BERLENDIS, D.; CARRÀ, S.; Measurement of activity coefficients at infinite dilution by stripping and retention time methods, Fluid Phase Equilibria, 3, 167 – 176, 1979. SANTIUSTE, J.M., Contribution to the study of solute – stationary phase retention interactions in terms of activity coefficients obtained by gas – liquid chromatography, Analytica Chimica Acta, 441, 63 – 72, 2001. SHAW, D.A., ANDERSON, T.F., Use of Gas Chromatographic Headspace Analysis in Vapor – Liquid Equilibrium Data Collection, Ind. Eng. Chem. Fundam., 22, 79 – 83, 1983. SHIH, H.; FLORY, P.J.; Equation of State Parameters for Poly (dimethylsiloxane), Macromolecules, 5, 758-761, 1972. STAUDINGER, J.; ROBERTS, P.V.; A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561-576, 2001. SUMMERS, W.R.; TEWARI, Y.B.; SCHREIBER, H.P., Thermodynamic Interaction in Polydimethylsiloxane-Hydrocarbon Systems from Gas-Liquid Chromatography, Macromolecules, 5, 12-16, 1972. TIAN, M.; MUNK, P.; Characterization of Polymer-Solvent Interactions and Their Temperature Dependence Using Inverse Gas Chromatography, J. Chem. Eng. Data, 39, 742- 755, 1994. THOMAS, E.R.; NEWMAN, B.A.; NICOLALDES, G.L.; ECKERT, C.A.; Limiting Activity Coefficients from Differential Ebulliometry, J. Chem Eng. Data, 27, 233-240, 1982. TIHMINLIOGLU, F; DANNER, R.P.; Application of inverse gas chromatography to the measurement of diffusion and phase equilibria in polyacrylate–solvent systems, Journal of Chromatography A, 845, 93-101, 1999. TOPPHOFF, M.; GRUBER, D.; GMEHLING, J.; Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography. 10. Results for Various Solutes with the 90 Stationary Phases Dimethyl Sulfoxide, Propylene Carbonate, and N-Ethylformamide, J. Chem. Eng. Data, 44, 1355-1359, 1999. VALENTE, A.L.P.; AUGUSTO, F.; Microextração por Fase Sólida, Química Nova, 23, 523 – 530, 2000. VOELKEL, A.; FALL, J.; Inverse Gas Chromatography. Relationship between Mass Activity Coefficient and Flory-Huggins Interaction Parameter in the Examination of Petroleum Pitches, Chromatographia, 44, 197-204, 1997. VOELKEL, A.; MILCZEWSKA, J.; JECZALIK, J.; Characterization of the interactions in polymer/silica systems by inverse gas chromatography, Macromol. Symp., 169, 45-55, 2001. VOELKEL, A.; STRZEMIECKA, B.; ADAMSKA, K.; MILCZEWSKA, K.; Inverse gas chromatography as a source of physicochemical data, Journal of Chromatography A, 1216, 1551-1566, 2009. WALAS, S.M., Phase Equilibria in Chemical Engineering. 1ª Edição, Boston, Butterworth – Heinemann, 1985. WARD, T.C.; SHEEHY, D.P.; RIFFLE, J.S.; McGRATH, J.E.; Inverse Gas Chromatography Studies of Poly(dimethylsi1oxane)-Polycarbonate Copolymers and Blends, Macromolecules, 14, 1791-1797, 1981. WATSON, K.M.; Thermodynamics of Liquid State, industrial and Engineering Chemistry, 35, 398-406, 1943. WELSH, W. J.; Physical Properties of Polymers Handbook, 2nd ed., editado por J. E. Mark. AIP Press, Woodbury, N.Y., pp. 401-407, 1996. WHITEHEAD, P.G.; SANDLER, S.I.; Headspace gas chromatography for measurements of infinite dilution activity coefficients of C4 alcohols in water, Fluid Phase Equilibria, 157, 111 – 120, 1999. XIA, X.R.; BAYNES, R.E.; MONTEIRO-RIVIERE, N.A.; RIVIERE, J.; Anal. Chem., 4245-4250, 2004. YAN, P.F.; YANG, M.; LIU, X.M.; WANG, C.; TAN, Z.C.; WELZ-BIERMANN, U.; Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3- methylimidazolium tetracyanoborate [EMIM][TCB] using gas–liquid chromatography, J Chem. Thermodynamics, 42, 817-822, 2010. ZHANG, Z.; PAWLISZYN, J.; Headspce solid – phase microextraction, Anal. Chem., 65, 1843 – 1852, 1993. ZHANG, Z.; PAWLISZYN, J.; Studying Activity Coefficients of Probe Solutes in Selected Liquid Polymer Coatings Using Solid Phase Microextraction, J. Phys. Chem., 100, 17648 - 17645, 1996.https://tede.ufrrj.br/retrieve/5428/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/14928/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/21224/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/27588/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/33956/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/40336/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/46704/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/retrieve/53116/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/1604Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-09T11:39:47Z No. of bitstreams: 1 2012 - Filipe Arantes Furtado.pdf: 4817236 bytes, checksum: 027c11b973e31fc0617693a998446e3e (MD5)Made available in DSpace on 2017-05-09T11:39:47Z (GMT). No. of bitstreams: 1 2012 - Filipe Arantes Furtado.pdf: 4817236 bytes, checksum: 027c11b973e31fc0617693a998446e3e (MD5) Previous issue date: 2012-07-26info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2012 - Filipe Arantes Furtado.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/1/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2012 - Filipe Arantes Furtado.pdf.txtExtracted Texttext/plain350523https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/2/2012%20-%20Filipe%20Arantes%20Furtado.pdf.txtb5f51252b421c5ba26a7dedc9540f7d2MD52ORIGINAL2012 - Filipe Arantes Furtado.pdf2012 - Filipe Arantes Furtadoapplication/pdf4817236https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/3/2012%20-%20Filipe%20Arantes%20Furtado.pdf027c11b973e31fc0617693a998446e3eMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/133222023-12-21 23:45:35.287oai:rima.ufrrj.br:20.500.14407/13322Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T02:45:35Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
dc.title.alternative.eng.fl_str_mv |
Determination of activity coefficients at infinite dilution for hydrocarbons in furfural and flory parameters in polymeric systems using HS-SPMEGC/ FID |
title |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
spellingShingle |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID Furtado, Filipe Arantes Chemical Engineering, , Thermodynamics Chromatographic Analysis Engenharia Química, , Termodinâmica Análise cromatográfica Engenharias |
title_short |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
title_full |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
title_fullStr |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
title_full_unstemmed |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
title_sort |
Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME- GC/FID |
author |
Furtado, Filipe Arantes |
author_facet |
Furtado, Filipe Arantes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Furtado, Filipe Arantes |
dc.contributor.advisor1.fl_str_mv |
Coelho, Gerson Luiz Vieira |
dc.contributor.advisor1ID.fl_str_mv |
376.071.627-04 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3629371878927592 |
dc.contributor.referee1.fl_str_mv |
Tavares, Frederico Wanderley |
dc.contributor.referee2.fl_str_mv |
Almeida , André de |
dc.contributor.authorID.fl_str_mv |
120.997.237-96 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/1582599762724324 |
contributor_str_mv |
Coelho, Gerson Luiz Vieira Tavares, Frederico Wanderley Almeida , André de |
dc.subject.eng.fl_str_mv |
Chemical Engineering, , Thermodynamics Chromatographic Analysis |
topic |
Chemical Engineering, , Thermodynamics Chromatographic Analysis Engenharia Química, , Termodinâmica Análise cromatográfica Engenharias |
dc.subject.por.fl_str_mv |
Engenharia Química, , Termodinâmica Análise cromatográfica |
dc.subject.cnpq.fl_str_mv |
Engenharias |
description |
O principal objetivo deste trabalho foi o desenvolvimento de uma nova metodologia para determinação de dados de equilíbrio termodinâmico em misturas líquidas e poliméricas. Três metodologias foram propostas utilizando a Microextração em Fase Sólida (SPME) para determinação dos coeficientes de atividade em diluição infinita (γ∞) de sistemas líquidos. Os valores de γ∞ de 9 hidrocarbonetos foram determinados em furfural nas temperaturas de 25, 35 e 45 °C. Foram determinados valores de coeficiente de partição líquid-gás (KLg) em cada uma das temperaturas estudadas. Nos experimentos envolvendo as misturas líquidas, foi observada uma alta taxa de sorção de solvente podendo ocasionar o inchamento e possível quebramento das fibras de SPME. Para verificar o possível inchamento, foram conduzidos testes estatísticos antes e depois de cada amostragem. Foi proposto ainda uma metodologia para determinar os parâmetros de Flory em polidimetilsiloxano (PDMS) e poliacrilato (PA) utilizando a SPME. Nesse caso, os mesmos 9 hidrocarbonetos tiveram seus parâmetros de Flory determinados na faixa de temperatura 25 a 80 °C para o PDMS e de 50 a 90 °C para o PA. As metodologias foram avaliadas através da comparação dos dados obtidos com dados da literatura. Todos os resultados foram satisfatórios, sendo ainda obtidos os valores dos parâmetros de solubilidade de Hildebrandt, que para o poliacrilato, eram inexistentes na literatura |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-07-26 |
dc.date.accessioned.fl_str_mv |
2023-12-22T02:45:35Z |
dc.date.available.fl_str_mv |
2023-12-22T02:45:35Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
FURTADO, Filipe Arantes. Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME - GC/FID. 2012. 131 f. Dissertação (Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13322 |
identifier_str_mv |
FURTADO, Filipe Arantes. Determinação dos coeficientes de atividade em diluição infinita de hidrocarbonetos em furfural e parâmetros de flory em sistemas poliméricos por HSSPME - GC/FID. 2012. 131 f. Dissertação (Programa de Pós-Graduação em Engenharia Química) - Universidade Federal Rural do Rio de Janeiro, Seropédica. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/13322 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
7 – REFERÊNCIAS BIBLIOGRÁFICAS ASHWORTH, A.J.; PRICE, G.J.; Comparison of Static with Gas Chromatographic Interaction Parameters and Estimation of the Solubility Parameter for Poly(dimethylsi1oxane), Macromolecules, 19, 362-363, 1986. BAO, J.B.; HAN, S.J.; Infinite dilution activity coefficients for various types of systems, Fluid Phase Equilibria, 112, 307-316, 1995. BLANKS, R.F.; PRAUSNITZ, J.M.; Thermodynamics of Polymer Solubility in Polar and Nonpolar Systems, Industrial and Engineering Chemistry Fundamentals, 3, 1-8, 1964. COTO, B.; GRIEKEN,R.; PEÑA, J.L.; ESPADA J.J.; A generalized model to predict the liquid–liquid equilibrium in the systems furfural+lubricating oils, Chemical Engineering Science, 61, 8028-8039, 2006. CRUICKSHANK, A.J.B., GAINEY, B.W., HICKS, C.P., LETCHER, T.M., MOODY, R.W., YOUNG, C.L., Gas – Liquid Chromatographic Determination of Cross – Term Second Virial Coefficients using Glycerol. Benzene + nitrogen and benzene + carbon dioxide at 50°C, Trans. Faraday Soc., 65, 1014 – 1031, 1969. DANNER, R.P.; HIGH, M.S.; Handbook of Polymer Solution Thermodynamics, New York, American Institute of Chemical Engineers, 1993. DÍEZ, E.; OVEJERO, M.; DÍAZ, I. Polymer–solvent interaction parameters of SBS rubbers by inverse gas chromatography measurements, Fluid Phase Equilibria, 308, 107-113, 2011. EVERETT, D.H., Effect of Gas Imperfection on G.L.C. Measurements: a refined Method for Determining Activity Coefficients and Second Virial Coefficients, Trans. Faraday soc., 61, 1637 – 1645, 1965. FONSECA, D.B.; COELHO, G.L.V.; Determinação do coeficiente de atividade na diluição infinita (γ∞) através da microextração em fase sólida (SPME), Quim. Nova, 7, 1606-1608, 2007. FURTADO, F.A.; COELHO, G.L.V.; Determinação do coeficiente de atividade em diluição infinita de hidrocarbonetos em furfural a 298,15 k por SPME–GC/FID, Quim. Nova, 33, 1905-1909, 2010. FURTADO, F.A.; COELHO, G.L.V.; Determination of infinite dilution activity coefficients using HS-SPME/GC/FID for hydrocarbons in furfural at temperatures of (298.15, 308.15, and 318.15) K, J. Chem. Thermodynamics, 49, 119-127, 2012. GILL, K.; BROWN, A.; Extending the Solid-Phase Microextraction Technique To High Analyte Concentrations: Measurements and Thermodynamic Analysis, Anal. Chem., 74, 1031-1037, 2002. GMEHLING, G.; Kolbe, B.; Thermodynamik, George Thieme Verlag, Sttutgart, 1988. 87 GNANOU, Y.; FONTANILLE, M.; Organic and Physical Chemistry Of Polymers, USA, Wiley-VHC, 2008. GRAY, G.D.; Gas Chromatographic measurements of polymer structure and interactions, Prog. Polym. Sci, 5, 1-60, 1977. HAIMI, P.; UUSI-KYYNY, P.; POKKI, J.P.; AITTAMAA, J.; KESKINEN, K.I.; Infinite dilution activity coefficient measurements by inert gas stripping method, Fluid Phase Equilibria, 243, 126 – 132, 2006. HARBERHAUER-TROYER, C.; CRNOJA, M.; ROSENBERG, E.; Surface characterization of commercial fibers for solid-phase microextraction and related problems in their application, Fresenius J Anal Chem, 336, 329-331, 2000. HIELERMANN, A.; RICCO, A.J.; BODENHÖFER, K.; DOMINIK, A.; GÖPEL, W.; Conferring Selectivity to Chemical Sensors via Polymer Side – Chain Selection: Thermodynamics of Vapor Sorption by a Set of Polysiloxanes on Thicness – Shear Mode Resonators, Anal. Chem., 72, 3696 – 3708, 2000. HOYDONCKX,H.E.; VAN RHIJN, W.M.; VAN RHIJN, W.; DE VOS, D. E.; JACOBS, P.A.; Ullmann’s Encyclopedia of Industrial Chemistry: Furfural and Derivatives, Wiley- VHC, 2007. KISTER, H.Z.; Distillation design, 1st ed., McGraw-Hill, 1992. KLOSKOWSKI, A.; CHRZANOWSKI, W.; PILARCZYK, M.; NAMIESNIK, J.; Partition coefficients of selected enviromentally important volatile organic compounds determined by gás – liquid chromatography with polydimethilsiloxane stationary phase, J. Chem. Thermodynamics, 37, 21 – 29, 2005. KNOOP, C.; TIEGS, D.; GMEHLING, J.; Measurement of γ∞ Using Gas-Liquid Chromatography. 3. Results for the Stationary Phases 10-Nonadecanone, NFormylmorpholine, 1-Pentanol, m-Xylene, and Toluene, J. Chem. Eng. Data, 34, 240-247, 1989. KOJIMA, K.; ZHANG, S.; HIAKI, T.; Measuring methods of infinite dilution activity coefficients and a database for systems including water, Fluid Phase Equilibria, 131, 145- 179, 1997. KRUMMEN, M.; GRUBER, D.; GMEHLING, J.; Measurement of Activity Coefficients at Infinite Dilution in Solvent Mixtures Using the Dilutor Technique, Ind. Eng. Chem. Res., 39, 2114-2123, 2000. KRUMMEN, M.; GRUBER, D.; GMEHLING, J; Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography. 12. Results for Various Solutes with the Stationary Phases N-Ethylacetamide, N,N-Diethylacetamide, Diethylphthalate, and Glutaronitrile, J. Chem. Eng. Data, 45, 771-775, 2000. 88 LETCHER, T.M.; MOOLLAN, W.C.; The determination of activity coefficients at infnite dilution using g.l.c. with a moderately volatile solvent (dodecane) at the temperatures 179.04 K and 187.04 K, J. Chem. Thermodynamics, 27, 1025-1032,1995. LETCHER, T. M.; KOZLOWSKA M. K.; ZELASNA, U. D. The Determination of activity coefficients at infinite dilution using g.l.c. for hydrocarbons in furfural at T = 278,15 K and T = 298,15 K, J. Chem. Thermodynamics, 36, 37 – 40, 2004. MARCINIAK, A.; Activity coefficients at infinite dilution and physicochemical properties for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium bis(trifluoromethylsulfonyl)-amide, J. Chem. Thermodynamics, 43, 1446-1452, 2011. MARTOS, P.A.; PAWLISZYN, J.; Calibration of Solid Phase Microextraction for Air Analyses Based on Physical Chemical Properties of the Coating, Anal. Chem., 69, 206 – 215, 1997. MARTOS, P.A.; SARAULLO, A.; PAWLISZYN, J.; Estimation of Air/Coating Distribution Coefficients for Solid Phase Microextraction Using Retention Time Indexes from Linear Temperature – Programmed Capilary Gas Chromatography. Aplication to the Sampling and Analysis of Total Petroleum Hydrocarbons in Air, Anal. Chem., 69, 402 – 408, 1997. McCABE, W.L.; SMITH, J.C.; HARRIOTT, P.; Unit Operations of Chemical Enngineering, 5th ed., Singapore, McGraw-Hill, 1993. OKABE, M.; WADA, R.; TAZAKI, M.; HOMMA, T.; The Flory−Huggins Interaction Parameter and Thermoreversible Gelation of Poly(vinylidene fluoride) in Organic Solvents, Polymer Journal, 35, 798-803, 2003. OLIVER, E.; LETCHER, T.M.; NAIDOO, P.; RAMJUGERNATH, D.; Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-butyl-3-methylimidazolium hexafluoroantimonate using gas–liquid chromatography at T = (313.15, 323.15, and 333.15) K, J. Chem. Thermodynamics, 43, 829-833, 2011. ORWOLL, R.A.; ARNOLD, P.A.; Physical Properties of Polymers Handbook, 2nd ed., editado por J. E. Mark. AIP Press, Woodbury, N.Y., p. 233-257, 1996. OVEJERO, G.; PÉREZ, P.; ROMERO, M.D.; DÍAZ, I.; DÍEZ, E.; SEBS triblock copolymer– solvent interaction parameters from inverse gas chromatography measurements, European Polymer Journal, 45, 590-594, 2009. PAWLISZYN, J., Solid Phase Microextraction, Theory and Patice. 1ª Edição, New York, Wylei – VCH, 1987. PRAUSNITZ, J.M.; LICHTETHALER, N.; AZEVEDO, E.G.; Molecular Thermodynamics of Fluid Phase Equilibria, 3ª Edição, Prentice-Hall, 1999. PERRY, R.H.; GREEN, D.W.; Perry’s Chemical Engineers’ Handbook, 7th ed., McGraw- Hill, New York, 1997. 89 REDDY, P.; CHIYEN, K.J.; DEENADAYALU, N.; RAMJUGERNATH, D.; Determination of activity coefficients at infinite dilution of water and organic solutes (polar and non-polar) in the Ammoeng 100 ionic liquid, J. Chem. Thermodynamics, 43, 1178-1184, 2011. REID, R.C., PRAUSNITZ, J.M., POLING, B.E., The Properties of Gases and Liquids. 4ª Edição, New York, Mc Graw Hill, 1987. ROTH, M.; Solubility Parameter of Poly(dimethylsiloxane) as a Function of Temperature and Chain Length, Journal of Polymer Science Part B: Polymer Physics, 28, 2715-2719, 1990. SANDLER, S.I., Infinite Dilution Activity Coefficients in Chemical, Environmental and Biochemical Engineering, Fluid Phase Equilibria, 116, 343-353, 1996. SANTACESARIA, E.; BERLENDIS, D.; CARRÀ, S.; Measurement of activity coefficients at infinite dilution by stripping and retention time methods, Fluid Phase Equilibria, 3, 167 – 176, 1979. SANTIUSTE, J.M., Contribution to the study of solute – stationary phase retention interactions in terms of activity coefficients obtained by gas – liquid chromatography, Analytica Chimica Acta, 441, 63 – 72, 2001. SHAW, D.A., ANDERSON, T.F., Use of Gas Chromatographic Headspace Analysis in Vapor – Liquid Equilibrium Data Collection, Ind. Eng. Chem. Fundam., 22, 79 – 83, 1983. SHIH, H.; FLORY, P.J.; Equation of State Parameters for Poly (dimethylsiloxane), Macromolecules, 5, 758-761, 1972. STAUDINGER, J.; ROBERTS, P.V.; A critical compilation of Henry’s law constant temperature dependence relations for organic compounds in dilute aqueous solutions, Chemosphere, 44, 561-576, 2001. SUMMERS, W.R.; TEWARI, Y.B.; SCHREIBER, H.P., Thermodynamic Interaction in Polydimethylsiloxane-Hydrocarbon Systems from Gas-Liquid Chromatography, Macromolecules, 5, 12-16, 1972. TIAN, M.; MUNK, P.; Characterization of Polymer-Solvent Interactions and Their Temperature Dependence Using Inverse Gas Chromatography, J. Chem. Eng. Data, 39, 742- 755, 1994. THOMAS, E.R.; NEWMAN, B.A.; NICOLALDES, G.L.; ECKERT, C.A.; Limiting Activity Coefficients from Differential Ebulliometry, J. Chem Eng. Data, 27, 233-240, 1982. TIHMINLIOGLU, F; DANNER, R.P.; Application of inverse gas chromatography to the measurement of diffusion and phase equilibria in polyacrylate–solvent systems, Journal of Chromatography A, 845, 93-101, 1999. TOPPHOFF, M.; GRUBER, D.; GMEHLING, J.; Measurement of Activity Coefficients at Infinite Dilution Using Gas-Liquid Chromatography. 10. Results for Various Solutes with the 90 Stationary Phases Dimethyl Sulfoxide, Propylene Carbonate, and N-Ethylformamide, J. Chem. Eng. Data, 44, 1355-1359, 1999. VALENTE, A.L.P.; AUGUSTO, F.; Microextração por Fase Sólida, Química Nova, 23, 523 – 530, 2000. VOELKEL, A.; FALL, J.; Inverse Gas Chromatography. Relationship between Mass Activity Coefficient and Flory-Huggins Interaction Parameter in the Examination of Petroleum Pitches, Chromatographia, 44, 197-204, 1997. VOELKEL, A.; MILCZEWSKA, J.; JECZALIK, J.; Characterization of the interactions in polymer/silica systems by inverse gas chromatography, Macromol. Symp., 169, 45-55, 2001. VOELKEL, A.; STRZEMIECKA, B.; ADAMSKA, K.; MILCZEWSKA, K.; Inverse gas chromatography as a source of physicochemical data, Journal of Chromatography A, 1216, 1551-1566, 2009. WALAS, S.M., Phase Equilibria in Chemical Engineering. 1ª Edição, Boston, Butterworth – Heinemann, 1985. WARD, T.C.; SHEEHY, D.P.; RIFFLE, J.S.; McGRATH, J.E.; Inverse Gas Chromatography Studies of Poly(dimethylsi1oxane)-Polycarbonate Copolymers and Blends, Macromolecules, 14, 1791-1797, 1981. WATSON, K.M.; Thermodynamics of Liquid State, industrial and Engineering Chemistry, 35, 398-406, 1943. WELSH, W. J.; Physical Properties of Polymers Handbook, 2nd ed., editado por J. E. Mark. AIP Press, Woodbury, N.Y., pp. 401-407, 1996. WHITEHEAD, P.G.; SANDLER, S.I.; Headspace gas chromatography for measurements of infinite dilution activity coefficients of C4 alcohols in water, Fluid Phase Equilibria, 157, 111 – 120, 1999. XIA, X.R.; BAYNES, R.E.; MONTEIRO-RIVIERE, N.A.; RIVIERE, J.; Anal. Chem., 4245-4250, 2004. YAN, P.F.; YANG, M.; LIU, X.M.; WANG, C.; TAN, Z.C.; WELZ-BIERMANN, U.; Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3- methylimidazolium tetracyanoborate [EMIM][TCB] using gas–liquid chromatography, J Chem. Thermodynamics, 42, 817-822, 2010. ZHANG, Z.; PAWLISZYN, J.; Headspce solid – phase microextraction, Anal. Chem., 65, 1843 – 1852, 1993. ZHANG, Z.; PAWLISZYN, J.; Studying Activity Coefficients of Probe Solutes in Selected Liquid Polymer Coatings Using Solid Phase Microextraction, J. Phys. Chem., 100, 17648 - 17645, 1996. |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/1/2012%20-%20Filipe%20Arantes%20Furtado.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/2/2012%20-%20Filipe%20Arantes%20Furtado.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/3/2012%20-%20Filipe%20Arantes%20Furtado.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/13322/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 b5f51252b421c5ba26a7dedc9540f7d2 027c11b973e31fc0617693a998446e3e 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108181683109888 |