Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/14644 |
Resumo: | ALVES, Marcela de Souza. Óleo Essencial de Capim-Limão como Protetor de Sementes e Grãos Armazenados: Uma Abordagem Da Biologia Química e Molecular ao Manejo Agroecológico do Carucho Do Feijão-Caupi 2021. 129p. Tese (Doutorado em Química, área de Concentração em Química Biológica). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. Os óleos essenciais são promissores para proteção de sementes e grãos da infestação de insetos pragas e fungos fitopatogênicos. Neste contexto, o presente estudo teve os seguintes objetivos: estudar os efeitos do óleo essencial de Cymbopongon citratus (capim-limão) e citral sobre as etapas do ciclo de vida do inseto, investigar os seguintes efeitos do óleo essencial: sobre o metabolismo de fêmeas copuladas de C maculatus, na proteção das sementes em função do tempo, sobre a germinação de sementes de feijão (Vigna unguiculata), desenvolvimento de fungos da condição de armazenamento e sobre a viabilidade celular/ toxicidade na levedura (Saccharomyces cerevisiae), modelo celular eucarioto. Para isso, foi realizada a caracterização química do óleo essencial de capim-limão, onde observou-se um perfil químico rico em monoterpenos, sendo os componentes majoritários neral (34,63%) e geranial (42,80%) que formam o isômero citral, no qual sementes de feijão-caupi foram lavadas com óleo essencial e armazenadas por até 180 dias, e verificou-se que as sementes revestidas com o óleo essencial apresentaram resíduos de citral em sua superfície e proteção contra gorgulhos por até 90 dias de armazenamento. Observou-se efeito tóxico da fumigação do óleo essencial sobre a mortalidade dos insetos de 61,43% na concentração de 0,92mg/cm³ e inibição de seu ciclo de vida. No perfil metabólico de fêmeas copuladas, verificou-se predominância de açúcares (trealose e glicose) e aminoácidos (prolina e alanina), no grupo controle, porém, nas fêmeas expostas ao óleo essencial, foram observados níveis aumentados de glicerol e diminuição da expressão relativa das enzimas hexoquinase, lactato desidrogenase e malato desidrogenase. O óleo essencial apresentou toxicidade sobre o crescimento de fungos da condição de armazenamento. A viabilidade celular em modelo celular eucarioto, a levedura de S. cerevisiae, foi observada em até 3 horas de exposição ao óleo essencial. Não houve efeito alelopático do óleo essencial na germinação de sementes de feijão-caupi. Com base nos testes realizados, conclui-se que o óleo essencial de capim-limão tem potencial para desenvolver estratégias de proteção de grãos e sementes em substituição ao controle tradicional, principalmente no atendimento ao setor de produção de sementes orgânicas |
id |
UFRRJ-1_f162d78e23bf45e6a0a8af97df89aba0 |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/14644 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Alves, Marcela de SouzaSouza, Marco André Alves de069.677.697-90https://orcid.org/0000-0003-2173-3513http://lattes.cnpq.br/2162032695884224Pontes, Emerson Guedes045.534.107-96https://orcid.org/0000-0002-2679-238Xhttp://lattes.cnpq.br/1562085358907265Souza, Marco André Alves de069.677.697-90https://orcid.org/0000-0003-2173-3513http://lattes.cnpq.br/2162032695884224Santos, André Marques doshttp://lattes.cnpq.br/3428935182333406http://lattes.cnpq.br/3428935182333406Menezes, Elen de Lima Aguiarhttps://orcid.org/0000-0003-3634-0202http://lattes.cnpq.br/7088099581242135Oliveira, Antônia Elenir Amânciohttps://orcid.org/0000-0002-2618-8916http://lattes.cnpq.br/2207461519012659Dantas, Flávio José da Silvahttps://orcid.org/0000-0001-6243-7169http://lattes.cnpq.br/3032582768442174120.810.477-21http://lattes.cnpq.br/60158303283927162023-12-22T03:03:55Z2023-12-22T03:03:55Z2021-12-21ALVES, Marcela de Souza. Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi. 2021. 134 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/14644ALVES, Marcela de Souza. Óleo Essencial de Capim-Limão como Protetor de Sementes e Grãos Armazenados: Uma Abordagem Da Biologia Química e Molecular ao Manejo Agroecológico do Carucho Do Feijão-Caupi 2021. 129p. Tese (Doutorado em Química, área de Concentração em Química Biológica). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. Os óleos essenciais são promissores para proteção de sementes e grãos da infestação de insetos pragas e fungos fitopatogênicos. Neste contexto, o presente estudo teve os seguintes objetivos: estudar os efeitos do óleo essencial de Cymbopongon citratus (capim-limão) e citral sobre as etapas do ciclo de vida do inseto, investigar os seguintes efeitos do óleo essencial: sobre o metabolismo de fêmeas copuladas de C maculatus, na proteção das sementes em função do tempo, sobre a germinação de sementes de feijão (Vigna unguiculata), desenvolvimento de fungos da condição de armazenamento e sobre a viabilidade celular/ toxicidade na levedura (Saccharomyces cerevisiae), modelo celular eucarioto. Para isso, foi realizada a caracterização química do óleo essencial de capim-limão, onde observou-se um perfil químico rico em monoterpenos, sendo os componentes majoritários neral (34,63%) e geranial (42,80%) que formam o isômero citral, no qual sementes de feijão-caupi foram lavadas com óleo essencial e armazenadas por até 180 dias, e verificou-se que as sementes revestidas com o óleo essencial apresentaram resíduos de citral em sua superfície e proteção contra gorgulhos por até 90 dias de armazenamento. Observou-se efeito tóxico da fumigação do óleo essencial sobre a mortalidade dos insetos de 61,43% na concentração de 0,92mg/cm³ e inibição de seu ciclo de vida. No perfil metabólico de fêmeas copuladas, verificou-se predominância de açúcares (trealose e glicose) e aminoácidos (prolina e alanina), no grupo controle, porém, nas fêmeas expostas ao óleo essencial, foram observados níveis aumentados de glicerol e diminuição da expressão relativa das enzimas hexoquinase, lactato desidrogenase e malato desidrogenase. O óleo essencial apresentou toxicidade sobre o crescimento de fungos da condição de armazenamento. A viabilidade celular em modelo celular eucarioto, a levedura de S. cerevisiae, foi observada em até 3 horas de exposição ao óleo essencial. Não houve efeito alelopático do óleo essencial na germinação de sementes de feijão-caupi. Com base nos testes realizados, conclui-se que o óleo essencial de capim-limão tem potencial para desenvolver estratégias de proteção de grãos e sementes em substituição ao controle tradicional, principalmente no atendimento ao setor de produção de sementes orgânicasCoordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)ALVES, Marcela de Souza. Lemongrass Essential Oil as a Protector of Stored Seeds and Grains: A Chemical and Molecular Biology Approach to the Agroecological Management of Cowpea Beetle. 129p. Thesis (Doctorate in Chemistry, area of concentration in Biological Chemistry). Federal Rural University of Rio de Janeiro, Seropédica, RJ, 2021. Essential oils are promising for protecting seeds and grains from infestation by insect pests and phytopathogenic fungi. In this context, the present study had the following objectives: to study the effects of the essential oil of Cymbopongon citratus (lemon grass) and citral on the stages of the insect life cycle, to investigate the following effects of the essential oil: on the metabolism of females copulates of C. maculatus, on seed protection as a function of time, on bean (Vigna unguiculata) seed germination, on fungal development under storage conditions and on cell viability/toxicity in yeast (Saccharomyces cerevisiae), eukaryotic cell model. For this, the chemical characterization of lemongrass essential oil was carried out, where a chemical profile rich in monoterpenes was observed, with the majority components neral (34.63%) and geranial (42.80%) that form the isomer citral, in which cowpea seeds were washed with essential oil and stored for up to 180 days, and it was found that seeds coated with the essential oil showed citral residues on their surface and protection against weevils for up to 90 days of storage. A toxic effect of essential oil fumigation was observed on insect mortality of 61.43% at a concentration of 0.92mg/cm³ and inhibition of their life cycle. In the metabolic profile of mated females, there was a predominance of sugars (trehalose and glucose) and amino acids (proline and alanine), in the control group, however, in females exposed to essential oil, increased levels of glycerol and decreased relative expression were observed. of the enzymes hexokinase, lactate dehydrogenase and malate dehydrogenase. The essential oil showed toxicity on the growth of fungi in the storage condition. Cell viability in a eukaryotic cell model, the yeast of S. cerevisiae, was observed in up to 3 hours of exposure to the essential oil. There was no allelopathic effect of the essential oil on the germination of cowpea seeds. Based on the tests carried out, it is concluded that lemongrass essential oil has the potential to develop strategies to protect grains and seeds to replace traditional control, especially in serving the organic seed production sectorapplication/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em QuímicaUFRRJBrasilInstituto de QuímicaAgricultura orgânicacontrole de insetos-pragasbiopesticidasproteção de sementesOrganic agricultureinsect pest controlbiopesticidesseed protectionQuímicaÓleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupiLemongrass essential oil as a protector of stored seeds and grains: a chemical and molecular biology approach to the agroecological management of cowpea beetleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisABBAS, F. et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. Springer Verlag. ABBEY, Lord et al. Biopesticides and Biofertilizers. Byproducts from Agriculture and Fisheries. [S.l.]: Wiley, 2019, p. 479–500. ABBOTT, W. S. The Value of the Dry Substitutes for Liquid Lime. Journal of Economic Entomology, 1925. v. 18, p. 265–267. ABDEL-HAKIM, E. A.; IBRAHIM, S. S.; SALEM, N. Y. Effect of Garlic and Lemongrass Essential Oils on Some Biological and Biochemical Aspects of Corn Stem Borer Sesamia 83 cretica Larvae (Lepidoptera: Noctuidae) During Diapausing Phase. Proceedings of the Zoological Society, 2021. v. 74, n. 1, p. 73–82. ABDELGAFFAR, H. et al. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. Insect Biochemistry and Molecular Biology, 2019. v. 106, n. November 2018, p. 1–9. ADAMS, R. P. Identification of essential oil components by gas chromatography/mass spectroscopy. 4. ed. Carol Stream: Allured Publishing Corporation, 2007. ADEILDO CABRAL, S. Environmental Effects In Areas With Intensive Pesticide Application: Risk For Exposure At State Of Ceará, Northeast Of Brasil. Environmental Science: Current Research, 19 dez. 2019. v. 2, n. 3, p. 1–6. AGROFIT-MAPA. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. 2021. AKTAR, W.; SENGUPTA, D.; CHOWDHURY, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2009. v. 2, n. 1, p. 1–12. AL-KHELAIFI, F. et al. Metabolomics profiling of xenobiotics in elite athletes: Relevance to supplement consumption. Journal of the International Society of Sports Nutrition, 2018. v. 15, n. 1, p. 1–10. ALDRED, D.; CAIRNS-FULLER, V.; MAGAN, N. Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. Journal of Stored Products Research, 2008. v. 44, n. 4, p. 341–346. ALMEIDA-OLIVEIRA, F. et al. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomedicine and Pharmacotherapy, 2017. v. 88, p. 948–955. ALMEIDA, V. E. S. DE et al. Uso de sementes geneticamente modificadas e agrotóxicos no Brasil: Cultivando perigos. Ciencia e Saude Coletiva, 2017. v. 22, n. 10, p. 3333–3339. ALVES, M. De S. et al. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, 1 maio. 2019. v. 119, p. 191–196. ALVES, M. S. et al. Essential Oils composition and toxicity tested by fumigation against Callosobruchus maculatus (Coleoptera: Bruchidae) pest of stored cowpea. Revista Virtual de Quimica, 2015. v. 7, n. 6, p. 2387–2399. 84 AN, J. et al. Analysis of differentially expressed transcripts in apolygus lucorum (Meyer-dür) exposed to different temperature coefficient insecticides. International Journal of Molecular Sciences, 2020. v. 21, n. 2. ANDRÉ CREMONEZ, P. et al. Biodiesel production in Brazil: Current scenario and perspectives. Renewable and Sustainable Energy Reviews, 2015. v. 42, n. 2015, p. 415–428. ANVISA. Programa De Análise De Resíduos De Agrotóxicos Em Alimentos Para Relatório Das Análises De Amostras Monitoradas No Período De 2013 A 2015. Brasília: [s.n.], 2016. Disponível em: <http://portal.anvisa.gov.br/documents/111215/0/Relatório+PARA+2013-2015_VERSÃO FINAL.pdf/494cd7c5-5408-4e6a-b0e5-5098cbf759f8>. Acesso em: 13 fev. 2019. APARECIDA, L. et al. Atividade Antifúngica De Óleos Essenciais Em Sementes De Feijão Cv. Carioquinha. Horticultura Brasileira, 2008. v. 26, n. 2, p. 6261–6266. APPLEBY, J. H.; CREDLAND, P. F. The role of temperature and larval crowding in morph determination in a tropical beetle, Callosobruchus subinnotatus. Journal of Insect Physiology, 2007. v. 53, n. 10, p. 983–993. ARMANDA, D. T.; GUINÉE, J. B.; TUKKER, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability – A review. Global Food Security, 2019. v. 22, n. August 2018, p. 13–24. ARRESE, E L et al. Lipid storage and mobilization in insects: current status and future directions. Insect biochemistry and molecular biology, jan. 2001. v. 31, n. 1, p. 7–17. ARRESE, Estela L.; SOULAGES, J. L. Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 2010. v. 55, n. 1, p. 207–225. ASBAHANI, A. El et al. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 2015. v. 483, n. 1–2, p. 220–243. ATHENSTAEDT, K.; DAUM, G. The life cycle of neutral lipids: synthesis, storage and degradation. Cellular and molecular life sciences : CMLS, jun. 2006. v. 63, n. 12, p. 1355– 69. ÁVALOS, A. Y PÉREZ, E. Metabolismo secundario de plantas. REDUCA (Biología). REDUCA (Biología), 2009. v. 2, n. 3, p. 119–145. AVOSEH, O. et al. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules, abr. 2015. v. 20, n. 5, p. 7438–7453. AZIZ, EE ; ABBASS, M. Composição química e eficiência de cinco óleos essenciais contra o besouro-do-pulso Callosobruchus maculatus (F.) em sementes de Vigna radiata. American- 85 Eurasian Journal of Agricultural and Environmental Science, 2010. v. 8, n. 4, p. 411–419. Disponível em: <https://www cabdirect.ez30.periodicos.capes.gov.br/cabdirect/abstract/20103319503>. Acesso em: 11 fev. 2021. AZUCENA GONZÁLEZ COLOMA, MARÍA FE ANDRÉS YEVES, CARMEN ELISA DÍAZ HERNÁNDEZ, JESÚS BURILLO ALQUÉZAR, RAIMUNDO CABRERA PÉREZ, J. U. N. Use of essential oils, supercritical extracts and aqueous residues generated during a process for obtaining organic extracts from the artemisia absinthium l plant. BAKI, M. A. AL et al. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. BMC Developmental Biology, 2019. v. 19, n. 1, p. 1–14. BALACHANDRA, B. A. H. E.; PATHIRATHNA, P. U.; PARANAGAMA, P. A. Control of stored grain pest, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) using the essential oil isolated from Plectranthus zeylanicus. Natural product research, 23 jan. 2012. v. 26, n. 23, p. 2219–22. BAPTISTA-SILVA, S. et al. The progress of essential oils as potential therapeutic agents: a review. Journal of Essential Oil Research, 3 jul. 2020. v. 32, n. 4, p. 279–295. BARBOSA, F. R. et al. Controle do caruncho-do-feijoeiro Zabrotes subfasciatus com óleos vegetais, munha, materiais inertes e malathion. Pesquisa Agropecuária Brasileira. Disponível em: <https://seer.sct.embrapa.br/index.php/pab/article/view/6458>. Acesso em: 14 fev. 2016. BARDIN, M. et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 27 jul. 2015. v. 6, n. JULY, p. 566. BARON, G. L. et al. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 1 set. 2017. v. 1, n. 9, p. 1308–1316. BARONI, G.; BENEDETI, P.; SEIDEL, D. Cenários prospectivos da produção e armazenagem de grãos no Brasil. Revista Thema, 2017. v. 14, n. 4, p. 55–64. BARRAJÓN-CATALÁN, E. et al. Metabolomic analysis of the effects of a commercial complex biostimulant on pepper crops. Food Chemistry, 2020. v. 310, n. February 2019, p. 125818. BARRETO, G. G. et al. Óleos Essenciais Sobre A Sanidade De Sementes De Feijão Macassar (Vigna unguiculata L. Walp). I Congresso Internacional da Diversidade do Semiárido., 86 2017. Disponível em: <www.conidis.com.br>. BARZMAN, M. et al. Eight principles of integrated pest management. Agronomy for Sustainable Development, 2015. n. 35, p. 1199–1215. BECK, C. W.; BLUMER, L. S. A Handbook on Bean Beetles , Callosobruchus maculatus. Caryologia, 2011. n. September. BERENBAUM, M. R.; JOHNSON, R. M. Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science, 2015. v. 10, p. 51–58. BETTIOL, W. Biopesticide use and research in Brazil. - Portal Embrapa. Outlooks on Pest Management, 2011. v. 22, n. 6, p. 280–283. BHAVYA, M. L.; OBULAXMI, S.; DEVI, S. S. Efficacy of Ocimum tenuiflorum essential oil as grain protectant against coleopteran beetle, infesting stored pulses. Journal of Food Science and Technology. Springer India. Disponível em: <https://doi.org/10.1007/s13197-020-04871- y>. BIANCOLILLO, A. et al. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchemical Journal, 2019. v. 145, n. October 2018, p. 252–258. BOEKE, S. J. et al. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. Journal of Stored Products Research, 1 jan. 2004. v. 40, n. 4, p. 423–438. BORGES, F. F., ROCHA, R. P., SANTI, A., SMANIOTTO ,T. A. DE S. Efeito da secagem sobre o rendimento de óleo essencial de capim-limão (Cymbopogon citratus (D.C.) Stapf). Global Science and Tchecnology, 2019. v. 12, n. 3, p. 1–19. BORTOLOTTO, O. C. et al. The use of soybean integrated pest management in Brazil: a review. Agronomy Science and Biotechnology, 2015. v. 1, n. 1, p. 25. BOUCHER, O. et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. NeuroToxicology, 2013. v. 35, n. 1, p. 162–168. BOUKHATEM, M. N. et al. Lemon grass (Cymbopogon citratus) essential oil as a potent anti inflammatory and antifungal drugs. Libyan Journal of Medicine, 2014. v. 9. BOUTEBOUHART, H. et al. Effect of Extraction and Drying Method on Chemical Composition, and Evaluation of Antioxidant and Antimicrobial Activities of Essential Oils from Salvia officinalis L. Journal of Essential Oil-Bearing Plants, 2019. v. 22, n. 3, p. 717– 727. BRANCO, G. et al. PROPRIEDADE INTELECTUAL. Shirlei Fr ed. Curitiba: UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ (UTFPR), 2011. 87 BRASIL. Relatório Nacional de Vigilância em Saúde de Populações Expostas a Agrotóxicos. [S.l.]: [s.n.], 2018. ______. Decreto no 6323. 2021. Disponível em: <http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/decreto/d6323.htm>. Acesso em: 20 jan. 2022. BRITO, J. P.; BORTOLI, S. A. De. ( Fabr ., 1775 ) ( Coleoptera : Bruchidae ). Toxicidade de óleos essenciais de Eucalyptus spp. sobre Callosobruchus maculatus (Fabr., 1775) (Coleoptera: Bruchidae), 2006. v. 6, n. Ld, p. 96–103. BRITO, Sara Samanta Silva et al. Bioatividade de óleos essenciais sobre Zabrotes subfasciatus Boh. (Coleoptera: Chrysomelidae) em feijão-comum armazenado. Revista Brasileirade Ciencias Agrarias, 2015. v. 10, n. 2, p. 243–248. BUSTIN, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009. v. 55, n. 4, p. 611–622. CÂMARA, C. A.; GOMES DA; MELO, JOAO PAULO RAMOS DE; MORAES, M. M. DE. Produto A Base De Uma Formulação Contendo Mistura De Deltametrina E Óleos Essenciais Para O Controle Da Traça Das Crucíferas (Plutella Xylostella). CAMPOS, É. et al. Exposure to pesticides and mental disorders in a rural population of Southern Brazil. NeuroToxicology, 2016. v. 56, p. 7–16. CANUTO, G. A. B. et al. Metabolomics: Definitions, state-of-the-art and representative applications. Quimica Nova, 2018. v. 41, n. 1, p. 75–91. CARLINI, E. A. et al. Pharmacology of lemongrass (Cymbopogon citratus Stapf). I. Effects of teas prepared from the leaves on laboratory animals. Journal of Ethnopharmacology, jul. 1986. v. 17, n. 1, p. 37–64. CARMO, D. A. DO et al. Environmental behavior and toxicity of herbicides atrazine and simazine. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 30 abr. 2013. v. 8, n. 1, p. 133–143. CARNEIRO, F. F. Um alerta sobre os impactos dos agrotóxicos na saúde. Rio de Janeiro/São Paulo: 2015. v. 15, n. 1, p. 628. Disponível em: <http://www.epsjv.fiocruz.br/sites/default/files/l241.pdf>. Acesso em: 13 fev. 2019. CARRER, H.; BARBOSA, A. L.; RAMIRO, D. A. Biotecnologia na agricultura. Estudos Avancados, 2010. v. 24, n. 70, p. 149–164. CARVALHO, K. et al. A soluble pyrophosphatase is essential to oogenesis and is required for polyphosphate metabolism in the red flour beetle (Tribolium castaneum). International 88 Journal of Molecular Sciences, 2015. v. 16, n. 4, p. 6631–6644. CASARETT, S. & D. Toxicology The Basic Science of Poisons. [S.l.]: [s.n.], 2008. V. 12. CASTRO, L. O. ; RAMOS, R. L. D. De. Principais Gramíneas Produtoras De Óleos Essenciais. n. 11 ed. Rio Grande do Sul – Brasil: FEPAGRO, 2003. CASTRO, R. D.; LIMA, E. D. O. Atividade antifúngica in vitro do óleo essencial de. Revista de Odontologia da UNESP, 2010. v. 39, n. 3, p. 179–184. CAZZANELLI, G. et al. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. [S.l.]: [s.n.], 2018. V. 7. CELINA, A.; RAHMAWATI, D.; PERMANA, T. Application of Lemongrass Essential Oil as a Natural Preservative Agent for Pineapple Juice. Iconiet Proceeding, 2019. v. 2, n. 2, p. 69– 78. CEPEA - CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA, ESALQ, U. ÍNDICES EXPORTAÇÃO DO AGRONEGÓCIO. Esalq, USP. USP. Disponível em: <www.cepea.esalq.usp.br>. CHAMPION, C. J. et al. Anopheles gambiae : Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum -Infected Midgut . Dataset Papers in Science, 2017. v. 2017, p. 1–49. CHANDLER, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. v. 366, n. 1573, p. 1987–1998. CHATTERJEE, S. et al. Input-based assessment on integrated pest management for transplanted rice (Oryza sativa) in India. Crop Protection, 2020. n. October, p. 105444. CHAUBEY, M. K. Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Journal of Oleo Science, 2008. v. 57, n. 3, p. 171–179. CONAB. Acompanhamento da safra de grãos 2018/19. SAFRA 2018/19- N. 7 - Sétimo levantamento. Brasília- DF: [s.n.], 2019, p. 119. CREDLAND, Peter F. Effects of host change on the fecundity and development of an unusual strain of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, 1987. v. 23, n. 2, p. 91–98. CRUZ, L. P. et al. Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation. Journal of Pest Science, 2016. v. 89, n. 1, p. 117–128. 89 CUI, S. F. et al. Effects of hypoxia/hypercapnia on the metablism of Callosobruchus chinensis (L.) larvae. Journal of Stored Products Research, 2019. v. 83, p. 322–330. DAMALAS, C. A.; KOUTROUBAS, S. D. Current status and recent developments in biopesticide use. Agriculture (Switzerland), 2018. v. 8, n. 1. DAMALAS, C. A.; KOUTROUBAS, S. D.. Botanical Pesticides for Eco‐Friendly Pest Management. Pesticides in Crop Production. [S.l.]: Wiley, 2020, p. 181–193. DANGKULWANICH, M.; CHARASLERTRANGSI, T. Hydrodistillation and antimicrobial properties of lemongrass oil (Cymbopogon citratus, Stapf): An undergraduate laboratory exercise bridging chemistry and microbiology. Journal of Food Science Education, 2020. v. 19, n. 2, p. 41–48. DARA, S. K. The New Integrated Pest Management Paradigm for the Modern Age. Journal of Integrated Pest Management, 2019. v. 10, n. 1. DEGAGA, E. Grain Health Protectant Activity of Essential Oils against Infestation and Damage of Haricot Bean by Zabrotes subfasciatus (Boheman). American Journal of Experimental Agriculture, 2015. v. 9, n. 1, p. 1–7. DEPING, G.; YONGQUAN, L.; WENLIU, G. A Review of the History and Development of Integrated Pest Management (IPM): EBSCOhost. Plant Diseases and Pests, 2019. v. 10, n. 2, p. 37–40. DEUTSCH, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science, 2018. v. 361, n. 6405, p. 916–919. DEVI, M. BHUBANESHWARI AND DEVI, N. V. Biology and morphometric measurement of cowpea weevil, Callosobruchus maculatus fabr. (Coleoptera: Chrysomelidae) in green gram. Journal of Entomology and Zoology Studies, 2014. v. 2, n. 3, p. 74–76. DING, J. et al. Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst, 2009. v. 134, n. 10, p. 2040–2050. DING, N. et al. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. Journal of Insect Physiology, 2020. v. 122, n. September 2019, p. 104041. DONLEY, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environmental Health: A Global Access Science Source, 2019. v. 18, n. 1, p. 1–12. DOOL, H. VAN DEN; KRATZ, P. D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A, jan. 1963. v. 11, p. 463–471. DOWNER, R. G. H. ENERGY METABOLISM IN INSECTS. PLENUM PRE ed. [S.l.]: A 90 Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013, 1981. DU, W. et al. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato. Scientific Reports, 24 abr. 2016. v. 6, n. 1, p. 22140. DUARTE, C.; CABRAL DE ALMEIDA, G.; SANTOS, M. E. Dos. Revista Brasileira de Zootecnia Registro de Propriedade Intelectual: a patente como ferramenta de integração de instituições científicas e setor produtivo. Revista Brasileira de Zootecnia, 2011. v. 40, p. 181– 188. DUARTE, M. Do R.; ZANETI, C. C. Estudo Farmacobotânico De Folhas De Capim-Limão: Cympobogon Citratus (Dc.) Stapf, Poaceae. Visão Acadêmica, 2004. v. 5, n. 2, p. 117–124. DUDAI, N. et al. Biotransformation of constituents of essential oils by germinating wheat seed. Phytochemistry, 2000. v. 55, n. 5, p. 375–382. DURMAZ, A. A. et al. Evolution of genetic techniques: Past, present, and beyond. BioMed Research International, 2015. v. 2015. DUTRA, K. De A. et al. Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. Journal of Stored Products Research, 2016. v. 68, p. 25–32. EBERT, P. R. et al. Mechanisms of phosphine toxicity. Journal of Toxicology, 2011. v. 2011, p. 1–9. EDGERTON, M. D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology, 2009. v. 149, n. 1, p. 7–13. EKPENYONG, C. E.; DANIEL, N. E.; ANTAI, A. B. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: Potential use in prevention and treatment of Anemia. Journal of Medicinal Food, 2015. v. 18, n. 1, p. 118–127. EL-MOUGY, N. S.; EL-GAMAL, N. G.; ABDEL-KADER, M. M. Control of wilt and root rot incidence in Phaseolus vulgaris L. By some plant volatile compounds. Journal of Plant Protection Research, 2007. v. 47, n. 3. ELBEIN, A. D. et al. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003. v. 13, n. 4, p. 17–27. EMBRAPA. Visão 2030: Futuro da Agricultura Brasileira. Embrapa. Brasilia-DF: [s.n.], 2018. Disponível em: <https://www.embrapa.br/visao/trajetoria-da-agricultura-brasileira>. EMWAS, A. H. et al. Nmr spectroscopy for metabolomics research. Metabolites, 2019. v. 9, n. 7. 91 ESTHER OJEBODE, M.; OJO OLAIYA, C. Efficacy of Some Plant Extracts as Storage Protectants against Callosobruchus maculatus. Journal of Biotechnology & Biomaterials, 2016. v. 06, n. 01. F., M. J. J. B. O Feijão comum. Taxinomia, morfologia, histologia, parasitologia, microbiologia, composição química e usos. Revista do Instituto Adolfo Lutz, 1960. p. 83– 104. FANG, J. et al. Applications of DNA Technologies in Agriculture. Current Genomics, 2016. v. 17, n. 4, p. 379–386. FAO. Food Outlook – Biannual Report on Global Food Markets. [S.l.]: [s.n.], 2020. FAO, O. Das N. U. Para A. E A. Resultados do Ano Internacional das Leguminosas devem permanecer para além de 2016 | FAO no Brasil | Food and Agriculture Organization of the United Nations. Organização das Nações Unidas para Agricultura e Alimentação:, 2016. Disponível em: <http://www.fao.org/brasil/noticias/detail-events/pt/c/471433/>. Acesso em: 18 jan. 2020. FARONI, L. R. D.; SILVA, J. De S. E. Manejo de Pragas no Ecossistema de Grãos Armazenados. Manejo de Pragas no Ecossistema de Grãos Armazenados. Viçosa: [s.n.], 2008, p. 371–405. FENIBO, E. O.; IJOMA, G. N.; MATAMBO, T. Biopesticides in sustainable agriculture : current status and future prospects. Preprints, 2020. v. Pré-impres, n. November, p. 1–47. FERNANDES, M. C. A.; RIBEIRO, R. L. D.; AGUIAR-MENEZES, E. L. Manejo Ecológico de Fitoparasitas. Agroecologia: princípios e técnicas para uma agricultura orgânica sustentável. [S.l.]: [s.n.], 20025, p. 273–322. FIEHN, O. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 1 abr. 2016. v. 2016, p. 30.4.1. FIERASCU, R. C. et al. The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 2020. v. 75, p. 183–204. FITE, T. et al. Effect of Azadirachta indica and Milletia ferruginea extracts against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) infestation management in chickpea. Cogent Food & Agriculture, 1 jan. 2020. v. 6, n. 1, p. 1712145. FOX, C. W. Multiple Mating , Lifetime Fecundity and Female Mortality of the Bruchid Beetle , Callosobruchus maculatus ( Coleoptera : Bruchidae ) Author ( s ): C . W . Fox Published by : British Ecological Society Stable .Functional Ecology, 1993. v. 7, n. 2, p. 203–208. 92 FRAGA, A. et al. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum. PLoS ONE, 2013. v. 8, n. 6. FREIRE FILHO, F. R. Origem, Evoluçao e Domesticação do caupi. O caupi no Brasil. Embrapa-CN ed. Goiânia: Embrapa Meio-Norte, 1988, p. 722. FREIRE FILHO, R. F. Feijão-Caupi no Brasil. [S.l.]: [s.n.], 2011. FURLAN, L. et al. Risk assessment of soil-pest damage to grain maize in Europe within the framework of Integrated Pest Management. Crop Protection, 2017. v. 97, p. 52–59. GALLO, D.; NAKANO, O.; NETO, S.; CARVALHO, R.P.L.; BAPTISTA, G.C.; FILHO, E.B.; PARRA, J.R.P.; ZUCCHI, R.A.; ALVES, S. B.; VENDRAMIN, J.D.; MARCHINI, L.C.; LOPES, J.R.I.; OMOTO, C. Entomologia Agrícola. Volume 10 ed. Piracicaba, SP,Brasil: Fundação de Estudos Agrários Luiz de Queiroz-FEALQ, 2002. GANJEWALA, D. Cymbopogon essential oils: Chemical compositions and bioactivities. International Journal of Essential Oil Therapeutics, 2009. v. 3, n. 2–3, p. 56–65. GARCÍA‐ROA, R. et al. Temperature as a modulator of sexual selection. Biological Reviews, 2020. v. 3, p. brv.12632. GARCIA, A.; BARBAS, C. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods in molecular biology (Clifton, N.J.), 2011. v. 708, p. 191–204. GAWAI, D. U. Antifungal activity of essential oil of Cymbopogon citratus stapf against different fusarium species. Bionano Frontier, 2015. v. 8, n. December, p. 8–11. GEORGIA C. ATELLA, D. M. E K. C. G. CAPÍTULO 6 - Metabolismo de Lipídeos. — INCT Entomologia Molecular. Tópicos Avançados em Entomologia Molecular Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular INCT, 2012. Disponível em: <http://www.inctem.bioqmed.ufrj.br/biblioteca/arthrolivro-1/capitulo-6-metabolismo-de lipideos/view?searchterm=metabolis>. GILBERT, L. I.; CHINO, H. Transport of lipids in insects. J. Lipid Res., 1 set. 1974. v. 15, n. 5, p. 439–456. Disponível em: <http://www.jlr.org/content/15/5/439>. Acesso em: 4 jun. 2015. GIULIVI, C. et al. Metabolic pathways in Anopheles stephensi mitochondria. Biochemical Journal, 2008. v. 415, n. 2, p. 309–316. GLARE, T. et al. Have biopesticides come of age? Trends in Biotechnology, 2012. v. 30, n. 5, p. 250–258. GLORIOSO, J. C.; LEMOINE, N. Gene therapy-from small beginnings to where we are now. Gene Therapy. Nature Publishing Group. GODOY, C. V.; BUENO, A. De F.; GAZZIERO, D. L. P. Brazilian soybean pest management 93 and threats to its sustainability. Outlooks on Pest Management, 1 jun. 2015. v. 26, n. 3, p. 113–117. GOMES, R. S. S. et al. Eficiência de óleos essenciais na qualidade sanitária e fisiológica em sementesde feijão-fava (Phaseolus lunatus L.). Revista Brasileira de Plantas Medicinais, 2016. v. 18, n. 1 suppl 1, p. 279–287. GONÇALVES, G. L. P. et al. Effects of brugmansia suaveolens fractions on Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae). Journal of Biopesticides, 2019. v. 12, n. 1, p. 19–29. GRABARCZYK, M. et al. Transformations of monoterpenes with the p‐menthane skeleton in the enzymatic system of bacteria, fungi and insects. Molecules, 2020. v. 25, n. 20, p. 1–24. GREVENGOED, T. J.; KLETT, E. L.; COLEMAN, R. A. Acyl-CoA metabolism and partitioning. Annual Review of Nutrition, 2014. v. 34, p. 1–30. GUERRA, A M N DE M ; SILVA, D DOS S; SANTOS, P S; SANTOS, L. B. Teste de repelência de óleos essenciais sobre. Revista Brasileira de Agropecuária Sustentável (RBAS), 2019. v. 9, n. 3, p. 110–117. GUIMARÃES, L. G. D. L. et al. Influência da luz e da temperatura sobre a oxidação do óleo essencial de capim-limão (Cymbopogon citratus (D.C.) STAPF). Química Nova, 2008. v. 31, n. 6, p. 1476–1480. HADDABI, A. S. Promotion of integrated pest management (ipm) in cowpea production in fufore local government area, adamawa state, Nigeria. International Journal of Engineering Technologies and Management Research, 10 jun. 2020. v. 7, n. 6, p. 11–40. HAFIZ, A.; RIAZ, T.; SHAKOORI, F. R. Metabolic Profile of a Stored Grain Pest Trogoderma granarium Exposed to Deltamethrin. Pakistan Journal of Zoology, 2016. v. 49, n. 1, p. 183– 188. HAL, N. L. W. VAN et al. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 2000. v. 78, n. 3, p. 271–280. HALLSSON, L. R.; BJÖRKLUND, M. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity. Journal of Evolutionary Biology, 2012. v. 25, n. 7, p. 1275–1290. HAN, W. et al. Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Movement Disorders, 2017. v. 32, n. 12, p. 1720–1728. HARTLEY, S. et al. Essential Features of Responsible Governance of Agricultural Biotechnology. PLoS Biology, 2016. v. 14, n. 5, p. 1–7. 94 HEIER, C.; KÜHNLEIN, R. P. Triacylglycerol metabolism in Drosophila melanogaster. Genetics, 2018. v. 210, n. 4, p. 1163–1184. HELAL, G. A. et al. Effect of Cymbopogon citratus L. essential oil on growth and morphogenesis of Saccharomyces cerevisiae ML2-strain. Journal of Basic Microbiology, 2006. v. 46, n. 5, p. 375–386. HELAL, G. A. et al. Effects of Cymbopogon citratus L . essential oil on the growth , morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. Journal of Basic Microbiology, 2007. v. 8, n. 2, p. 5–15. HEMINGWAY, J.; RANSON, H. Insecticide resistance in insect vectors of human disease. Annual review of entomology, 28 jan. 2000. v. 45, p. 371–91. 2015. HENDGES, C. et al. Human intoxication by agrochemicals in the region of South Brazil between 1999 and 2014. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019. v. 54, n. 4, p. 219–225. HERNANDEZ-LAMBRAÑO, R. et al. Essential oils from plants of the genus Cymbopogon as natural insecticides to control stored product pests. Journal of Stored Products Research, 2015. v. 62, p. 81–83. HIDALGO, F. J.; ZAMORA, R. Triacylglycerols: Structures and Properties. Encyclopedia of Food and Health. [S.l.]: Elsevier Inc., 2015, p. 351–356. HILL, C. B.; ROESSNER, U. Metabolic Profiling of Plants by GC-MS. The Handbook of Plant Metabolomics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013, p. 1–23. HIROSHI TSUGAWA, E. F. Effectiveness of Metabolomics Research Using Gas Chromatograph / Quadrupole Mass Spectrometer with High-Sensitivity and High-Speed Scanning. [S.l.]: [s.n.], 2013. HOLZMANN, A. Latest developments in the registration of SPP chemicals in Germany and Europe. Julius-Kühn-Archiv. Disponível em: <https://www.cabdirect.org/cabdirect/abstract/20123011205>. HONG, J. K. et al. Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathology Journal, 2015. v. 31, n. 3, p. 269–277. HORST, D. J. VAN DER et al. Glycerol dynamics and metabolism during flight of the locust, Locusta migratoria. Insect Biochemistry, 1983. v. 13, n. 1, p. 45–55. HORST, Dick J. VAN DER. Insect adipokinetic hormones: Release and integration of flight 95 energy metabolism. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003. v. 136, n. 2, p. 217–226. HOWARD, B. Ph modified insect foreign patent documents repellent/nsecticde soap of plantessential oils. Disponível em: https://patents.google.com/patent/US8647684B2/en IBAMA. Relatórios de comercialização de agrotóxicos. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil, 2017. Disponível em: <http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de agrotoxicos#sobreosrelatorios>. IBGE. Censo Agropecuário 2006. [S.l.]: [s.n.], 2009. ______. Indicadores IBGE - Levantamento Sistemático da Produção Agrícola (Janeiro/2019). Disponível em: <https://biblioteca.ibge.gov.br/index.php/biblioteca catalogo?view=detalhes&id=72415>. IGA, M.; SMAGGHE, G. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis. Peptides, 2010. v. 31, n. 3, p. 456–467. IGLESIAS, L. et al. Evaluating combinations of bioinsecticides and adjuvants for managing Thrips tabaci (Thysanoptera: Thripidae) in onion production systems. Crop Protection, 2020. v. 142, n. December 2020, p. 105527. IKECHI – NWOGU, GC; 2OMEKE, C. aethiopica , Azadirachta indica and Zingiber officinale Formulation on Cowpea Leaves. J. Appl. Sci. Environ. Manage., 2020. v. 24, n. 1, p. 133– 138. ILBOUDO, Z. et al. Biological activity and persistence of four essential oils towards the main pest of stored cowpeas , Callosobruchus maculatus ( F .) ( Coleoptera : Bruchidae ). Journal of Stored Products Research, 2010. v. 46, n. 2, p. 124–128. INAGAKI, S.; YAMASHITA, O. Metabolic shift from lipogenesis to glycogenesis in the last instar larval fat body of the silkworm, Bombyx mori. Insect Biochemistry, 1986. v. 16, n. 2, p. 327–331. INCA. Poeira de sílica | INCA - Instituto Nacional de Câncer. Ministério da Saúde, 2022. Disponível em: <https://www.inca.gov.br/exposicao-no-trabalho-e-no ambiente/poeiras/poeira-de-silica>. INTELECTUAL, I. N. De P. INPI. 2021. Disponível em: <https://www.gov.br/inpi/pt br/search?SearchableText=patente óleo essencial X inseto praga>. INTERNATIONAL-ORGANIZATION-FOR-STANDARDIZATION - ISO 9235:2013. Aromatic natural raw. European Standard ISO, 2013. p. 14. 96 IQBAL, A. et al. Nutritional quality of important food legumes. Food Chemistry, 2006. v. 97, n. 2, p. 331–335. IRKIN, R.; KORUKLUOGLU, M. Effectiveness of cymbopogon citratus l. essential oil to inhibit the growth of some filamentous fungi and yeasts. Journal of Medicinal Food, 2009. v. 12, n. 1, p. 193–197. IRWIN, M. E. Implications of movement in developing and deploying integrated pest management strategies. Agricultural and Forest Meteorology, 1999. v. 97, n. 4, p. 235–248. Disponível em: <https://doi.org/10.1016/S0168-1923(99)00069-6%0A>. ISMAN, M. B. Bioinsecticides based on plant essential oils: A short overview. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 2020a. v. 75, n. 78, p. 179–182. ISMAN, M.B. Commercial development of plant essential oils and their constituents as active ingredients in bioinsecticides. Phytochemistry Reviews, 2020b. v. 19, n. 2, p. 235–241. Disponível em: <https://doi.org/10.1007/s11101-019-09653-9>. J.D. EHLERS *, A. E. H. Cowpea ( Vigna unguiculata L. Walp.). Field Crops Research, 1997. v. 53, p. 187–204. JING, X.; BEHMER, S. T. Insect sterol nutrition: Physiological mechanisms, ecology, and applications. Annual Review of Entomology, 2020. v. 65, p. 251–271. JO, H.-J. et al. Development of an Anti-Insect Sachet Using a Polyvinyl Alcohol−Cinnamon Oil Polymer Strip Against Plodia interpunctella. Journal of Food Science, 1 nov. 2013. v. 78, n. 11, p. E1713–E1720. Disponível em: <http://doi.wiley.com/10.1111/1750-3841.12268>. JOSEPH, I. et al. The use of insects in forensic investigations: An overview on the scope of forensic entomology. Journal of Forensic Dental Sciences, 2011. v. 3, n. 2, p. 89. JOVANOVIĆ, J. et al. Effect of encapsulated lemongrass (Cymbopogon citratus L.) essential oil against potato tuber moth Phthorimaea operculella. Crop Protection, 2020. v. 132, n. February, p. 105–109. JÚNIOR, A. F. De L. et al. Controle de pragas de grãos armazenados: uso e aplicação de fosfetos. Revista Eletrônica Faculdade Montes Belos, 28 set. 2012. v. 5, n. 4. Disponível em: <http://www.fmb.edu.br/revistaFmb/index.php/fmb/article/view/93/87>. KABALUK, J. T. et al. The Use and Regulation of Microbial Pesticides in Representative Jurisdictions Worldwide. [S.l.]: [s.n.], 2010. KANANI, H. H.; KLAPA, M. I. Data correction strategy for metabolomics analysis using gas chromatography-mass spectrometry. Metabolic Engineering, 2007. v. 9, n. 1, p. 39–51. KANDIMALLA, R. et al. Chemical composition and anti-candidiasis mediated wound healing 97 property of Cymbopogon nardus essential oil on chronic diabetic wounds. Frontiers in Pharmacology, 2016. v. 7, n. JUN, p. 1–8. KANG, K. et al. Comparative metabolomics analysis of different resistant rice varieties in response to the brown planthopper Nilaparvata lugens Hemiptera: Delphacidae. Metabolomics, 2019. v. 15, n. 4, p. 1–13. KARUNARATHNE, A. et al. How many premature deaths from pesticide suicide have occurred since the agricultural Green Revolution? Clinical Toxicology, 2020. v. 58, n. 4, p. 227–232. KATHIRVELU, C. & MANGAYARKARASI S. & MALINE, A. S. . Oviposition deterrency and ovicidal effect of selected essential oils against Callosobruchus chinensis in laboratory IJRAR- International Journal of Research and Analytical Reviews, 2019. v. 6, n. 2, p. 718– 722. KAUR, R. et al. Pesticides Classification and its Impact on Environment. International Journal of Current Microbiology and Applied Sciences, 2019. v. 8, n. 03, p. 1889–1897. KAUR, R. P. et al. Potential pathways of pesticide action on erectile function - A contributory factor in male infertility. Asian Pacific Journal of Reproduction, 2015. v. 4, n. 4, p. 322–330. KAVISA GHOSH. Anticancer effect of lemongrass oil and citral on cervical cancer cell lines. Pharmacognosy Communications, 2013. v. 3, n. 4, p. 41–48. KAYA, K. et al. Bazı tıbbi bitkilerden elde edilen uçucu yağların kimyasal bileşenlerinin belirlenmesi ve Börülce tohum böceği, Callosobruchus maculatus erginlerine karşı fümigant insektisidal aktivitelerinin belirlenmesi. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 2018. v. 21, n. 5, p. 708–714. KE, M.; THOR, J. Efficacy of essential oil of Ocimum basilicum L . and O . g ratissimum L . applied as an insecticidal fumigant and powder to control Callosobruchus maculatus ( Fab .) [ Coleoptera : Bruchidae ]. Journal of Stored Products Research, 2001. v. 37, n. 4, p. 339–349. KEDIA, A. et al. Botanicals as eco friendly biorational alternatives of synthetic pesticides against Callosobruchus spp. (Coleoptera: Bruchidae)—a review. Journal of Food Science and Technology, 2015. v. 52, n. 3, p. 1239–1257. KETOH, G. K. et al. Evaluation of essential oils from six aromatic plants in togo for callosobruchus maculatus f. pest control. Insect Science and its Application, 1 mar. 2000. v. 20, n. 1, p. 45–49. KETOH et al. Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development. Fitoterapia, 2006. v. 77, n. 7–8, p. 506–510. 98 KILLINY, N. et al. A plant pathogenic bacterium exploits the tricarboxylic acid cycle metabolic pathway of its insect vector. Virulence, 2018. v. 9, n. 1, p. 99–109. KLICH; MA. Identification of common Aspergillus species. [S.l.]: [s.n.], 2002. KLOWDEN, M. Physiological Systems in Insects- 3rd Edition. Elsevier, 2013. Disponível em: <https://www.elsevier.com/books/physiological-systems-in-insects/klowden/978-0-12- 415819-1>. KOCHHAR, S. L.; GUJRAL, S. K. Secondary Plant Metabolites. Plant Physiology, 2020. v. 11, n. 1, p. 590–610. KÜHNLEIN, R. P. Thematic review series: Lipid droplet synthesis and metabolism: From Yeast to man. Lipid droplet-based storage fat metabolism in Drosophila. Journal of Lipid Research, 2012. v. 53, n. 8, p. 1430–1436. KUMAR, D.; KALITA, P. Reducing Postharvest Losses during Storage of Grain Crops to Strengthen Food Security in Developing Countries. Foods, 2017. v. 6, n. 1, p. 8. KUMAR, L.; VERMA, S. C.; SHARMA, P. L. Studies on effect of essential oils on quality characters of pea seeds (Pisum sativum L.) damaged by Callosobruchus chinensis L. (Coleoptera: Bruchidae). Journal of Entomology and Zoology Studies, 2017. v. 5, n. 1, p. 562–564. KUMAR, Rajesh; SRIVASTAVA, M.; DUBEY, N. K. Evaluation of Cymbopogon martinii oil extract for control of postharvest insect deterioration in cereals and legumes. Journal of Food Protection, 2007. v. 70, n. 1, p. 172–178. KUMAR, Ritesh et al. A Review on Insect Pest Complex of Oats (Avena sativa L.). International Journal of Current Microbiology and Applied Sciences, 2017. v. 6, n. 12, p. 525–534. KUMAR, S. Biopesticides: A Need for Food and Environmental Safety. Journal of Biofertilizers & Biopesticides, 2012. v. 3, n. 4. LAGOGIANNI, C. S.; TSITSIGIANNIS, D. I. Effective Biopesticides and Biostimulants to Reduce Aflatoxins in Maize Fields. Frontiers in Microbiology, 2019. v. 10, n. November, p. 1–8. LANKADURAI, B. P.; NAGATO, E. G.; SIMPSON, M. J. Environmental metabolomics: An emerging approach to study organism responses to environmental stressors. Environmental Reviews, 2013. v. 21, n. 3, p. 180–205. LAOTHAWEERUNGSAWAT, N.; SIRITHUNYALUG, J.; CHAIYANA, W. Chemical Compositions and Anti-Skin-Ageing Activities of Origanum vulgare L. Essential Oil from 99 Tropical and Mediterranean Region. Molecules, 1 mar. 2020. v. 25, n. 5, p. 1101. LAZAREVIĆ, J. et al. Toxic, Oviposition Deterrent and Oxidative Stress Effects of Thymus vulgaris Essential Oil against Acanthoscelides obtectus. Insects, 24 ago. 2020. v. 11, n. 9, p. 563. LEITE, K. et al. Óleos essenciais no tratamento de sementes de Phaseolus vulgaris L. durante o armazenamento. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 2018. v. 13, n. 2, p. 186. LENTEREN, J. C. VAN. The state of commercial augmentative biological control: Plenty of natural enemies, but a frustrating lack of uptake. BioControl, 2012. v. 57, n. 1, p. 1–20. LEVINSON, Z. H. The function of dietary sterols in phytophagous insects. Journal of Insect Physiology, 1962. v. 8, n. 2, p. 191–198. LEWINSOHN, E. Histochemical Localization of Citral Accumulation in Lemongrass Leaves (Cymbopogon citratus (DC.) Stapf., Poaceae). Annals of Botany, 1 jan. 1998. v. 81, n. 1, p. 35–39. LI, G. et al. Gas chromatography-mass spectrometry based midgut metabolomics reveals the metabolic perturbations under naf stress in bombyx mori. Insects, 2020. v. 11, n. 1. LILIAN E CANAVOSO, ZEINA E JOUNI, K JOY KARNAS, J. E.; PENNINGTON, And M. A. W. Fat metabolism in insects. Annu. Rev. Entomol., 2001. v. 21, p. 23–46. LIMA, A. E. F. et al. Rendimento, caracterização química e atividade antibacteriana do óleo essencial de capim limão coletado em diferentes horários. Magistra, 2016. v. 28, n. 3/4, p. 369– 378. LIU, Q. et al. Combined transcriptome and metabolome analyses to understand the dynamic responses of rice plants to attack by the rice stem borer Chilo suppressalis (Lepidoptera: Crambidae). BMC Plant Biology, 2016. v. 16, n. 1, p. 1–17. LOPES, A. S. et al. Metabolomic strategies involving mass spectrometry combined with liquid and gas chromatography. Advances in Experimental Medicine and Biology. [S.l.]: Springer New York LLC, 2017, V. 965, p. 77–98. LORINI, I. et al. Manejo Integrado de Pragas de Grãos e Sementes Armazenadas. [S.l.]: [s.n.], 2015. LU, K. et al. Adipokinetic Hormone Receptor Mediates Trehalose Homeostasis to Promote Vitellogenin Uptake by Oocytes in Nilaparvata lugens. Frontiers in Physiology, 2019. v. 10, n. JAN, p. 1–12. LU, K.; SONG, Y.; ZENG, R. The role of cytochrome P450-mediated detoxification in insect 100 adaptation to xenobiotics. Current Opinion in Insect Science, 2021. v. 43, p. 103–107. LU, Y. X.; ZHANG, Q.; XU, W. H. Global metabolomic analyses of the hemolymph and brain during the initiation, maintenance, and termination of pupal diapause in the cotton bollworm, Helicoverpa armigera. PLoS ONE, 2014. v. 9, n. 6. LUBAWY, J. et al. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Frontiers in Physiology, 2020. v. 11, n. April, p. 1–11. LUIZ, G. et al. Ecología bioactivity of extracts from solanaceae against Zabrotes subfasciatus bioactividad de extractos de Solanaceae contra Zabrotes subfasciatus. ACTA BIOLÓGICA COLOMBIANA, 2020. v. 26, n. 1, p. 62–71. LUNN, J. E. et al. Trehalose metabolism in plants. Plant Journal, 2014. v. 79, n. 4, p. 544– 567. LV, N. et al. Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high-throughput non-targeted metabolomics in Aphis gossypii Glover. Ecotoxicology and Environmental Safety, 2021. v. 212, p. 111969. MADI, Y. F. et al. Essential oil of Cymbopogon citratus cultivated in Egypt: seasonal variation in chemical composition and anticholinesterase activity. Natural Product Research, 2020. v. 0, n. 0, p. 1–5. MAHMOUD, S. S.; CROTEAU, R. B. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase. Plant Biology, 2001. v. 98, n. 15, p. 8915–8920. MANGANG, I. B. et al. Comparative laboratory efficacy of novel botanical extracts against Tribolium castaneum. Journal of the Science of Food and Agriculture, 2020. v. 100, n. 4, p. 1541–1546. MANGOBA, M. A. A.; GUZMAN ALVINDIA, D. DE. Phosphine Resistance in Psocid, Liposcelis bostrychophila (Psocoptera) in the Philippines. International Journal of Tropical Insect Science, 27 jul. 2020. p. 1–7. MANZOOR, J.; SHARMA, M. Impact of Textile Dyes on Human. Health and Environment. 2019. v. 2, n. December, p. 162–169. MAPA; MINISTÉRIO DA AGRICULTURA, P. E A. Regras para Análise de Sementes. Brasília: [s.n.], 2009. MAPA; MINISTÉRIO DA AGRICULTURA, P. E A.Projeções do Agronegócio: Brasil 2018/19 a 2028/29, projeções de longo prazo. [S.l.]: [s.n.], 2019. MAPA. Instrução Normativa MAPA 41/2008. Diário Oficial da União. Ministério da 101 Agricultura, Pecuária e Abastecimento. Disponível em: <http://www.agricultura.gov.br/arq_editor/file/vegetal/dsv/sistemasweb_agricultura_gov_br_s islegis_action_detalhaAt.pdf>. MAPA. Mercado de biodefensivos cresce mais de 70% no Brasil em um ano, 2020. Disponível em: <https://www.gov.br/agricultura/pt-br/assuntos/noticias/feffmercado-de biodefensivos-cresce-em-mais-de-50-no-brasil>. Acesso em: 6 jan. 2021. MARANGONI, S. Copaíba contra o caruncho. Pesquisa FAPESP, 2002. v. 10, n. 71, p. 46. Disponível em: <http://www.bv.fapesp.br/pt/publicacao/2386/copaiba-contra-o-caruncho/>. MARQUES, F DE A; RAMIRES, E N; ANNIES, V; DA SILVA, M. A. N. Pesticide, repellant, fungicide and vermifuge composfiton and use of the same. Disponível em: https://patentscope.wipo.int/search/en/detail.jsf?docId=WO2014094100 MARRONE, P. G. Pesticidal natural products – status and future potential. Pest Management Science, 15 maio. 2019. v. 75, n. 9, p. ps.5433. MARSARO, J, A. L.; CORDEIRO, M DE O J, M.; VALLE, D S P, P. R. Eficiência da terra de diatomácea no controle de Callosobruchus maculatus (Coleoptera: Chrysomelidae: Bruchinae) Em Feijão-Caupi Armazenado. Revista Acadêmica Ciência Animal, 2013. v. 11, n. March 2015, p. 13. MARTINOSSI-ALLIBERT, I.; ARNQVIST, G.; BERGER, D. Sex-specific selection under environmental stress in seed beetles. Journal of Evolutionary Biology, 2017. v. 30, n. 1, p. 161–173. MARTINS, R. et al. The dynamics of energy metabolism in the tick embryo. Revista Brasileira de Parasitologia Veterinaria, 2018. v. 27, n. 3, p. 259–266. MASON, L.; MCDONOUGH, M. Biology, Behavior, and Ecology of Stored Grain and Legume Insects. Stored Product Protection, 2011. p. 1–14. MASSANGO, H. G. L. L. et al. Toxicity and metabolic mechanisms underlying the insecticidal activity of parsley essential oil on bean weevil, Callosobruchus maculatus. Journal of Pest Science, 2017. v. 90, n. 2, p. 723–733. MATASSINI, C.; PARMEGGIANI, C.; CARDONA, F. New frontiers on human safe insecticides and fungicides: An opinion on trehalase inhibitors. Molecules, 2020. v. 25, n. 13. MATASYOH, J. C. et al. Chemical composition of Cymbopogon citratus essential oil and its effect on mycotoxigenic Aspergillus species. 2011. v. 5, n. March, p. 138–142. MATSUDA, H. et al. Flies without trehalose. Journal of Biological Chemistry, 2015a. v. 290, n. 2, p. 1244–1255. 102 MATSUDA, et al. Flies without trehalose. Journal of Biological Chemistry, 2015b. v. 290, n. 2, p. 1244–1255. MATTILA, J.; HIETAKANGAS, V. Regulation of carbohydrate energy metabolism in Drosophila melanogaster. Genetics, 2017. v. 207, n. 4, p. 1231–1253. MELO, R. De A. et al. Use of X-ray to evaluate damage caused by weevils in cowpea seeds. Horticultura Brasileira, dez. 2010. v. 28, n. 4, p. 472–476. MERCHAOUI, H.; HANANA, M.; KSOURI, R. Ethnobotanical and phytopharmacological notes on Cakile maritima. Phytotherapie, 2018. v. 16, n. 1, p. 197-S202. MESSINA, F. J.; KARREN, M. E. Adaptation to a novel host modifies host discrimination by the seed beetle Callosobruchus maculatus. Animal Behaviour, 1 mar. 2003. v. 65, n. 3, p. 501– 507. MESTERHÁZY, Á.; OLÁH, J.; POPP, J. Losses in the grain supply chain: Causes and solutions. Sustainability (Switzerland), 2020. v. 12, n. 6, p. 1–18. MEUER, S., WITTWER, C., NAKAGAWARA, K. Rapid Cycle Real-Time PCR. [S.l.]: Springer Berlin Heidelberg, 2001. MEYER, M. C.; MAZARO, S. M.; SILVA, J. C. Da. Mofo-branco em soja - ensaios cooperativos. [S.l.]: [s.n.], 2019. MEYER, A. et al. Mood disorders hospitalizations, suicide attempts, and suicide mortality among agricultural workers and residents in an area with intensive use of pesticides in Brazil. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2010. v. 73, n. 13–14, p. 866–877. MEYER, T. N.; RESENDE, I. L. C.; ABREU, J. C. De. Incidência de suicídios e uso de agrotóxicos por trabalhadores rurais em Luz (MG), Brasil. Revista Brasileira de Saúde Ocupacional, 2007. v. 32, n. 116, p. 24–30. MICHALKOVA, V. et al. Vitamin B6 generated by obligate symbionts is critical for maintaining proline homeostasis and fecundity in tsetse flies. Applied and Environmental Microbiology, 2014. v. 80, n. 18, p. 5844–5853. MAPA. Ministério Da Agricultura, P. E. A. PORTARIA No 52, DE 15 DE MARÇO DE 2021. Disponível em: <https://www.in.gov.br/en/web/dou/-/portaria-n-52-de-15-de-marco-de-2021- 310003720>. Acesso em: 20 jan. 2022. MAPA. Ministério Da Agricultura, P. E. A Plano Nacional Para O Desenvolvimento Da Cadeia Produtiva Do Feijão E Pulses. Secretaria Executiva da União. Disponível em: <https://www.uam.es/gruposinv/meva/publicaciones 103 jesus/capitulos_espanyol_jesus/2005_motivacion para el aprendizaje Perspectiva alumnos.pdf%0Ahttps://www.researchgate.net/profile/Juan_Aparicio7/publication/25357137 9_Los_estudios_sobre_el_cambio_conceptual_>. MITSUWAN, W. et al. Integrated proteomic and metabolomic analysis reveals that rhodomyrtone reduces the capsule in Streptococcus pneumoniae. Scientific Reports, 2017. v. 7, n. 1, p. 1–13. MIURA, Y. The biological significance of ω-oxidation of fatty acids. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2013. v. 89, n. 8, p. 370–382. MOHAMED, C. et al. Use of bioactive chitosan and lippia multiflora essential oil as coatings for maize and sorghum seeds protection. EurAsian Journal of BioSciences, 2020. v. 14, n. 1, p. 27–34. MOHAMED, M. I. et al. The Egyptian German Society for Zoology Ultrastructure and histopathological alteration in the ovaries of Callosobruchus maculatus ( F .) ( Coleoptera , Chrysomelidae ) induced by the solar radiation. THE JOURNAL OF BASIC & APPLIED ZOOLOGY, 2015. Disponível em: <http://dx.doi.org/10.1016/j.jobaz.2014.12.004>. MOLLAEI, M. et al. Impact of the amino acid proline on the cold hardiness of honey bee, Apis mellifera L. Spanish Journal of Agricultural Research, [S.l.], 2013. v. 11, n. 3, p. 714–717. MONTELLA, I. R.; SCHAMA, R.; VALLE, D. The classification of esterases : an important gene family involved in insecticide resistance - A Review. Memórias do Instituto Oswaldo Cruz, 2012. v. 107, n. June, p. 437–449. MONTUSCHI, P. et al. Metabolomic analysis by nuclear magnetic resonance spectroscopy as a new approach to understanding inflammation and monitoring of pharmacological therapy in children and young adults with cystic fibrosis. Frontiers in Pharmacology, 2018. v. 9, n. JUN, p. 1–17. MORAES, J.; CAMPOS1, E.; LOGULLO2, E C. Metabolismo Energético Durante a Embriogênese do Carrapato Bovino Rhipicephalus microplus . Tópicos Avançados em Entomologia Molecular. [S.l.]: Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular INCT – EM – 2012., 2012, p. 25. MORAIS LAS. Influência Dos Fatores Ambióticos Na Composição Química Dos Óleos Essenciais. Horticultura Brasileira, 2009. v. 27, n. 2, p. 4050–4063. MOSSA, A. T. H. Green Pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology, 2016. v. 9, n. 5, p. 354–378. MURMU, S. B.; MISHRA, H. N. The effect of edible coating based on Arabic gum, sodium 104 caseinate and essential oil of cinnamon and lemon grass on guava. Food Chemistry, 2018. v. 245, n. December 2017, p. 820–828. MUTHUKRISHNAN, S. et al. Chitin Metabolism in Insects. [S.l.]: [s.n.], 2012. NARANJO, S. E.; ELLSWORTH, P. C.; FRISVOLD, G. B. Economic Value of Biological Control in Integrated Pest Management of Managed Plant Systems. Annual Review of Entomology, 2015. v. 60, p. 621–645. NATTUDURAI, G. et al. Toxic effect of Atalantia monophylla essential oil on Callosobruchus maculatus and Sitophilus oryzae. Environmental Science and Pollution Research, 2017. v. 24, n. 2, p. 1619–1629. NAYAK, M. K. et al. Resistance to the fumigant phosphine and its management in insect pests of stored products: A global perspective. Annual Review of Entomology, 2020. v. 65, p. 333– 350. NYAMADOR, W. S. et al. Variation in the susceptibility of two Callosobruchus species to essential oils. Journal of Stored Products Research, jan. 2010. v. 46, n. 1, p. 48–51. OFFOR, E. The Nutritional Requirements of Phytophagous Insects: Why do Insects Feed on Plants? SSRN Electronic Journal, 2011. p. 1–16. OJEBODE, M. E. et al. Efficacy of Some Plant Extracts as Storage Protectants against Callosobruchus maculatus. Journal of Biotechnology & Biomaterials, 2016. v. 06, n. 01. OKPEZE, V. E. Residual Effect of Different Temperature Regimes on the Developmental Stages of F 1 Progeny of Callosobruchus maculatus ( F ) ( Coleoptera : Bruchidea ) on Cowpea Seeds. International Journal of Agriculture Innovations and Research, 2018. v. 6, n. 6, p. 302–304. OLIVEIRA, C. M. et al. Economic impact of exotic insect pests in Brazilian agriculture. Journal of Applied Entomology, 2013. v. 137, n. 1–2, p. 1–15. OLIVEIRA, C. M. et al. Crop losses and the economic impact of insect pests on Brazilian agriculture. Crop Protection, 2014. v. 56, p. 50–54. OLIVEIRA, D. M. De et al. Considerações Acerca Da Produção E Qualidade De Grãos De Feijão. Journal of Agronomic Sciences, 2014. n. 3, p. 16–22. OLIVEIRA, G. De L. T. The geopolitics of Brazilian soybeans. Journal of Peasant Studies, 2016. v. 43, n. 2, p. 348–372. OLIVEIRA, J. V. De et al. Fumigation and repellency of essential oils against Callosobruchus maculatus ( Coleoptera : Chrysomelidae : Bruchinae ) in cowpea. Pesquisa Agropecuária Brasileira, 2017. v. 52, n. 1, p. 10–17. 105 OLUWAFEMI, A. R. Comparative Effects of Three Plant Powders and Pirimiphos-methyl against the Infestation of Callosobruchus maculatus ( F .) ( Coleoptera : Bruchidae ) in Cowpea Seeds. 2012. v. 1, n. 2, p. 87–99. OMAR, Y. M.; MAHMOUD, M. A. Effects of three constant temperature ranges to control Callosobruchus chinensis (Coleoptera: Bruchidae): a serious pest of pulses in Egypt. International Journal of Tropical Insect Science, 26 maio. 2020. p. 1–8. OMOTOSO, S. E.; AKINPELU, B. A.; SOYELU, O. J. Insecticidal effect of lemongrass oil on behavioural responses and biochemical changes in cowpea weevil , Callosobruchus maculatus ( Fabricius ). Journal of Phytopathology and Pest Management, 2020. v. 7, n. 1, p. 14–30. ONYIDO, A. et al. Damage Caused By the Bean Bruchid, Callosobruchus maculatus (Fabricius) on Different Legume Seeds on Sale in Awka and Onitsha Markets, Anambra State, South Eastern Nigeria. African Research Review, 2011. v. 5, n. 4. OUEDRAOGO, P. A.; MONGE, J. P.; HUIGNARD, J. Importance of temperature and seed water content on the induction of imaginal polymorphism in Callosobruchus maculatus. Entomologia Experimentalis et Applicata, 1 abr. 1991. v. 59, n. 1, p. 59–66. OWOLABI, M. S. et al. Bioactivity of three plant derived essential oils against the maize weevils Sitophilus zeamais (Motschulsky) and cowpea weevils Callosobruchus maculatus (Fabricius). Electronic Journal of Environmental, Agricultural and Food Chemistry, 2009. v. 8, n. 9, p. 828–835. OYEWALE, R.; BAMAIYI, L. Management of cowpea insect pests. Sch. Acad. J. Biosci, 2013. v. 1, n. 5, p. 217–226. PALM, W. et al. Lipoproteins in Drosophila melanogaster-assembly, function, and influence on tissue lipid composition. PLoS Genetics, 2012. v. 8, n. 7. PAN, B. Y. et al. Glucose Utilization in the Regulation of Chitin Synthesis in Brown Planthopper. Journal of Insect Science, 2019. v. 19, n. 5, p. 1–9. PANDEY, A. K.; PALNI, U. T.; TRIPATHI, N. N. Repellent activity of some essential oils against two stored product beetles Callosobruchus chinensis L. and C. maculatus F. (Coleoptera: Bruchidae) with reference to Chenopodium ambrosioides L. oil for the safety of pigeon pea seeds. Journal of Food Science and Technology, 2014. v. 51, n. 12, p. 4066–4071. PANIZZI, A. R. History and Contemporary Perspectives of the Integrated Pest Management of Soybean in Brazil. Neotropical Entomology, 2013. v. 42, n. 2, p. 119–127. PAPADIMITROPOULOS, M. E. P. et al. Untargeted GC-MS metabolomics. Methods in Molecular Biology. [S.l.]: Humana Press Inc., 2018, V. 1738, p. 133–147. 106 PARANAGAMA, P. A. et al. Toxicity and repellant activity of Cymbopogon citratus (D.C.) Stapf. and Murraya koenigii Sprang. against Callosobruchus maculatus (F.) (Coleoptera; Bruchidae). Journal of Agricultural Research an Extension, 2002. v. 2, n. 5, p. 22–19. PARANAGAMA, P. A.; GUNASEKERA, J. J. The efficacy of the essential oils of sri lankan Cinnamomum zeylanicum fruit and Micromelum minutum leaf against Callosobruchus maculatus (f.) (coleoptera: Bruchidae). Journal of Essential Oil Research, 2011. v. 23, n. 1, p. 75–82. PARRA, J. R. P. Biological Control in Brazil: an overview. Scientia Agricola, out. 2014. v. 71, n. 5, p. 420–429. PASIKANTI, K. K.; HO, P. C.; CHAN, E. C. Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2008. v. 871, n. 2, p. 202–211. PASQUET, R. S. Genetic relationships among subspecies of Vigna unguiculata (L.) Walp. based on allozyme variation. Theoretical and Applied Genetics, 1999. v. 98, n. 6–7, p. 1104– 1119. PATEL, R. The Long Green Revolution. Journal of Peasant Studies, 2013. v. 40, n. 1, p. 1– 63. PAUDEL, S. et al. Conservation agriculture and integrated pest management practices improve yield and income while reducing labor, pests, diseases and chemical pesticide use in smallholder vegetable farms in Nepal. Sustainability (Switzerland), 2020. v. 12, n. 16. PAUMGARTTEN, F. J. R. Pesticides and public health in Brazil. Current Opinion in Toxicology, 2020. v. 22, p. 7–11. PAVELA, R.; BENELLI, G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends in Plant Science, 2016. v. 21, n. 12, p. 1000–1007. PELAEZ, V.; MIZUKAWA, G. Diversification strategies in the pesticide industry: from seeds to biopesticides. Ciência Rural, 2017. v. 47, n. 2, p. 1–7. PENG, L. et al. Comparative metabolomics of the interaction between rice and the brown planthopper. Metabolomics, 2016. v. 12, n. 8, p. 1–15. PENNINGTON, J. E.; GOLDSTROHM, D. A.; WELLS, M. A. The role of hemolymph proline as a nitrogen sink during blood meal digestion by the mosquito Aedes aegypti. Journal of Insect Physiology, 2003. v. 49, n. 2, p. 115–121. PFAFFL, M. W.; HORGAN, G. W.; DEMPFLE, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time 107 PCR. Nucleic acids research, 2002. v. 30, n. 9. PICANÇO, M. C. Manejo integrado de pragas. Universidade Federal De Viçosa Departamento De Biologia Animal. Viçosa - MG - BRASIL, 2010. PINGALI, P. L. Green revolution: Impacts, limits, andthe path ahead. Proceedings of the National Academy of Sciences of the United States of America, 2012. v. 109, n. 31, p. 12302–12308. PINTO, J. F. Processo Para A Fabricação De Composto Multipotente À Base De Óleos Vegetais Usado No Aumento Da Produtividade E Controle De Pragas E Doenças Na AgriculturA. BR 102019004942-1 A2. Intituto Nacional de Propriedade Intelectual, 2019. PLATA-RUEDA, A. et al. Acute Toxicity and Sublethal Effects of Lemongrass Essential Oil and Their Components against the Granary Weevil, Sitophilus granarius. Insects, 2020. v. 11, n. 6, p. 1–13. PLUMIER, B. M. et al. Modeling post-fumigation desorption of phosphine in bulk stored grain. Journal of Stored Products Research, 2020. v. 85, p. 101548. PORTIN, P. The Concept of the Gene: Short History and Present Status. The Quarterly Review of Biology. The University of Chicago Press. Disponível em: <https://www.jstor.org/stable/2829967>. PRAY, L. A. The Biotechnology Revolution: PCR and Cloning Expressed Genes | Learn Science at Scitable. Nature Education, 2008. v. 1, n. 94. PRESLEY, B. C.; LOGAN, B. K.; JANSEN-VARNUM, S. A. In Vitro Metabolic Profile Elucidation of Synthetic Cannabinoid APP-CHMINACA (PX-3). Journal of Analytical Toxicology, 2019. v. 44, n. March 2019, p. 226–236. QUEIROZ, R. J. B.; CAZETTA, J. O. Proline and trehalose in maize seeds germinating under low osmotic potentials. Revista Brasileira de Engenharia Agricola e Ambiental, 2016. v. 20, n. 1, p. 22–28. RABARI, V. P.; CHUDASHAMA, K. S.; THAKER, V. S. In vitro Screening of 75 Essential Oils Against Colletotrichum gloeosporioides: A Causal Agent of Anthracnose Disease of Mango. International Journal of Fruit Science, 2018. v. 18, n. 1, p. 1–13. RABELO, L. M. ; J. M. De M. M. DeCarvalho. Produtos fitossanitários com uso aprovado para a agricultura orgânica. Agroecologia: métodos e técnicas para uma agricultura sustentável - Volume 1. [S.l.]: [s.n.], 2020, p. 1. RAHMAN, M. M.; SCHMIDT, G. H. Effect of Acorus calamus (L.) (Araceae) essential oil vapours from various origins on Callosobruchus phaseoli (Gyllenhal) (Coleoptera: Bruchidae). 108 Journal of Stored Products Research, 1999. v. 35, n. 3, p. 285–295. RATNASEKERA, D.; NAYANATHARA, K. H. G. Efficacy of Cinnamon and Citronella Oil Vapours in the Control of. Journal of Food and Agriculture, 2013. v. 3, n. 1, p. 1–6. REDDY, B. N. et al. Identification and classification of detoxification enzymes from Culex quinquefasciatus (Diptera: Culicidae). Bioinformation, jan. 2012. v. 8, n. 9, p. 430–6. RÊGO, A.; MESSINA, F. J.; GOMPERT, Z. Dynamics of genomic change during evolutionary rescue in the seed beetle Callosobruchus maculatus. Molecular Ecology, 1 maio. 2019. v. 28, n. 9, p. 2136–2154. REIS, S. L. et al. Insecticidal and repellent activity of typical monoterpenes from plant essential oils against Callosobruchus maculatus (Fabr. 1775). BMC Proceedings, 2014. v. 8, n. Suppl 4, p. P115. REN, X. et al. Metabolic adaption and evaluation of cold hardiness on diapausing ladybird, Coccinella septempunctata L. J. Environ. Entomol., 2015. v. 37, n. 6, p. 1195–1202. RESENDE1, Á. V. De et al. Aplicações da agricultura de precisão em sistemas de produção de grãos no Brasil. In: EMBRAPA (Org.). Agricultura de precisão: resultados de um novo olhar. Brasília: Embrapa Informação Tecnológica, 2014, p. 19. ROBERTSON, K. M.; LAUF, M. L.; MORIN, P. A. Genetic sexing of pinnipeds: a real-time, single step qPCR technique. Conservation Genetics Resources, 2018. v. 10, n. 2, p. 213–218. ROBINSON, J. L. et al. An atlas of human metabolism. Science Signaling, 2020. v. 13, n. 624, p. 1–12. ROCHA, G. M.; GRISOLIA, C. K. Why pesticides with mutagenic, carcinogenic and reproductive risks are registered in Brazil. Developing World Bioethics, 2019. v. 19, n. 3, p. 148–154. ROJEK, K. et al. Neurobehavioral properties of Cymbopogon essential oils and its components. Phytochemistry Reviews, 2021. v. 0, p. 1–12. ROY, S. et al. Regulation of Reproductive Processes in Female Mosquitoes. 1. ed. [S.l.]: Elsevier Ltd., 2016. V. 51. RUBASINGHEGE, G. R. S.; PARANAGAMA, P.; ABEYWICKRAMA, K. Physicochemical changes of stored cowpea, Vigna unguiculata, treated with selected essential oils to control cowpea bruchid, Callosobruchus maculatus (F.). Journal of Food, Agriculture and Environment, 2006. v. 4, n. 3–4, p. 41–44. S. DHALIWAL, G.; ARORA, R. Integrated Pest Management: Concepts and Approaches. Agronomic Crops Program Team, 2020. 109 SÁ, Leonardo Figueira Reis DE et al. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). Journal of insect physiology, jan. 2014. v. 60, p. 50–7. SACCHETTI, G. et al. Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 2005. v. 91, n. 4, p. 621–632. SAHAL, G. et al. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. Journal of Ethnopharmacology, 2020. v. 246, n. May 2019, p. 112188. SAHAYARAJ, K. Short Views on Insect Biochemistry and Molecular Biology. Insect Biochemistry and Molecular Biology. [S.l.]: Printed in the Unitated States of America, 2014, p. 57 – 74. SAKADZO, N.; MAKAZA, K.; CHIKATA, L. Biopesticidal Properties of Aqueous Crude Extracts of Tobacco (Nicotiana tabacum L.) Against Fall Armyworm (Spodoptera Frugiperda J.E Smith) on Maize Foliage (Zea mays L.) Diets. Agricultural Science, 2020. v. 2, n. 1, p. p47. SALLAM, M. N. Insect damage Post-harvest Operations-Post-harvest Compendium. AGSI/FAO: ed. [S.l.]: [s.n.], 2013. SALUNKHE, A. D. A review of biopesticide and their mode of action Archana dilip Salunkhe Navsahyadri College of Pharmacy, Nasarapur - 412213, Maharashtra, India. International Journal of Farmacognosy, 2020. v. 7, n. 11, p. 307–310. SANTANA, CARLOS AUGUSTO M; CONTINI, E. Prioridade do Brasil e do mundo ! Agroanalysis, 2011. v. 31, n. 9, p. 16–18. SANTOS, C. F. Dos et al. Reverse transcription and polymerase chain reaction: principles and applications in dentistry. Journal of Applied Oral Science, 2004. v. 12, n. 1, p. 1–11. SANTOS CAVALCANTI, A. DOS et al. Volatiles composition and extraction kinetics from Schinus terebinthifolius and Schinus molle leaves and fruit. Revista Brasileira de Farmacognosia, 2015. v. 25, n. 4, p. 356–362. SANTOS, R. et al. Carbohydrate accumulation and utilization by oocytes of Rhodnius prolixus. Archives of Insect Biochemistry and Physiology, 1 fev. 2008. v. 67, n. 2, p. 55–62. SARWAR, M. M. M. Distinguishing and Controlling Insect Pests of Stored Foods for Improving Quality and Safety. American Journal of Market Research, 2015. v. 1, n. 3, p. 201–207. 110 SASAKI, K. et al. Metabolomics Platform with Capillary Electrophoresis Coupled with High Resolution Mass Spectrometry for Plasma Analysis. Analytical Chemistry, 2019. v. 91, n. 2, p. 1295–1301. SAYE, M. et al. Proline modulates the Trypanosoma cruzi resistance to reactive oxygen species and drugs through a novel D, L-Proline transporter. PLoS ONE, 2014. v. 9, n. 3. SCHÉMAEZA, B. et al. Effects of plant aqueous extract of Cymbopogon citratus (D.C.) Stapf. on sorghum seed germination and it efficacy in controlling Phoma sorghina (Sacc.) Boerema Dorenbosh and Van Kesteren transmission from naturally infected seed to sorghum plant organs an. Archives of Phytopathology and Plant Protection, 2012. v. 45, n. 20, p. 2429– 2436. SCOTT, J. G.; BUCHON, N. Drosophila melanogaster as a powerful tool for studying insect toxicology. Pesticide Biochemistry and Physiology, 2019. v. 161, n. August, p. 95–103. SEGUNDO-VAL, I. S.; SANZ-LOZANO, C. S. Introduction to the gene expression analysis. Methods in Molecular Biology. [S.l.]: Humana Press Inc., 2016, V. 1434, p. 29–43. SGRÒ, C. M.; TERBLANCHE, J. S.; HOFFMANN, A. A. What Can Plasticity Contribute to Insect Responses to Climate Change? Annual Review of Entomology, 2016. v. 61, p. 433– 451. SHARMA, A. et al. Antifungal activities of selected essential oils against Fusarium oxysporum f . sp . lycopersici 1322 , with emphasis on syzygium aromaticum essential oil. Journal of Bioscience and Bioengineering, 2017. v. 123, n. 3, p. 308–313. SHUKLA, E. et al. Insect trehalase: Physiological significance and potential applications. Glycobiology, 2015. v. 25, n. 4, p. 357–367. SHUKLA, V. Detrimental effects of aluminium phosphide powder residue a short note on detrimental effects of aluminium phosphide powder. Journal Env. Bio-Sci, v.33, n83-84, 2019. SHUMAN, J. L. et al. Plant metabolomics by GC-MS and differential analysis. Methods in molecular biology (Clifton, N.J.), 2011. v. 678, p. 229–246. SILVA, A. C. Da et al. Effectiveness of essential oils in the treatment of Colletotrichum truncatum-infected soybean seeds. Tropical Plant Pathology, out. 2012. v. 37, n. 5, p. 305– 313. SILVA, C. M. Da; COLUCCI NETO, V. O suicídio: uma reflexão sobre medidas preventivas. Archives of Health Investigation, 2020. v. 9, n. 1, p. 80–86. SILVA, C. P.; XAVIER-FILHO, J. Comparison between the levels of aspartic and cysteine proteinases of the larval midguts of Callosobruchus maculatus (F.) and Zabrotes subfasciatus 111 (BOH.) (Coleoptera: bruchidae). Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, jan. 1991. v. 99, n. 3, p. 529–533. SILVA MOURA, E. DA et al. Optimal extraction of Ocimum basilicum essential oil by association of ultrasound and hydrodistillation and its potential as a biopesticide against a major stored grains pest. Molecules, 2020. v. 25, n. 12, p. 1–16. SIMIONATTO, E. et al. Composition and antimicrobial activity of the essential oil from Aloysia sellowii. Journal of the Brazilian Chemical Society, 2005. v. 16, n. 6 B, p. 1458– 1462. SINGH, Y. K. Quality of lemongrass (Cymbopogon flexuosus) oils under different storage conditions and their nematicidal activity.International Journal of Agriculture, Environment & Biotechnology, 7(4), 903-909, 2006. SMARTT, J. Evolution of grain legumes. iii. pulses in the genus vigna. Experimental Agriculture, 1985. v. 21, n. 2, p. 87–100. SNART, C. J. P.; HARDY, I. C. W.; BARRETT, D. A. Entometabolomics: Applications of modern analytical techniques to insect studies. Entomologia Experimentalis et Applicata, 2015. v. 155, n. 1, p. 1–17. SOLUTIONS, S. A. U. Produtos Fitofarmacêuticos autorizados em Modo de Produção Biológico ( actualizado em Março de 2020 ). SOUZA, R. M. DE et al. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process Safety and Environmental Protection, 2020. v. 135, p. 22–37. STATHERS, T. E. et al. Measuring the nutritional cost of insect infestation of stored maize and cowpea. Food Security, 2020. v. 12, n. 2, p. 285–308. STEC, N. The Role of Proline Oxidation and Metabolome Dynamics During the Flight of Bombus Impatiens. University of Ottawa, 2018. Disponível em: <https://ruor.uottawa.ca/handle/10393/37257>. STEELE, J. E. Glycogen Phosphorylase In Insects. Insect Biochemistry, 1982. v. 12, n. 2. STEFFEN, G. P. K.; STEFFEN, R. B.; ANTONIOLLI, Z. I. Contaminação do solo e da água pelo uso de agrotóxicos. Tecno-Lógica, 21 jan. 2011. v. 15, n. 1, p. 15–21. STEWART, S.; HE, X. Intracellular Delivery of Trehalose for Cell Banking. Langmuir, 2019. v. 35, n. 23, p. 7414–7422. STILLWELL, R. C.; FOX, Charles W. Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 2007. v. 153, n. 2, p. 273–280. STREET, S. Evaluation of headspace Solid Phase Micro-extraction method for analysis of 112 phosphine residues in wheat. 10th International Working Conference on Stored Product Protection Solid-phase, 2010. ŠUMIGA, Boštjan; ŠUMIGA, Barbara; PODGORNIK, D. R. And B. B. Microencapsulated Cymbopogon citratus Oil. Coatings, 2019. v. 9, n. 470, p. 1–21. SZTAL, T. et al. A cytochrome p450 conserved in insects is involved in cuticle formation. PLoS ONE, 2012. v. 7, n. 5, p. 1–9. TAK, J. H.; ISMAN, M. B. Metabolism of citral, the major constituent of lemongrass oil, in the cabbage looper, Trichoplusia ni, and effects of enzyme inhibitors on toxicity and metabolism. Pesticide Biochemistry and Physiology, 2016. v. 133, p. 20–25. TAMANG, A. M.; KALRA, B.; PARKASH, R. Cold and desiccation stress induced changes in the accumulation and utilization of proline and trehalose in seasonal populations of Drosophila immigrans. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 2017. v. 203, p. 304–313. TANG, B. et al. Characterization of a trehalose-6-phosphate synthase gene from Spodoptera exigua and its function identification through RNA interference. Journal of Insect Physiology, 2010. v. 56, n. 7, p. 813–821. TANG, B. et al. Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pesticide Biochemistry and Physiology, 2017. v. 137, p. 81–90. TANG, B et al. Invertebrate trehalose-6-phosphate synthase gene: Genetic architecture, biochemistry, physiological function, and potential applications. Frontiers in Physiology, 2018. v. 9, n. JAN, p. 1–13. TANZUBIL, P. B. Control of some insect pests of cowpea (Vigna unguiculuta) with neem (Azadirachta indica A Juss.) in Northern Ghana. Tropical Pest Management, 13 nov. 1991. v. 37, n. 3, p. 216–217. 2016. TARUVINGA, C.; MEJIA, D.; ALVAREZ, J. S. Appropriate Seed and Grain Storage Systems for Small-scale Farmers. [S.l.]: [s.n.], 2014. TCHOUMBOUGNANG, F. et al. In vivo antimalarial activity of essential oils from Cymbopogon citratus and Ocimum gratissimum on mice infected with Plasmodium berghei. Planta Medica, 27 jan. 2005. v. 71, n. 1, p. 20–23. TEIXEIRA, Z. et al. Chemical composition and insecticidal activity of Cymbopogon citratus essential oil from Cuba and Brazil against housefly. Revista Brasileira de Parasitologia Veterinária, 2015. v. 24, n. 1, p. 36–44. 113 TEULIER, L.; WEBER, J. M.; et al. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences. TEULIER, L; WEBER, J.-M.; et al. Proline as a fuel for insect flight: enhancing carbohydrate oxidation in hymenopterans. Proceedings of the Royal Society B: Biological Sciences, 13 jul. 2016. v. 283, n. 1834, p. 20160333.. THABIT, T. M. A. M.; ELGEDDAWY, D. I. H. Determination of Phosphine Residues in Wheat and Yellow Corn with a New Developed Method Using Headspace and SIM Mode GC MS. Journal of AOAC International, 2018. v. 101, n. 1, p. 288–292. THOMAS, M. B.; READ, A. F. Can fungal biopesticides control malaria? Nature, 2007. v. 5, n. May, p. 377–383. THUONG NHAN, N. P. et al. Microencapsulation of lemongrass (Cymbopogon citratus) essential oil via spray drying: Effects of feed emulsion parameters. Processes, 2020. v. 8, n. 1, p. 13. TIAN, T. et al. Phosphates as energy sources to expand metabolic networks. Life, 2019. v. 9, n. 2, p. 1–12. TIMMERMANN, C. Pesticides and the Patent Bargain. Journal of Agricultural and Environmental Ethics, 2014. v. 28, n. 1, p. 1–17. TOPRAK, U. The Role of Peptide Hormones in Insect Lipid Metabolism. Frontiers in Physiology, 2020. v. 11, n. May, p. 1–33. TOPRAK, U. et al. A journey into the world of insect lipid metabolism. Archives of Insect Biochemistry and Physiology, 2020. v. 104, n. 2, p. 1–67. TOSI, S. et al. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees. Proceedings of the Royal Society B: Biological Sciences, 2017. v. 284, n. 1869. TRAN, T. K. N. et al. Development of an aromatic wax product containing natural Lemongrass (Cymbopogon Citratus) essential oil. IOP Conference Series: Materials Science and Engineering, 2020. v. 736, n. 2, p. 8. TREZZI, J. P. et al. Metabolic profiling of body fluids and multivariate data analysis. MethodsX, 2017. v. 4, p. 95–103. TRIVEDI; NAYAK; KUMAR. Fumigant toxicity study of different essential oils against stored grain pest Callosobruchus chinensis. Journal of Pharmacognosy and Phytochemistry, 2017. v. 6, n. 4, p. 1708–1711. TSUGAWA, H. et al. MS-DIAL: Data-independent MS/MS deconvolution for comprehensive 114 metabolome analysis. Nature Methods, 2015. v. 12, n. 6, p. 523–526. TUREK, C.; STINTZING, F. C. Impact of different storage conditions on the quality of selected essential oils. Food Research International, 2012. v. 46, n. 1, p. 341–353. TUREK, C.; STINTZING, F. C. Stability of essential oils: A review. Comprehensive Reviews in Food Science and Food Safety, 2013. v. 12, n. 1, p. 40–53. UNDAS, A. K. et al. The Use of Metabolomics to Elucidate Resistance Markers against Damson-Hop Aphid. Journal of Chemical Ecology, 2018. v. 44, n. 7–8, p. 711–726. USDA. Grain and Feed Annual Corn Production Forecast Grows on Expanded Safrinha Area and Good Weather Conditions. [S.l.]: [s.n.], 2019. USDA. Grain : World Markets and Trade. [S.l.]: United States Department of Agriculture, 2020. p. 42. UTIDA, S. Density dependent polymorphism in the adult of Callosobruchus maculatus (Coleoptera, Bruchidae). Journal of Stored Products Research, 1972. v. 8, n. 2, p. 111–125. VARSHNEY, R. K. et al. Agricultural biotechnology for crop improvement in a variable climate: Hope or hype? Trends in Plant Science, 2011. v. 16, n. 7, p. 363–371. VASUDEVA, R.; DEEMING, D. C.; EADY, P. E. Larval developmental temperature and ambient temperature affect copulation duration in a seed beetle. Behaviour, 1 jan. 2018. v. 155, n. 1, p. 69–82. VEL, E. VAN DE; SAMPERS, I.; RAES, K. A review on influencing factors on the minimum inhibitory concentration of essential oils. Critical Reviews in Food Science and Nutrition, 2019. v. 59, n. 3, p. 357–378. VIJAYAKUMAR, G.; MOHANKUMAR, B. S. A potential biopesticide from Amorphophallus paeoniifolious to increase the shelf life of stored food grains. Journal of Food Processing and Preservation, 2020. n. November, p. 1–8. VIKTOROVÁ, J. et al. Lemon grass essential oil does not modulate cancer cells multidrug resistance by citral—its dominant and strongly antimicrobial compound. Foods, 2020. v. 9, n. 5. WANG, D. et al. Mechanism of the different metabolome responses between Plutella xylostella and Pieris rapae treated with the diamide insecticides. Ecotoxicology and Environmental Safety, 2020. v. 203, n. July, p. 111033. WEI, D. et al. Comparative Proteomic Profiling Reveals Molecular Characteristics Associated with Oogenesis and Oocyte Maturation during Ovarian Development of Bactrocera dorsalis ( Hendel ). International Journal of Molecular Science, 2017. v. 18, n. 7, p. 1–23. 115 WIESENBORN, W. D. Phosphorus contents in desert riparian spiders and insects vary among taxa and between flight capabilities. Florida Entomologist, 2013. v. 96, n. 2, p. 424–432. WILKINSON, J.; WESZ JUNIOR, V. J.; LOPANE, A. R. M. Brazil and China: the agribusiness connection in the Southern Cone context. Third World Thematics: A TWQ Journal, 2016. v. 1, n. 5, p. 726–745. WOLFF, J. A.; LEDERBERG, J. An Early History of Gene Transfer and Therapy. Human Gene Therapy, 1994. v. 5, n. 4, p. 469–480. WONG, M. L.; MEDRANO, J. F. Real-time PCR for mRNA quantitation. BioTechniques. Eaton Publishing Company. WYATT, G. R.; KROPF, R. B.; CAREY, F. G. The chemistry of insect haemolymph-IV. Acid soluble phosphates. Journal of Insect Physiology, 1963. v. 9, n. 2, p. 137–152. XAVIER, M. V. A. et al. Viabilidade de sementes de feijão caupi após o tratamento com óleo essencial de citronela (Cymbopogon winterianus Jowitt). Revista Brasileira de Plantas Medicinais, 2012. v. 14, n. spe, p. 250–254. XU, W. H.; LU, Y. X.; DENLINGER, D. L. Cross-talk between the fat body and brain regulates insect developmental arrest. Proceedings of the National Academy of Sciences of the United States of America, 2012. v. 109, n. 36, p. 14687–14692. XU, Y.-J. et al. Metabolomics reveals insect metabolic responses associated with fungal infection. Analytical and bioanalytical chemistry, jun. 2015. v. 407, n. 16, p. 4815–21. YAMADA, T. et al. Erratum: Correction: Fat body glycogen serves as a metabolic safeguard for the maintenance of sugar levels in Drosophila. Development (Cambridge, England), 2018. v. 145, n. 7. YAN, H. et al. Phosphine Analysis in Postmortem Specimens Following Inhalation of Phosphine: Fatal Aluminum Phosphide Poisoning in Children. Journal of analytical toxicology, 2018. v. 42, n. 5, p. 330–336. YANG, X. et al. Inhibition of citral degradation by oil-in-water nanoemulsions combined with antioxidants. Journal of Agricultural and Food Chemistry, 8 jun. 2011. v. 59, n. 11, p. 6113– 6119. YANG, Yunxia et al. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects. PLoS ONE, 2014. v. 9, n. 6. YU, Rosemary; NIELSEN, J. Yeast systems biology in understanding principles of physiology underlying complex human diseases. Current Opinion in Biotechnology, 2020. v. 63, p. 63– 69. 116 YUAN, C. L.; HU, Y. C. A Transgenic core facility’s experience in genome editing revolution. Advances in Experimental Medicine and Biology. Springer New York LLC, 2017, V. 1016, p. 75–90. ZAKLADNOY, G. A. Analysis of the Resistance of Grain Pests To Phosphine. Review. Food systems, 2020. v. 3, n. 1, p. 21–24. ZANARDI, O. Z. et al. Bioactivity of a matrine-based biopesticide against four pest species of agricultural importance. Crop Protection, 2015. v. 67, p. 160–167. ZHANG, A. et al. Modern analytical techniques in metabolomics analysis. Analyst, 2012. v. 137, n. 2, p. 293–300. ZHANG, Q.; LU, Y. X.; XU, W. H. Integrated proteomic and metabolomic analysis of larval brain associated with diapause induction and preparation in the cotton bollworm, Helicoverpa armigera. Journal of Proteome Research, 2012. v. 11, n. 2, p. 1042–1053. ZHANG, Q.; LU, Y. X.; XU, W. H. Proteomic and metabolomic profiles of larval hemolymph associated with diapause in the cotton bollworm, Helicoverpa armigera. BMC Genomics, 2013. v. 14, n. 1. ZHAO KEFEI ; GE LINQUAN ; CHENG YAO ; WU JINCAI ; YANG GUOQING. Effects of three insecticides on trehalose content and trehalase activity in the brown planthopper, Nilaparvata lugens (Stål) (Homoptera: Delphacidae). Acta Entomologica Sinica, 2011. v. 54, n. 7, p. 786–792. ZHOU, L. et al. Developmental changes for the hemolymph metabolome of silkworm (Bombyx mori L.). Journal of Proteome Research, 2015. v. 14, n. 5, p. 2331–2347. ZIEGLER, R.; VANANTWERPEN, R. Lipid uptake by insect oocytes. Insect Biochemistry and Molecular Biology, abr. 2006. v. 36, n. 4, p. 264–272. ZUNJARE, R. et al. Genetics of resistance to stored grain weevil (Sitophilus oryzae L.) in maize. Cogent Food & Agriculture, 2015. v. 1, n. 1, p. 1–9.https://tede.ufrrj.br/retrieve/73687/2021%20-%20Marcela%20de%20Souza%20Alves.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6697Submitted by Leticia Schettini (leticia@ufrrj.br) on 2023-06-27T16:36:33Z No. of bitstreams: 1 2021 - Marcela de Souza Alves.pdf: 3286876 bytes, checksum: 695b09b7aaf5e630fa71ac50ccd0d355 (MD5)Made available in DSpace on 2023-06-27T16:36:33Z (GMT). No. of bitstreams: 1 2021 - Marcela de Souza Alves.pdf: 3286876 bytes, checksum: 695b09b7aaf5e630fa71ac50ccd0d355 (MD5) Previous issue date: 2021-12-21info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Marcela de Souza Alves.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/1/2021%20-%20Marcela%20de%20Souza%20Alves.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Marcela de Souza Alves.pdf.txtExtracted Texttext/plain269461https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/2/2021%20-%20Marcela%20de%20Souza%20Alves.pdf.txt77249ff9434b6fd6a08d8c07daa67c78MD52ORIGINAL2021 - Marcela de Souza Alves.pdf2021 - Marcela de Souza Alves.application/pdf3286876https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/3/2021%20-%20Marcela%20de%20Souza%20Alves.pdf695b09b7aaf5e630fa71ac50ccd0d355MD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/146442023-12-22 00:03:55.485oai:rima.ufrrj.br:20.500.14407/14644Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T03:03:55Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
dc.title.alternative.eng.fl_str_mv |
Lemongrass essential oil as a protector of stored seeds and grains: a chemical and molecular biology approach to the agroecological management of cowpea beetle |
title |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
spellingShingle |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi Alves, Marcela de Souza Agricultura orgânica controle de insetos-pragas biopesticidas proteção de sementes Organic agriculture insect pest control biopesticides seed protection Química |
title_short |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
title_full |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
title_fullStr |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
title_full_unstemmed |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
title_sort |
Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi |
author |
Alves, Marcela de Souza |
author_facet |
Alves, Marcela de Souza |
author_role |
author |
dc.contributor.author.fl_str_mv |
Alves, Marcela de Souza |
dc.contributor.advisor1.fl_str_mv |
Souza, Marco André Alves de |
dc.contributor.advisor1ID.fl_str_mv |
069.677.697-90 https://orcid.org/0000-0003-2173-3513 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2162032695884224 |
dc.contributor.advisor-co1.fl_str_mv |
Pontes, Emerson Guedes |
dc.contributor.advisor-co1ID.fl_str_mv |
045.534.107-96 https://orcid.org/0000-0002-2679-238X |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/1562085358907265 |
dc.contributor.referee1.fl_str_mv |
Souza, Marco André Alves de |
dc.contributor.referee1ID.fl_str_mv |
069.677.697-90 https://orcid.org/0000-0003-2173-3513 |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/2162032695884224 |
dc.contributor.referee2.fl_str_mv |
Santos, André Marques dos |
dc.contributor.referee2ID.fl_str_mv |
http://lattes.cnpq.br/3428935182333406 |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/3428935182333406 |
dc.contributor.referee3.fl_str_mv |
Menezes, Elen de Lima Aguiar |
dc.contributor.referee3ID.fl_str_mv |
https://orcid.org/0000-0003-3634-0202 |
dc.contributor.referee3Lattes.fl_str_mv |
http://lattes.cnpq.br/7088099581242135 |
dc.contributor.referee4.fl_str_mv |
Oliveira, Antônia Elenir Amâncio |
dc.contributor.referee4ID.fl_str_mv |
https://orcid.org/0000-0002-2618-8916 |
dc.contributor.referee4Lattes.fl_str_mv |
http://lattes.cnpq.br/2207461519012659 |
dc.contributor.referee5.fl_str_mv |
Dantas, Flávio José da Silva |
dc.contributor.referee5ID.fl_str_mv |
https://orcid.org/0000-0001-6243-7169 |
dc.contributor.referee5Lattes.fl_str_mv |
http://lattes.cnpq.br/3032582768442174 |
dc.contributor.authorID.fl_str_mv |
120.810.477-21 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6015830328392716 |
contributor_str_mv |
Souza, Marco André Alves de Pontes, Emerson Guedes Souza, Marco André Alves de Santos, André Marques dos Menezes, Elen de Lima Aguiar Oliveira, Antônia Elenir Amâncio Dantas, Flávio José da Silva |
dc.subject.por.fl_str_mv |
Agricultura orgânica controle de insetos-pragas biopesticidas proteção de sementes |
topic |
Agricultura orgânica controle de insetos-pragas biopesticidas proteção de sementes Organic agriculture insect pest control biopesticides seed protection Química |
dc.subject.eng.fl_str_mv |
Organic agriculture insect pest control biopesticides seed protection |
dc.subject.cnpq.fl_str_mv |
Química |
description |
ALVES, Marcela de Souza. Óleo Essencial de Capim-Limão como Protetor de Sementes e Grãos Armazenados: Uma Abordagem Da Biologia Química e Molecular ao Manejo Agroecológico do Carucho Do Feijão-Caupi 2021. 129p. Tese (Doutorado em Química, área de Concentração em Química Biológica). Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 2021. Os óleos essenciais são promissores para proteção de sementes e grãos da infestação de insetos pragas e fungos fitopatogênicos. Neste contexto, o presente estudo teve os seguintes objetivos: estudar os efeitos do óleo essencial de Cymbopongon citratus (capim-limão) e citral sobre as etapas do ciclo de vida do inseto, investigar os seguintes efeitos do óleo essencial: sobre o metabolismo de fêmeas copuladas de C maculatus, na proteção das sementes em função do tempo, sobre a germinação de sementes de feijão (Vigna unguiculata), desenvolvimento de fungos da condição de armazenamento e sobre a viabilidade celular/ toxicidade na levedura (Saccharomyces cerevisiae), modelo celular eucarioto. Para isso, foi realizada a caracterização química do óleo essencial de capim-limão, onde observou-se um perfil químico rico em monoterpenos, sendo os componentes majoritários neral (34,63%) e geranial (42,80%) que formam o isômero citral, no qual sementes de feijão-caupi foram lavadas com óleo essencial e armazenadas por até 180 dias, e verificou-se que as sementes revestidas com o óleo essencial apresentaram resíduos de citral em sua superfície e proteção contra gorgulhos por até 90 dias de armazenamento. Observou-se efeito tóxico da fumigação do óleo essencial sobre a mortalidade dos insetos de 61,43% na concentração de 0,92mg/cm³ e inibição de seu ciclo de vida. No perfil metabólico de fêmeas copuladas, verificou-se predominância de açúcares (trealose e glicose) e aminoácidos (prolina e alanina), no grupo controle, porém, nas fêmeas expostas ao óleo essencial, foram observados níveis aumentados de glicerol e diminuição da expressão relativa das enzimas hexoquinase, lactato desidrogenase e malato desidrogenase. O óleo essencial apresentou toxicidade sobre o crescimento de fungos da condição de armazenamento. A viabilidade celular em modelo celular eucarioto, a levedura de S. cerevisiae, foi observada em até 3 horas de exposição ao óleo essencial. Não houve efeito alelopático do óleo essencial na germinação de sementes de feijão-caupi. Com base nos testes realizados, conclui-se que o óleo essencial de capim-limão tem potencial para desenvolver estratégias de proteção de grãos e sementes em substituição ao controle tradicional, principalmente no atendimento ao setor de produção de sementes orgânicas |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-12-21 |
dc.date.accessioned.fl_str_mv |
2023-12-22T03:03:55Z |
dc.date.available.fl_str_mv |
2023-12-22T03:03:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALVES, Marcela de Souza. Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi. 2021. 134 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14644 |
identifier_str_mv |
ALVES, Marcela de Souza. Óleo essencial de capim-limão como protetor de sementes e grãos armazenados: uma abordagem da biologia química e molecular ao manejo agroecológico do carucho do feijão-caupi. 2021. 134 f. Tese (Doutorado em Química) - Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2021. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/14644 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
ABBAS, F. et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. Springer Verlag. ABBEY, Lord et al. Biopesticides and Biofertilizers. Byproducts from Agriculture and Fisheries. [S.l.]: Wiley, 2019, p. 479–500. ABBOTT, W. S. The Value of the Dry Substitutes for Liquid Lime. Journal of Economic Entomology, 1925. v. 18, p. 265–267. ABDEL-HAKIM, E. A.; IBRAHIM, S. S.; SALEM, N. Y. Effect of Garlic and Lemongrass Essential Oils on Some Biological and Biochemical Aspects of Corn Stem Borer Sesamia 83 cretica Larvae (Lepidoptera: Noctuidae) During Diapausing Phase. Proceedings of the Zoological Society, 2021. v. 74, n. 1, p. 73–82. ABDELGAFFAR, H. et al. Midgut metabolomic profiling of fall armyworm (Spodoptera frugiperda) with field-evolved resistance to Cry1F corn. Insect Biochemistry and Molecular Biology, 2019. v. 106, n. November 2018, p. 1–9. ADAMS, R. P. Identification of essential oil components by gas chromatography/mass spectroscopy. 4. ed. Carol Stream: Allured Publishing Corporation, 2007. ADEILDO CABRAL, S. Environmental Effects In Areas With Intensive Pesticide Application: Risk For Exposure At State Of Ceará, Northeast Of Brasil. Environmental Science: Current Research, 19 dez. 2019. v. 2, n. 3, p. 1–6. AGROFIT-MAPA. http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons. 2021. AKTAR, W.; SENGUPTA, D.; CHOWDHURY, A. Impact of pesticides use in agriculture: Their benefits and hazards. Interdisciplinary Toxicology, 2009. v. 2, n. 1, p. 1–12. AL-KHELAIFI, F. et al. Metabolomics profiling of xenobiotics in elite athletes: Relevance to supplement consumption. Journal of the International Society of Sports Nutrition, 2018. v. 15, n. 1, p. 1–10. ALDRED, D.; CAIRNS-FULLER, V.; MAGAN, N. Environmental factors affect efficacy of some essential oils and resveratrol to control growth and ochratoxin A production by Penicillium verrucosum and Aspergillus westerdijkiae on wheat grain. Journal of Stored Products Research, 2008. v. 44, n. 4, p. 341–346. ALMEIDA-OLIVEIRA, F. et al. Reference genes for quantitative PCR in the adipose tissue of mice with metabolic disease. Biomedicine and Pharmacotherapy, 2017. v. 88, p. 948–955. ALMEIDA, V. E. S. DE et al. Uso de sementes geneticamente modificadas e agrotóxicos no Brasil: Cultivando perigos. Ciencia e Saude Coletiva, 2017. v. 22, n. 10, p. 3333–3339. ALVES, M. De S. et al. Efficacy of lemongrass essential oil and citral in controlling Callosobruchus maculatus (Coleoptera: Chrysomelidae), a post-harvest cowpea insect pest. Crop Protection, 1 maio. 2019. v. 119, p. 191–196. ALVES, M. S. et al. Essential Oils composition and toxicity tested by fumigation against Callosobruchus maculatus (Coleoptera: Bruchidae) pest of stored cowpea. Revista Virtual de Quimica, 2015. v. 7, n. 6, p. 2387–2399. 84 AN, J. et al. Analysis of differentially expressed transcripts in apolygus lucorum (Meyer-dür) exposed to different temperature coefficient insecticides. International Journal of Molecular Sciences, 2020. v. 21, n. 2. ANDRÉ CREMONEZ, P. et al. Biodiesel production in Brazil: Current scenario and perspectives. Renewable and Sustainable Energy Reviews, 2015. v. 42, n. 2015, p. 415–428. ANVISA. Programa De Análise De Resíduos De Agrotóxicos Em Alimentos Para Relatório Das Análises De Amostras Monitoradas No Período De 2013 A 2015. Brasília: [s.n.], 2016. Disponível em: <http://portal.anvisa.gov.br/documents/111215/0/Relatório+PARA+2013-2015_VERSÃO FINAL.pdf/494cd7c5-5408-4e6a-b0e5-5098cbf759f8>. Acesso em: 13 fev. 2019. APARECIDA, L. et al. Atividade Antifúngica De Óleos Essenciais Em Sementes De Feijão Cv. Carioquinha. Horticultura Brasileira, 2008. v. 26, n. 2, p. 6261–6266. APPLEBY, J. H.; CREDLAND, P. F. The role of temperature and larval crowding in morph determination in a tropical beetle, Callosobruchus subinnotatus. Journal of Insect Physiology, 2007. v. 53, n. 10, p. 983–993. ARMANDA, D. T.; GUINÉE, J. B.; TUKKER, A. The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability – A review. Global Food Security, 2019. v. 22, n. August 2018, p. 13–24. ARRESE, E L et al. Lipid storage and mobilization in insects: current status and future directions. Insect biochemistry and molecular biology, jan. 2001. v. 31, n. 1, p. 7–17. ARRESE, Estela L.; SOULAGES, J. L. Insect Fat Body: Energy, Metabolism, and Regulation. Annual Review of Entomology, 2010. v. 55, n. 1, p. 207–225. ASBAHANI, A. El et al. Essential oils: From extraction to encapsulation. International Journal of Pharmaceutics, 2015. v. 483, n. 1–2, p. 220–243. ATHENSTAEDT, K.; DAUM, G. The life cycle of neutral lipids: synthesis, storage and degradation. Cellular and molecular life sciences : CMLS, jun. 2006. v. 63, n. 12, p. 1355– 69. ÁVALOS, A. Y PÉREZ, E. Metabolismo secundario de plantas. REDUCA (Biología). REDUCA (Biología), 2009. v. 2, n. 3, p. 119–145. AVOSEH, O. et al. Cymbopogon Species; Ethnopharmacology, Phytochemistry and the Pharmacological Importance. Molecules, abr. 2015. v. 20, n. 5, p. 7438–7453. AZIZ, EE ; ABBASS, M. Composição química e eficiência de cinco óleos essenciais contra o besouro-do-pulso Callosobruchus maculatus (F.) em sementes de Vigna radiata. American- 85 Eurasian Journal of Agricultural and Environmental Science, 2010. v. 8, n. 4, p. 411–419. Disponível em: <https://www cabdirect.ez30.periodicos.capes.gov.br/cabdirect/abstract/20103319503>. Acesso em: 11 fev. 2021. AZUCENA GONZÁLEZ COLOMA, MARÍA FE ANDRÉS YEVES, CARMEN ELISA DÍAZ HERNÁNDEZ, JESÚS BURILLO ALQUÉZAR, RAIMUNDO CABRERA PÉREZ, J. U. N. Use of essential oils, supercritical extracts and aqueous residues generated during a process for obtaining organic extracts from the artemisia absinthium l plant. BAKI, M. A. AL et al. Insulin signaling mediates previtellogenic development and enhances juvenile hormone-mediated vitellogenesis in a lepidopteran insect, Maruca vitrata. BMC Developmental Biology, 2019. v. 19, n. 1, p. 1–14. BALACHANDRA, B. A. H. E.; PATHIRATHNA, P. U.; PARANAGAMA, P. A. Control of stored grain pest, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae) using the essential oil isolated from Plectranthus zeylanicus. Natural product research, 23 jan. 2012. v. 26, n. 23, p. 2219–22. BAPTISTA-SILVA, S. et al. The progress of essential oils as potential therapeutic agents: a review. Journal of Essential Oil Research, 3 jul. 2020. v. 32, n. 4, p. 279–295. BARBOSA, F. R. et al. Controle do caruncho-do-feijoeiro Zabrotes subfasciatus com óleos vegetais, munha, materiais inertes e malathion. Pesquisa Agropecuária Brasileira. Disponível em: <https://seer.sct.embrapa.br/index.php/pab/article/view/6458>. Acesso em: 14 fev. 2016. BARDIN, M. et al. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Frontiers in Plant Science, 27 jul. 2015. v. 6, n. JULY, p. 566. BARON, G. L. et al. Pesticide reduces bumblebee colony initiation and increases probability of population extinction. Nature Ecology and Evolution, 1 set. 2017. v. 1, n. 9, p. 1308–1316. BARONI, G.; BENEDETI, P.; SEIDEL, D. Cenários prospectivos da produção e armazenagem de grãos no Brasil. Revista Thema, 2017. v. 14, n. 4, p. 55–64. BARRAJÓN-CATALÁN, E. et al. Metabolomic analysis of the effects of a commercial complex biostimulant on pepper crops. Food Chemistry, 2020. v. 310, n. February 2019, p. 125818. BARRETO, G. G. et al. Óleos Essenciais Sobre A Sanidade De Sementes De Feijão Macassar (Vigna unguiculata L. Walp). I Congresso Internacional da Diversidade do Semiárido., 86 2017. Disponível em: <www.conidis.com.br>. BARZMAN, M. et al. Eight principles of integrated pest management. Agronomy for Sustainable Development, 2015. n. 35, p. 1199–1215. BECK, C. W.; BLUMER, L. S. A Handbook on Bean Beetles , Callosobruchus maculatus. Caryologia, 2011. n. September. BERENBAUM, M. R.; JOHNSON, R. M. Xenobiotic detoxification pathways in honey bees. Current Opinion in Insect Science, 2015. v. 10, p. 51–58. BETTIOL, W. Biopesticide use and research in Brazil. - Portal Embrapa. Outlooks on Pest Management, 2011. v. 22, n. 6, p. 280–283. BHAVYA, M. L.; OBULAXMI, S.; DEVI, S. S. Efficacy of Ocimum tenuiflorum essential oil as grain protectant against coleopteran beetle, infesting stored pulses. Journal of Food Science and Technology. Springer India. Disponível em: <https://doi.org/10.1007/s13197-020-04871- y>. BIANCOLILLO, A. et al. Determination of insect infestation on stored rice by near infrared (NIR) spectroscopy. Microchemical Journal, 2019. v. 145, n. October 2018, p. 252–258. BOEKE, S. J. et al. Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. Journal of Stored Products Research, 1 jan. 2004. v. 40, n. 4, p. 423–438. BORGES, F. F., ROCHA, R. P., SANTI, A., SMANIOTTO ,T. A. DE S. Efeito da secagem sobre o rendimento de óleo essencial de capim-limão (Cymbopogon citratus (D.C.) Stapf). Global Science and Tchecnology, 2019. v. 12, n. 3, p. 1–19. BORTOLOTTO, O. C. et al. The use of soybean integrated pest management in Brazil: a review. Agronomy Science and Biotechnology, 2015. v. 1, n. 1, p. 25. BOUCHER, O. et al. Exposure to an organochlorine pesticide (chlordecone) and development of 18-month-old infants. NeuroToxicology, 2013. v. 35, n. 1, p. 162–168. BOUKHATEM, M. N. et al. Lemon grass (Cymbopogon citratus) essential oil as a potent anti inflammatory and antifungal drugs. Libyan Journal of Medicine, 2014. v. 9. BOUTEBOUHART, H. et al. Effect of Extraction and Drying Method on Chemical Composition, and Evaluation of Antioxidant and Antimicrobial Activities of Essential Oils from Salvia officinalis L. Journal of Essential Oil-Bearing Plants, 2019. v. 22, n. 3, p. 717– 727. BRANCO, G. et al. PROPRIEDADE INTELECTUAL. Shirlei Fr ed. Curitiba: UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ (UTFPR), 2011. 87 BRASIL. Relatório Nacional de Vigilância em Saúde de Populações Expostas a Agrotóxicos. [S.l.]: [s.n.], 2018. ______. Decreto no 6323. 2021. Disponível em: <http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2007/decreto/d6323.htm>. Acesso em: 20 jan. 2022. BRITO, J. P.; BORTOLI, S. A. De. ( Fabr ., 1775 ) ( Coleoptera : Bruchidae ). Toxicidade de óleos essenciais de Eucalyptus spp. sobre Callosobruchus maculatus (Fabr., 1775) (Coleoptera: Bruchidae), 2006. v. 6, n. Ld, p. 96–103. BRITO, Sara Samanta Silva et al. Bioatividade de óleos essenciais sobre Zabrotes subfasciatus Boh. (Coleoptera: Chrysomelidae) em feijão-comum armazenado. Revista Brasileirade Ciencias Agrarias, 2015. v. 10, n. 2, p. 243–248. BUSTIN, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 2009. v. 55, n. 4, p. 611–622. CÂMARA, C. A.; GOMES DA; MELO, JOAO PAULO RAMOS DE; MORAES, M. M. DE. Produto A Base De Uma Formulação Contendo Mistura De Deltametrina E Óleos Essenciais Para O Controle Da Traça Das Crucíferas (Plutella Xylostella). CAMPOS, É. et al. Exposure to pesticides and mental disorders in a rural population of Southern Brazil. NeuroToxicology, 2016. v. 56, p. 7–16. CANUTO, G. A. B. et al. Metabolomics: Definitions, state-of-the-art and representative applications. Quimica Nova, 2018. v. 41, n. 1, p. 75–91. CARLINI, E. A. et al. Pharmacology of lemongrass (Cymbopogon citratus Stapf). I. Effects of teas prepared from the leaves on laboratory animals. Journal of Ethnopharmacology, jul. 1986. v. 17, n. 1, p. 37–64. CARMO, D. A. DO et al. Environmental behavior and toxicity of herbicides atrazine and simazine. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 30 abr. 2013. v. 8, n. 1, p. 133–143. CARNEIRO, F. F. Um alerta sobre os impactos dos agrotóxicos na saúde. Rio de Janeiro/São Paulo: 2015. v. 15, n. 1, p. 628. Disponível em: <http://www.epsjv.fiocruz.br/sites/default/files/l241.pdf>. Acesso em: 13 fev. 2019. CARRER, H.; BARBOSA, A. L.; RAMIRO, D. A. Biotecnologia na agricultura. Estudos Avancados, 2010. v. 24, n. 70, p. 149–164. CARVALHO, K. et al. A soluble pyrophosphatase is essential to oogenesis and is required for polyphosphate metabolism in the red flour beetle (Tribolium castaneum). International 88 Journal of Molecular Sciences, 2015. v. 16, n. 4, p. 6631–6644. CASARETT, S. & D. Toxicology The Basic Science of Poisons. [S.l.]: [s.n.], 2008. V. 12. CASTRO, L. O. ; RAMOS, R. L. D. De. Principais Gramíneas Produtoras De Óleos Essenciais. n. 11 ed. Rio Grande do Sul – Brasil: FEPAGRO, 2003. CASTRO, R. D.; LIMA, E. D. O. Atividade antifúngica in vitro do óleo essencial de. Revista de Odontologia da UNESP, 2010. v. 39, n. 3, p. 179–184. CAZZANELLI, G. et al. The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. [S.l.]: [s.n.], 2018. V. 7. CELINA, A.; RAHMAWATI, D.; PERMANA, T. Application of Lemongrass Essential Oil as a Natural Preservative Agent for Pineapple Juice. Iconiet Proceeding, 2019. v. 2, n. 2, p. 69– 78. CEPEA - CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA, ESALQ, U. ÍNDICES EXPORTAÇÃO DO AGRONEGÓCIO. Esalq, USP. USP. Disponível em: <www.cepea.esalq.usp.br>. CHAMPION, C. J. et al. Anopheles gambiae : Metabolomic Profiles in Sugar-Fed, Blood-Fed, and Plasmodium falciparum -Infected Midgut . Dataset Papers in Science, 2017. v. 2017, p. 1–49. CHANDLER, D. et al. The development, regulation and use of biopesticides for integrated pest management. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011. v. 366, n. 1573, p. 1987–1998. CHATTERJEE, S. et al. Input-based assessment on integrated pest management for transplanted rice (Oryza sativa) in India. Crop Protection, 2020. n. October, p. 105444. CHAUBEY, M. K. Fumigant toxicity of essential oils from some common spices against pulse beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Journal of Oleo Science, 2008. v. 57, n. 3, p. 171–179. CONAB. Acompanhamento da safra de grãos 2018/19. SAFRA 2018/19- N. 7 - Sétimo levantamento. Brasília- DF: [s.n.], 2019, p. 119. CREDLAND, Peter F. Effects of host change on the fecundity and development of an unusual strain of Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Journal of Stored Products Research, 1987. v. 23, n. 2, p. 91–98. CRUZ, L. P. et al. Evaluation of resistance in different cowpea cultivars to Callosobruchus maculatus infestation. Journal of Pest Science, 2016. v. 89, n. 1, p. 117–128. 89 CUI, S. F. et al. Effects of hypoxia/hypercapnia on the metablism of Callosobruchus chinensis (L.) larvae. Journal of Stored Products Research, 2019. v. 83, p. 322–330. DAMALAS, C. A.; KOUTROUBAS, S. D. Current status and recent developments in biopesticide use. Agriculture (Switzerland), 2018. v. 8, n. 1. DAMALAS, C. A.; KOUTROUBAS, S. D.. Botanical Pesticides for Eco‐Friendly Pest Management. Pesticides in Crop Production. [S.l.]: Wiley, 2020, p. 181–193. DANGKULWANICH, M.; CHARASLERTRANGSI, T. Hydrodistillation and antimicrobial properties of lemongrass oil (Cymbopogon citratus, Stapf): An undergraduate laboratory exercise bridging chemistry and microbiology. Journal of Food Science Education, 2020. v. 19, n. 2, p. 41–48. DARA, S. K. The New Integrated Pest Management Paradigm for the Modern Age. Journal of Integrated Pest Management, 2019. v. 10, n. 1. DEGAGA, E. Grain Health Protectant Activity of Essential Oils against Infestation and Damage of Haricot Bean by Zabrotes subfasciatus (Boheman). American Journal of Experimental Agriculture, 2015. v. 9, n. 1, p. 1–7. DEPING, G.; YONGQUAN, L.; WENLIU, G. A Review of the History and Development of Integrated Pest Management (IPM): EBSCOhost. Plant Diseases and Pests, 2019. v. 10, n. 2, p. 37–40. DEUTSCH, C. A. et al. Increase in crop losses to insect pests in a warming climate. Science, 2018. v. 361, n. 6405, p. 916–919. DEVI, M. BHUBANESHWARI AND DEVI, N. V. Biology and morphometric measurement of cowpea weevil, Callosobruchus maculatus fabr. (Coleoptera: Chrysomelidae) in green gram. Journal of Entomology and Zoology Studies, 2014. v. 2, n. 3, p. 74–76. DING, J. et al. Development of extractive electrospray ionization ion trap mass spectrometry for in vivo breath analysis. Analyst, 2009. v. 134, n. 10, p. 2040–2050. DING, N. et al. Silencing Br-C impairs larval development and chitin synthesis in Lymantria dispar larvae. Journal of Insect Physiology, 2020. v. 122, n. September 2019, p. 104041. DONLEY, N. The USA lags behind other agricultural nations in banning harmful pesticides. Environmental Health: A Global Access Science Source, 2019. v. 18, n. 1, p. 1–12. DOOL, H. VAN DEN; KRATZ, P. D. A generalization of the retention index system including linear temperature programmed gas—liquid partition chromatography. Journal of Chromatography A, jan. 1963. v. 11, p. 463–471. DOWNER, R. G. H. ENERGY METABOLISM IN INSECTS. PLENUM PRE ed. [S.l.]: A 90 Division of Plenum Publishing Corporation 233 Spring Street, New York, N.Y. 10013, 1981. DU, W. et al. A Primary Screening and Applying of Plant Volatiles as Repellents to Control Whitefly Bemisia tabaci (Gennadius) on Tomato. Scientific Reports, 24 abr. 2016. v. 6, n. 1, p. 22140. DUARTE, C.; CABRAL DE ALMEIDA, G.; SANTOS, M. E. Dos. Revista Brasileira de Zootecnia Registro de Propriedade Intelectual: a patente como ferramenta de integração de instituições científicas e setor produtivo. Revista Brasileira de Zootecnia, 2011. v. 40, p. 181– 188. DUARTE, M. Do R.; ZANETI, C. C. Estudo Farmacobotânico De Folhas De Capim-Limão: Cympobogon Citratus (Dc.) Stapf, Poaceae. Visão Acadêmica, 2004. v. 5, n. 2, p. 117–124. DUDAI, N. et al. Biotransformation of constituents of essential oils by germinating wheat seed. Phytochemistry, 2000. v. 55, n. 5, p. 375–382. DURMAZ, A. A. et al. Evolution of genetic techniques: Past, present, and beyond. BioMed Research International, 2015. v. 2015. DUTRA, K. De A. et al. Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. Journal of Stored Products Research, 2016. v. 68, p. 25–32. EBERT, P. R. et al. Mechanisms of phosphine toxicity. Journal of Toxicology, 2011. v. 2011, p. 1–9. EDGERTON, M. D. Increasing crop productivity to meet global needs for feed, food, and fuel. Plant Physiology, 2009. v. 149, n. 1, p. 7–13. EKPENYONG, C. E.; DANIEL, N. E.; ANTAI, A. B. Bioactive natural constituents from lemongrass tea and erythropoiesis boosting effects: Potential use in prevention and treatment of Anemia. Journal of Medicinal Food, 2015. v. 18, n. 1, p. 118–127. EL-MOUGY, N. S.; EL-GAMAL, N. G.; ABDEL-KADER, M. M. Control of wilt and root rot incidence in Phaseolus vulgaris L. By some plant volatile compounds. Journal of Plant Protection Research, 2007. v. 47, n. 3. ELBEIN, A. D. et al. New insights on trehalose: A multifunctional molecule. Glycobiology, 2003. v. 13, n. 4, p. 17–27. EMBRAPA. Visão 2030: Futuro da Agricultura Brasileira. Embrapa. Brasilia-DF: [s.n.], 2018. Disponível em: <https://www.embrapa.br/visao/trajetoria-da-agricultura-brasileira>. EMWAS, A. H. et al. Nmr spectroscopy for metabolomics research. Metabolites, 2019. v. 9, n. 7. 91 ESTHER OJEBODE, M.; OJO OLAIYA, C. Efficacy of Some Plant Extracts as Storage Protectants against Callosobruchus maculatus. Journal of Biotechnology & Biomaterials, 2016. v. 06, n. 01. F., M. J. J. B. O Feijão comum. Taxinomia, morfologia, histologia, parasitologia, microbiologia, composição química e usos. Revista do Instituto Adolfo Lutz, 1960. p. 83– 104. FANG, J. et al. Applications of DNA Technologies in Agriculture. Current Genomics, 2016. v. 17, n. 4, p. 379–386. FAO. Food Outlook – Biannual Report on Global Food Markets. [S.l.]: [s.n.], 2020. FAO, O. Das N. U. Para A. E A. Resultados do Ano Internacional das Leguminosas devem permanecer para além de 2016 | FAO no Brasil | Food and Agriculture Organization of the United Nations. Organização das Nações Unidas para Agricultura e Alimentação:, 2016. Disponível em: <http://www.fao.org/brasil/noticias/detail-events/pt/c/471433/>. Acesso em: 18 jan. 2020. FARONI, L. R. D.; SILVA, J. De S. E. Manejo de Pragas no Ecossistema de Grãos Armazenados. Manejo de Pragas no Ecossistema de Grãos Armazenados. Viçosa: [s.n.], 2008, p. 371–405. FENIBO, E. O.; IJOMA, G. N.; MATAMBO, T. Biopesticides in sustainable agriculture : current status and future prospects. Preprints, 2020. v. Pré-impres, n. November, p. 1–47. FERNANDES, M. C. A.; RIBEIRO, R. L. D.; AGUIAR-MENEZES, E. L. Manejo Ecológico de Fitoparasitas. Agroecologia: princípios e técnicas para uma agricultura orgânica sustentável. [S.l.]: [s.n.], 20025, p. 273–322. FIEHN, O. Metabolomics by gas chromatography-mass spectrometry: Combined targeted and untargeted profiling. Current Protocols in Molecular Biology, 1 abr. 2016. v. 2016, p. 30.4.1. FIERASCU, R. C. et al. The application of essential oils as a next-generation of pesticides: Recent developments and future perspectives. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 2020. v. 75, p. 183–204. FITE, T. et al. Effect of Azadirachta indica and Milletia ferruginea extracts against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) infestation management in chickpea. Cogent Food & Agriculture, 1 jan. 2020. v. 6, n. 1, p. 1712145. FOX, C. W. Multiple Mating , Lifetime Fecundity and Female Mortality of the Bruchid Beetle , Callosobruchus maculatus ( Coleoptera : Bruchidae ) Author ( s ): C . W . Fox Published by : British Ecological Society Stable .Functional Ecology, 1993. v. 7, n. 2, p. 203–208. 92 FRAGA, A. et al. Glycogen and Glucose Metabolism Are Essential for Early Embryonic Development of the Red Flour Beetle Tribolium castaneum. PLoS ONE, 2013. v. 8, n. 6. FREIRE FILHO, F. R. Origem, Evoluçao e Domesticação do caupi. O caupi no Brasil. Embrapa-CN ed. Goiânia: Embrapa Meio-Norte, 1988, p. 722. FREIRE FILHO, R. F. Feijão-Caupi no Brasil. [S.l.]: [s.n.], 2011. FURLAN, L. et al. Risk assessment of soil-pest damage to grain maize in Europe within the framework of Integrated Pest Management. Crop Protection, 2017. v. 97, p. 52–59. GALLO, D.; NAKANO, O.; NETO, S.; CARVALHO, R.P.L.; BAPTISTA, G.C.; FILHO, E.B.; PARRA, J.R.P.; ZUCCHI, R.A.; ALVES, S. B.; VENDRAMIN, J.D.; MARCHINI, L.C.; LOPES, J.R.I.; OMOTO, C. Entomologia Agrícola. Volume 10 ed. Piracicaba, SP,Brasil: Fundação de Estudos Agrários Luiz de Queiroz-FEALQ, 2002. GANJEWALA, D. Cymbopogon essential oils: Chemical compositions and bioactivities. International Journal of Essential Oil Therapeutics, 2009. v. 3, n. 2–3, p. 56–65. GARCÍA‐ROA, R. et al. Temperature as a modulator of sexual selection. Biological Reviews, 2020. v. 3, p. brv.12632. GARCIA, A.; BARBAS, C. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Methods in molecular biology (Clifton, N.J.), 2011. v. 708, p. 191–204. GAWAI, D. U. Antifungal activity of essential oil of Cymbopogon citratus stapf against different fusarium species. Bionano Frontier, 2015. v. 8, n. December, p. 8–11. GEORGIA C. ATELLA, D. M. E K. C. G. CAPÍTULO 6 - Metabolismo de Lipídeos. — INCT Entomologia Molecular. Tópicos Avançados em Entomologia Molecular Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular INCT, 2012. Disponível em: <http://www.inctem.bioqmed.ufrj.br/biblioteca/arthrolivro-1/capitulo-6-metabolismo-de lipideos/view?searchterm=metabolis>. GILBERT, L. I.; CHINO, H. Transport of lipids in insects. J. Lipid Res., 1 set. 1974. v. 15, n. 5, p. 439–456. Disponível em: <http://www.jlr.org/content/15/5/439>. Acesso em: 4 jun. 2015. GIULIVI, C. et al. Metabolic pathways in Anopheles stephensi mitochondria. Biochemical Journal, 2008. v. 415, n. 2, p. 309–316. GLARE, T. et al. Have biopesticides come of age? Trends in Biotechnology, 2012. v. 30, n. 5, p. 250–258. GLORIOSO, J. C.; LEMOINE, N. Gene therapy-from small beginnings to where we are now. Gene Therapy. Nature Publishing Group. GODOY, C. V.; BUENO, A. De F.; GAZZIERO, D. L. P. Brazilian soybean pest management 93 and threats to its sustainability. Outlooks on Pest Management, 1 jun. 2015. v. 26, n. 3, p. 113–117. GOMES, R. S. S. et al. Eficiência de óleos essenciais na qualidade sanitária e fisiológica em sementesde feijão-fava (Phaseolus lunatus L.). Revista Brasileira de Plantas Medicinais, 2016. v. 18, n. 1 suppl 1, p. 279–287. GONÇALVES, G. L. P. et al. Effects of brugmansia suaveolens fractions on Zabrotes subfasciatus (Coleoptera: Chrysomelidae: Bruchinae). Journal of Biopesticides, 2019. v. 12, n. 1, p. 19–29. GRABARCZYK, M. et al. Transformations of monoterpenes with the p‐menthane skeleton in the enzymatic system of bacteria, fungi and insects. Molecules, 2020. v. 25, n. 20, p. 1–24. GREVENGOED, T. J.; KLETT, E. L.; COLEMAN, R. A. Acyl-CoA metabolism and partitioning. Annual Review of Nutrition, 2014. v. 34, p. 1–30. GUERRA, A M N DE M ; SILVA, D DOS S; SANTOS, P S; SANTOS, L. B. Teste de repelência de óleos essenciais sobre. Revista Brasileira de Agropecuária Sustentável (RBAS), 2019. v. 9, n. 3, p. 110–117. GUIMARÃES, L. G. D. L. et al. Influência da luz e da temperatura sobre a oxidação do óleo essencial de capim-limão (Cymbopogon citratus (D.C.) STAPF). Química Nova, 2008. v. 31, n. 6, p. 1476–1480. HADDABI, A. S. Promotion of integrated pest management (ipm) in cowpea production in fufore local government area, adamawa state, Nigeria. International Journal of Engineering Technologies and Management Research, 10 jun. 2020. v. 7, n. 6, p. 11–40. HAFIZ, A.; RIAZ, T.; SHAKOORI, F. R. Metabolic Profile of a Stored Grain Pest Trogoderma granarium Exposed to Deltamethrin. Pakistan Journal of Zoology, 2016. v. 49, n. 1, p. 183– 188. HAL, N. L. W. VAN et al. The application of DNA microarrays in gene expression analysis. Journal of Biotechnology, 2000. v. 78, n. 3, p. 271–280. HALLSSON, L. R.; BJÖRKLUND, M. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity. Journal of Evolutionary Biology, 2012. v. 25, n. 7, p. 1275–1290. HAN, W. et al. Profiling novel metabolic biomarkers for Parkinson’s disease using in-depth metabolomic analysis. Movement Disorders, 2017. v. 32, n. 12, p. 1720–1728. HARTLEY, S. et al. Essential Features of Responsible Governance of Agricultural Biotechnology. PLoS Biology, 2016. v. 14, n. 5, p. 1–7. 94 HEIER, C.; KÜHNLEIN, R. P. Triacylglycerol metabolism in Drosophila melanogaster. Genetics, 2018. v. 210, n. 4, p. 1163–1184. HELAL, G. A. et al. Effect of Cymbopogon citratus L. essential oil on growth and morphogenesis of Saccharomyces cerevisiae ML2-strain. Journal of Basic Microbiology, 2006. v. 46, n. 5, p. 375–386. HELAL, G. A. et al. Effects of Cymbopogon citratus L . essential oil on the growth , morphogenesis and aflatoxin production of Aspergillus flavus ML2-strain. Journal of Basic Microbiology, 2007. v. 8, n. 2, p. 5–15. HEMINGWAY, J.; RANSON, H. Insecticide resistance in insect vectors of human disease. Annual review of entomology, 28 jan. 2000. v. 45, p. 371–91. 2015. HENDGES, C. et al. Human intoxication by agrochemicals in the region of South Brazil between 1999 and 2014. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2019. v. 54, n. 4, p. 219–225. HERNANDEZ-LAMBRAÑO, R. et al. Essential oils from plants of the genus Cymbopogon as natural insecticides to control stored product pests. Journal of Stored Products Research, 2015. v. 62, p. 81–83. HIDALGO, F. J.; ZAMORA, R. Triacylglycerols: Structures and Properties. Encyclopedia of Food and Health. [S.l.]: Elsevier Inc., 2015, p. 351–356. HILL, C. B.; ROESSNER, U. Metabolic Profiling of Plants by GC-MS. The Handbook of Plant Metabolomics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2013, p. 1–23. HIROSHI TSUGAWA, E. F. Effectiveness of Metabolomics Research Using Gas Chromatograph / Quadrupole Mass Spectrometer with High-Sensitivity and High-Speed Scanning. [S.l.]: [s.n.], 2013. HOLZMANN, A. Latest developments in the registration of SPP chemicals in Germany and Europe. Julius-Kühn-Archiv. Disponível em: <https://www.cabdirect.org/cabdirect/abstract/20123011205>. HONG, J. K. et al. Application of volatile antifungal plant essential oils for controlling pepper fruit anthracnose by Colletotrichum gloeosporioides. Plant Pathology Journal, 2015. v. 31, n. 3, p. 269–277. HORST, D. J. VAN DER et al. Glycerol dynamics and metabolism during flight of the locust, Locusta migratoria. Insect Biochemistry, 1983. v. 13, n. 1, p. 45–55. HORST, Dick J. VAN DER. Insect adipokinetic hormones: Release and integration of flight 95 energy metabolism. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2003. v. 136, n. 2, p. 217–226. HOWARD, B. Ph modified insect foreign patent documents repellent/nsecticde soap of plantessential oils. Disponível em: https://patents.google.com/patent/US8647684B2/en IBAMA. Relatórios de comercialização de agrotóxicos. Boletins anuais de produção, importação, exportação e vendas de agrotóxicos no Brasil, 2017. Disponível em: <http://www.ibama.gov.br/agrotoxicos/relatorios-de-comercializacao-de agrotoxicos#sobreosrelatorios>. IBGE. Censo Agropecuário 2006. [S.l.]: [s.n.], 2009. ______. Indicadores IBGE - Levantamento Sistemático da Produção Agrícola (Janeiro/2019). Disponível em: <https://biblioteca.ibge.gov.br/index.php/biblioteca catalogo?view=detalhes&id=72415>. IGA, M.; SMAGGHE, G. Identification and expression profile of Halloween genes involved in ecdysteroid biosynthesis in Spodoptera littoralis. Peptides, 2010. v. 31, n. 3, p. 456–467. IGLESIAS, L. et al. Evaluating combinations of bioinsecticides and adjuvants for managing Thrips tabaci (Thysanoptera: Thripidae) in onion production systems. Crop Protection, 2020. v. 142, n. Decembe |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Química |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/1/2021%20-%20Marcela%20de%20Souza%20Alves.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/2/2021%20-%20Marcela%20de%20Souza%20Alves.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/3/2021%20-%20Marcela%20de%20Souza%20Alves.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/14644/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 77249ff9434b6fd6a08d8c07daa67c78 695b09b7aaf5e630fa71ac50ccd0d355 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108041632153600 |