Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Biblioteca Digital de Teses e Dissertações da UFRRJ |
Texto Completo: | https://rima.ufrrj.br/jspui/handle/20.500.14407/10585 |
Resumo: | A maioria das espécies vegetais, principalmente culturas agrícolas, não toleram altas concentrações de sais. No entanto, plantas do grupo halófitas são adaptadas a solos salinos. Na rizosfera das plantas halófitas ocorrem associações com microrganismos que auxiliam o crescimento vegetal aumentando a resistência ao estresse salino. Desse modo, o objetivo do trabalho foi isolar e identificar bactérias da rizosfera de plantas halófitas de diferentes ambientes salinos no estado do Rio de Janeiro e avaliar sua capacidade de promoção de germinação e crescimento de sementes de arroz. Foram coletadas amostras de solos rizoféricos das plantas halófitas Salicornia gaudicahudiana, Salicornia fruticosa, Blutaparon portulacoides, Sporobolus virginucus e Cyperus ligularis encontradas em ambientes costeiros, como mangue e salinas. Para o isolamento das bactérias foram utilizados meios de cultura acrescidos de 1%, 5%, 15%, 20% e 25% de NaCl. As bactérias isoladas foram classificadas de acordo o crescimento em diferentes concentrações NaCl e foram identificadas pela técnica Matrix Assisted Laser Desorption Ionization Time Of Flight/ Mass Spectrometry (MALDI-TOF MS) e pelo sequenciamento do gene rrs que codifica o rRNA 16S. Foi avaliado o potencial de promoção de crescimento do arroz na concentração de 50 mM e 200 mM de NaCl de nove estirpes de bactérias halotolerantes pertencentes aos gêneros Pseudomonas e Bacillus. Foram analisados a porcentagem de germinação, o comprimento total da raiz, volume da raiz, superfície de contato radicular, número de ápices e comprimento total da parte aérea. Foram isoladas um total de 315 bactérias classificadas como não halofílicas (99/315), halotolerantes (171/315) e halofílicas moderadas (32/315). Destas, 286 foram analisadas pela técnica proteômica MALDI-TOF MS, sendo 57% (165/286) identificadas em nível seguro para gênero. Dentre as bactérias não identificadas pela técnica MALDI TOF-MS, foram selecionados isolados halotolerantes e halofílicos moderados para a identificação pelo sequenciamento do gene rrs. A inferência do gênero foi possível em 97,7% (42/43) dos isolados. Os gêneros mais abundantes identificados foram Pseudomonas, Ochrobactrum e Bacillus. Na concentração de 50 mM de NaCl, que se mostrou ideal para a germinação das sementes de arroz, os isolados P51 e P164, relacionadas ao gênero Pseudomonas, proporcionaram aumento da maioria dos parâmetros analisados em comparação ao tratamento não inoculado. Nessa concentração, os isolados B231, B67 e B143, pertencentes ao gênero Bacillus, promoveram alongamento radicular e maior número de ápices. Já a 200 mM, concentração inibitória do processo germinativo, os isolados B231 e B294, pertencentes ao gênero Bacillus, proporcionaram aumento no comprimento total das raízes em comparação ao tratamento não inoculado. Estes resultados confirmam que a rizosfera de plantas halófitas representa um ambiente promissor para o isolamento de bactérias halotolerantes e halofílicas, e que isolados de Pseudomonas e Bacillus halolerantes podem promover o crescimento de plantas de arroz na presença ou ausência de estresse salino. |
id |
UFRRJ-1_f548d3bf0045ce525887ae5d7b5f838a |
---|---|
oai_identifier_str |
oai:rima.ufrrj.br:20.500.14407/10585 |
network_acronym_str |
UFRRJ-1 |
network_name_str |
Repositório Institucional da UFRRJ |
repository_id_str |
|
spelling |
Xavier, Julia FerreiraCoelho, Irene da Silva044.355.796-93http://lattes.cnpq.br/2191695584157582Zonta, EveraldoCoelho, Irene da SilvaBerbara, Ricardo Luís LouroRouws, Luc Felicianus Mariehttps://orcid.org/0000-0002-8609-1825154.346.717-24http://lattes.cnpq.br/09474547648727862023-12-22T01:39:46Z2023-12-22T01:39:46Z2021-10-08XAVIER, Júlia Ferreira. Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas. 2021. 55 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, RJ, 2021.https://rima.ufrrj.br/jspui/handle/20.500.14407/10585A maioria das espécies vegetais, principalmente culturas agrícolas, não toleram altas concentrações de sais. No entanto, plantas do grupo halófitas são adaptadas a solos salinos. Na rizosfera das plantas halófitas ocorrem associações com microrganismos que auxiliam o crescimento vegetal aumentando a resistência ao estresse salino. Desse modo, o objetivo do trabalho foi isolar e identificar bactérias da rizosfera de plantas halófitas de diferentes ambientes salinos no estado do Rio de Janeiro e avaliar sua capacidade de promoção de germinação e crescimento de sementes de arroz. Foram coletadas amostras de solos rizoféricos das plantas halófitas Salicornia gaudicahudiana, Salicornia fruticosa, Blutaparon portulacoides, Sporobolus virginucus e Cyperus ligularis encontradas em ambientes costeiros, como mangue e salinas. Para o isolamento das bactérias foram utilizados meios de cultura acrescidos de 1%, 5%, 15%, 20% e 25% de NaCl. As bactérias isoladas foram classificadas de acordo o crescimento em diferentes concentrações NaCl e foram identificadas pela técnica Matrix Assisted Laser Desorption Ionization Time Of Flight/ Mass Spectrometry (MALDI-TOF MS) e pelo sequenciamento do gene rrs que codifica o rRNA 16S. Foi avaliado o potencial de promoção de crescimento do arroz na concentração de 50 mM e 200 mM de NaCl de nove estirpes de bactérias halotolerantes pertencentes aos gêneros Pseudomonas e Bacillus. Foram analisados a porcentagem de germinação, o comprimento total da raiz, volume da raiz, superfície de contato radicular, número de ápices e comprimento total da parte aérea. Foram isoladas um total de 315 bactérias classificadas como não halofílicas (99/315), halotolerantes (171/315) e halofílicas moderadas (32/315). Destas, 286 foram analisadas pela técnica proteômica MALDI-TOF MS, sendo 57% (165/286) identificadas em nível seguro para gênero. Dentre as bactérias não identificadas pela técnica MALDI TOF-MS, foram selecionados isolados halotolerantes e halofílicos moderados para a identificação pelo sequenciamento do gene rrs. A inferência do gênero foi possível em 97,7% (42/43) dos isolados. Os gêneros mais abundantes identificados foram Pseudomonas, Ochrobactrum e Bacillus. Na concentração de 50 mM de NaCl, que se mostrou ideal para a germinação das sementes de arroz, os isolados P51 e P164, relacionadas ao gênero Pseudomonas, proporcionaram aumento da maioria dos parâmetros analisados em comparação ao tratamento não inoculado. Nessa concentração, os isolados B231, B67 e B143, pertencentes ao gênero Bacillus, promoveram alongamento radicular e maior número de ápices. Já a 200 mM, concentração inibitória do processo germinativo, os isolados B231 e B294, pertencentes ao gênero Bacillus, proporcionaram aumento no comprimento total das raízes em comparação ao tratamento não inoculado. Estes resultados confirmam que a rizosfera de plantas halófitas representa um ambiente promissor para o isolamento de bactérias halotolerantes e halofílicas, e que isolados de Pseudomonas e Bacillus halolerantes podem promover o crescimento de plantas de arroz na presença ou ausência de estresse salino.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorCNPq - Conselho Nacional de Desenvolvimento Científico e TecnológicoFAPERJ - Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de JaneiroMost plant species, especially crops, do not tolerate high salt concentrations. However, halophytic plants are adapted to saline soils. In the rhizosphere of these plants, associations with microorganisms can promote plant growth and increase resistance to salt stress. Therefore, this work aimed to isolate and identify bacteria from the rhizosphere of halophyte plants from different saline environments in the state of Rio de Janeiro and to evaluate their capacity to promote growth of rice. Samples of rhizospheric soils from halophytic plants Salicornia gaudicahudiana, Salicornia fruticosa, Blutaparon portulacoides, Sporobolus virginucus, and Cyperus ligularis were collected. Culture media amended with 1%, 5%, 15%, 20%, and 25% of NaCl were used for bacterial isolation. The bacterial strains were classified according to growth at different NaCl concentrations and were identified by Matrix Assisted Laser Desorption Ionization Time Of Flight/ Mass Spectrometry (MALDI-TOF MS) and by rrs gene sequencing. Subsequently, the potential of nine strains of halotolerant bacteria belonging to the genus Pseudomonas and Bacillus in promoting rice growth at concentrations of 50 mM and 200 mM was analyzed. Thus, germination percentage, total root length, root volume, root surface area, number of tips, and total shoot length were analyzed. A total of 315 bacteria classified as non-halophilic (99/315), halotolerant (171/315) and moderately halophilic (32/315) were isolated. Of the isolated bacteria, 286 were analyzed by the proteomic technique MALDI-TOF MS and classified at the genus level 57% (165/286). For those that could not be identified by MALDI TOF-MS, selected isolates were identified by 16S rRNA gene (rrs) gene sequencing. The inference of the genus and/or species was possible in 97.7% (42/43) of the isolates. The most abundant genera identified were Pseudomonas, Ochrobactrum, and Bacillus. At the optimal salt concentration of 50 mM NaCl, the isolates P51 and P164, belonging to the genera Pseudomonas, provided an increase in most parameters related to rice seed germination analyzed, as compared to the non-inoculated treatment. Isolates B231, B67, and B143 related to the genus Bacillus promoted root elongation and a higher number of tips. At the stressing concentration of 200 mM, isolates B231 and B294, related to Bacillus provided an increase in the total length of roots compared to the non-inoculated treatment. These results confirm that the rhizosphere of halophyte plants represents a promising environment for the isolation of halotolerant and halophilic bacteria and that halotolerant bacteria from the genera Pseudomonas and Bacillus can promote the germination and initial development of rice seeds in the presence or absence of salt stress.application/pdfporUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Agronomia - Ciência do SoloUFRRJBrasilInstituto de AgronomiaArrozBactéria halotolerantePromoção de crescimento vegetalSolos salinosRiceHalotolerant bacteriaPlant growth promotionSaline soilsAgronomiaIsolamento e caracterização de bactérias associadas a rizosfera de plantas halófitasIsolation and characterization of bacteria associated with the rhizosphere of halophyte plantsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisAHMAD, P.; SHARMA, S. Salt stress and phyto-biochemical responses of plants. Plant Soil Environ., v. 54, n. 3, p. 89–99, 2008. ALBUQUERQUE, A. G. B. M.; FERREIRA, T. O.; NÓBREGA, G. N.; ROMERO, R. E.; JÚNIOR, V. S.; MEIRELES, A. J. A.; OTERO, X. L. Soil genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semi-arid estuary (Ceará, Brazil). Soil Research, v. 52, n. 2, p. 140-154, 2014. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, v. 25, n. 17, p. 3389–3402, 1997. AMOOZEGAR, M. A.; SHAHINPEI, A.; SEPAHY, A. A.; MAKHDOUMI-KAKHKI, A.; SEYEDMAHDI, S. S.; SCHUMANN, P.; VENTOSA, A. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. International journal of systematic and evolutionary microbiology, v. 64, n. 10, p. 3565-3570, 2014. AMOOZEGAR, M. A.; SAFARPOUR, A.; NOGHABI, K. A.; BAKHTIARY, T.; VENTOSA, A. Halophiles and their vast potential in biofuel production. Frontiers in microbiology, v. 10, p. 1895, 2019. ANZAI Y.; KIM H.; PARK J.Y.; WAKABAYASHI H.; OYAIZU H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol., 2000. ARAHAL, D.; VENTOSA, A. Moderately Halophilic and Halotolerant Species of Bacillus and Related Genera. In book: Applications and Systematics of Bacillus and Relatives, p. 83 – 99. 2008. ARGANDOÑA, M.; FERNÁNDEZ-CARAZO, R.; LLAMAS, I.; MARTÍNEZ-CHECA, F.; CABA, J. M.; QUESADA, E. The moderately halophilic bacterium Halomonas maura is a free living diazotroph. FEMS Microbiol. Lett., v. 244, p. 69-74, 2005. ARORA, S.; PATEL, P. N.; VANZA, M. J.; RAO, G. G. Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, v. 8, n. 17, p. 1779-1788, 2014. ARZANI, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell Developmental Biology - Plant, v. 44, p. 373-383, 2008. ASCH, F.; WOPEREIS, M. C. S. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Research, v. 70, n. 2, p. 127-137, 2001. BAL, H.; ADHYA, T. Diversity of plant growth promoting rhizobacteria (PGPR) in rice soils of Odisha. Plant Science Research, v. 34, p. 7-33, 2012. BANGASH, A.; AHMED, I.; ABBAS, S.; KUDO, T.; SHAHZAD, A.; FUJIWARA, T.; OHKUMA, M. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan. Antonie van Leeuwenhoek, v. 107, n. 4, p. 991-1000, 2015. BATHE, S.; ACHOUAK, W.; HARTMANN, A.; HEULIN, T., SCHLOTER, M.; LEBUHN, M. Genetic and phenotypic microdiversity of Ochrobactrum spp. FEMS microbiology ecology, v. 56, n. 2, p. 272-280, 2006. BARROS, M. F. C.; FONTES, M. P. F.; RUIZ, H. A.; ALVAREZ, V. V. H. Recuperação de solos afetados por sais no Nordeste do Brasil pela aplicação de gesso de jazida e calcário. R. Bras. Eng. Agríc. Ambiental, v. 8, n. 1, p. 59-64, 2004. BASHAN, Y.; MORENO, M.; TROYO, E. Growth promotion of the seawater irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils, v. 32, p. 265–272, 2000. BASKAR, B.; PRABAKARAN, P. Characterization of mangrove associated nitrogen fixing halophilic bacterium Paenibacillus sp. International Journal of Current Research, v. 3, p. 065-067, 2011. BERG, G. Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol, v. 84, p. 11–8. 2009. BLUMWALD, E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., v. 12, p. 431–434, 2000. BOUKHATEM, Z. F.; DOMERGUE, O.; BEKKI, A.; MERABET, C.; SEKKOUR, S.; BOUAZZA, F.; GALIANA, A. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS microbiology ecology, v. 80, n. 3, p. 534-547, 2012. BRECKLE, S. W. How do halophytes overcome salinity? Biology of salt tolerant plants, v. 23, p. 199-203, 1995. BUSSE, H. J.; WIESER, M. P. Glutamicibacter. Bergey's Manual of Systematics of Archaea and Bacteria. 2015. CACHORRO, P.; OLMOS, E.; ORTIZ, A.; CERDÁ, A. Salinity-induced changes in the structure and ultrastructure of bean root cells. Biologia Plantarum, v. 37, n. 2, p. 273-283, 1995. CALZADA, U. C.; ARVIZU, H. I.; CRUZ, M. J. A., RAMOS, L. M. A.; PEREZ, C.J., RIVERA, Z. R. L.; CAMPOS-GUILLEN, J. Identification by MALDI-TOF mass spectrometry of mercury-resistant bacteria associated with the rhizosphere of an apple orchard. Geomicrobiology Journal, v. 34, n. 2, p. 176-182, 2017. CARVALHO, A. S. da R. Restinga de Massambaba: vegetação, flora, propagação e usos. Vertente Edições, Rio de Janeiro. 2018. CARVALHO FILHO, A. de; LUMBRERAS, J. F.; DOS SANTOS, R. D. Os solos do Estado do Rio de Janeiro. Embrapa Solos-Outras publicações científicas (ALICE), 2000. COMPANT S.; DUFFY B.; NOWAK J.; CLEMENT C.; EA BI. Use of plant growth-promoting bacterial for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol, v. 71, p. 4951–4955, 2005. CORDEIRO, G. G.; BARRETO, A. N.; CARVAJAL, A. C. N. Levantamento das condições de salinidade e sodicidade do Projeto de irrigação de São Gonçalo (2a parte). Petrolina: EMBRAPA-CPATSA, p. 57, 1988. COSTA, C. S. B.; HERRERA, O. B. Halophytic life in Brazilian salt flats: Biodiversity, uses and threats. In: Sabkha ecosystems. Springer, Cham, p. 11-27, 2016. CROSSAY, T.; ANTHEAUME, C.; REDECKER, D.; BON, L.; CHEDRI, N.; RICHERT, C.; AMIR, H. New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Scientific reports, v. 7, n. 1, p. 1-16, 2017. DA SILVA, L. H.; FEDER, F.; DE OLIVEIRA DELFINO, D.; DOS SANTOS LOPES, F. A. Análise da composição cianobacteriana das esteiras pustulares em salina, Araruama, Rio de Janeiro. Anuário do Instituto de Geociências, v.30, n. 1, p. 175-180, 2007. DA SILVA, R. E.; SANTOS, S. N.; TAKETANI, R. G.; MELO, I. S. de. Rizobactérias halotolerantes/halofílicas isoladas de plantas halofílicas pioneiras de salinas do semiárido brasileiro. In: Embrapa Meio Ambiente-Resumo em anais de congresso (ALICE). In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA, 26., 2011, Foz do Iguaçu. Anais... Foz do Iguaçu: Sociedade Brasileira de Microbiologia, 2011. Resumo 1274-2., 2011. DASSARMA, S.; ARORA, P. Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiolo. Lett., v.153, p.1–10, 1997. DAVIN-REGLI, A.; LAVIGNE, J. P.; PAGÈS, J. M. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clinical microbiology reviews, v. 32, n. 4, p. e00002-19, 2019. DENET, E.; VASSELON, V.; BURDIN, B.; NAZARET, S.; FAVRE-BONTÉ, S. Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties. PloS one, v. 13, n. 2, 2018. DESLANDES, R.S.; REGALLO, F.L.S.; MULLER, J.E.P. Mapeamento do uso e ocupação do solo atual pela atividade salineira em praia seca, distrito de araruama, RJ. X Seminário de Pesquisa da Estácio. 2000. DESALE, P.; PATEL, B.; SINGH, S.; MALHOTRA, A.; NAWANI, N. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. Journal of basic microbiology, v. 54, n. 8, p. 781-791, 2014. DIAS, N.S.; BLANCO F.F.; SOUZA E.R.; FERREIRA J.F.S.; NETO, O.N.S.; QUEIROZ, I.S.R. Efeitos dos sais na planta e tolerância das culturas à salinidade. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. DÍAZ-CÁRDENAS, C.; CANTILLO, A.; ROJAS, L. Y.; SANDOVAL, T.; FIORENTINO, S.; ROBLES, J.; BAENA, S. Microbial diversity of saline environments: searching for cytotoxic activities. AMB Express, v. 7, n. 1, p. 1-16, 2017. DÖBEREINER, J.; ANDRADE, V. D. O.; BALDANI, V. L. D. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia-Documentos (INFOTECA-E). 1999. DODD, I. C.; PÉREZ-ALFOCEA, F. Microbial amelioration of crop salinity stress. Journal of Experimental Botany, v. 63, n. 9, p. 3415-3428, 2012. DOLKAR, D.; DOLKAR, P.; ANGMO, S.; CHAURASIA, O. P.; STOBDAN, T. Stress tolerance and plant growth promotion potential of Enterobacter ludwigii PS1 isolated from Seabuckthorn rhizosphere. Biocatalysis and Agricultural Biotechnology, v.14, p.438-443. 2018. DRIDI B.; RAOULT D.; DRANCOURT M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. Apmis, v. 120, n. 2, p. 85-91, 2012. DÜRR, R.; NEUMANN, A.; VIELHAUER, O.; ALTENBUCHNER, J.; BURTON, S. G.; COWAN, D. A.; SYLDATK, C. Genes responsible for hydantoin degradation of a halophilic Ochrobactrum sp. G21 and Delftia sp. I24—New insight into relation of d-hydantoinases and dihydropyrimidinases. Journal of Molecular Catalysis B: Enzymatic, v.52, p.2-12, 2008. EGAMBERDIEVA D.; KAMILOVA F.; VALIDOV S.; GAFUROVA L.; KUCHAROVA Z.; LUGTENBERG B. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol, v.10, n. 1, p.1–9, 2008. EGAMBERDIEVA, D.; WIRTH, S.; BELLINGRATH-KIMURA, S. D.; MISHRA, J.; ARORA, N. K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in microbiology, v. 10, p. 2791, 2019. EKKELENKAMP, M.B.; ROOIJAKKERS S.H.M.; BONTEN M.J.M. Chapter 165 - Staphylococci and micrococci, Editor(s): Jonathan Cohen, Steven M. Opal, William G. Powderly, Infectious Diseases (Third Edition), Mosby, Pages 1632-1644, ISBN 9780323045797, 2010. ETESAMI, H. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agriculture, Ecosystems & Environment, v. 253, p. 98-112, 2018. ETESAMI, H.; BEATTIE, G. A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in microbiology, v. 9, p. 148, 2018. ETESAMI, H.; HOSSEINI, H. M.; ALIKHANI, H. A.; MOHAMMADI, L. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of plant growth regulation, v. 33, n. 3, p. 654-670, 2014. FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, p.783-791, 1985. FENDRICH C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol v.11, p.36–43, 1988. FENG, W. W.; WANG, T. T.; BAI, J. L.; DING, P.; XING, K.; JIANG, J. H.; QIN, S. Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. International journal of systematic and evolutionary microbiology, v. 67, n. 5, p.1120-1125, 2017. FERGUSSON, C. H.; COLOMA, J. M.; VALENTINE, M. C.; HAECKL, F. J.; LININGTON, R. G. Development of a Custom MALDI-TOF Mass Spectrometric Database for Identification of Environmental Burkholderia and Related Genera. Applied and Environmental Microbiology, 2020. FERNANDES, P.D.; BRITO, M.E.B.; GHEYI, H.R.; ANDRADE, A.P.; MEDEIROS, S.S. Halofitismo e agricultura brasileira. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. FERREIRA, M. J.; CUNHA, A.; FIGUEIREDO, S.; FAUSTINO, P.; PATINHA, C.; SILVA, H.; SIERRA-GARCIA, I. N. The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria. Applied Sciences, v. 11, n. 5, p. 2233, 2021. FINKEL, O. M.; CASTRILLO, G.; PAREDES, S. H.; GONZÁLEZ, I. S.; DANGL, J. L. Understanding and exploiting plant beneficial microbes. Current opinion in plant biology, v. 38, p. 155-163, 2017. FLOWERS, T.J.; COLMER, T.D. Salinity tolerance in halophytes. New Phytologist v.179, p.945- 963, 2008. FLOWERS, T. J.; FLOWERS, S. A. Why does salinity pose such a difficult problem for plant breeders? Agricultural water management, v. 78, n. 1-2, p. 15-24, 2005. FLOWERS, T. J.; MUNNS, R.; COLMER, T. D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, v.115, p.419–431, 2015. GAO, M.; XIE, L. Q.; WANG, Y. X.; CHEN, J.; XU, J.; ZHANG, X. X.; SUN, J. G. Paenibacillus beijingensis sp. nov., a novel nitrogen-fixing species isolated from jujube garden soil. Antonie Van Leeuwenhoek, v. 104, n. 4, p. 689-694, 2012. GLICK, B.R.; PENROSE, D.M.; LI, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theoret. Biol., v. 190, p. 63-68, 1998. GLICK, B.R.; CHENG, Z.; CZARNY, J.; DUAN, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. v.119, p.329–339, 2007. GLICK, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. v.169, p.30–39, 2014. GOSWAMI, D.; PITHWA, S.; DHANDHUKIA, P.; THAKKER, J. N. Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, v. 9, n. 1, p. 566-576, 2014. GUPTA, R. K.; ABROL, I. P. Sal-affected soils: their reclamations and management for crop production. Advances in Soil Science, v.11, p.223-288, 1990. HADLICH, G. M.; UCHA, J. M.; CELINO, J. J. Apicuns na Baía de Todos os Santos: distribuição espacial, descrição e caracterização física e química. In: Queiroz, A. F. de S.; CELINO, J. J. (Org.). Avaliação de ambientes na Baía de Todos os Santos: aspectos geoquímicos, geofísicos e biológicos, cap. 2, p. 59-72. Salvador: UFBA 2008. HALL, J.A.; PEIRSON, D.; GHOSH, S.; GLICK, B.R. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Isr J Plant Sci, v. 44, p. 37–42, 1996. HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., 1999. p.95-98 HASANUZZAMAN, M.; NAHAR, K.; ALAM, M.M.; BHOWMIK, P.C.; HOSSAIN, M.A.; RAHMAN, M.M.; PRASAD, M.N.V.; OZTURK, M.; FUJITA, M. Potential use of halophytes to remediate saline soils. Biomed. Res. Int. 2014. HAYAT, R.; ALI, S.; AMARA, U.; KHALID, R.; AHMED, I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol v.60, p.579–98. 2010. HE, F. E. coli genomic DNA extraction. Bio-protocol, p. e97-e97, 2011. HIGGINS, DESMOND G. CLUSTAL V: multiple alignment of DNA and protein sequences. In: Computer analysis of sequence data. Springer, Totowa, NJ. p.307-318, 1994. HIMABINDU, Y.; CHAKRADHAR, T.; REDDY, M. C.; KANYGIN, A.; REDDING, K. E.; CHANDRASEKHAR, T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, v. 124, p. 39-63, 2016. HÖHN, A.; TOBSCHAL, H. J.; MADDOCK, J. E. L. Biogeochemistry of a hipersaline lagoon east of Rio de Janeiro, Brazil. The Science of the total environment. Amsterdam Eselvier Science, v.58, p.175-185, 1986. HOLANDA, F. S. R.; MARCIANO, C. R.; PEDROTTI, A.; AGUIAR, J. F. de; SANTOS, V. P. Recuperação de áreas com problemas de salinização. Informe Agropecuário, Belo Horizonte, v.22, n.210, p.57-61, 2001. HOLANDA, A. C.; SANTOS, R. V.; SOUTO, J. S.; ALVES, A. R. Desenvolvimento inicial de espécies arbóreas em ambientes degradados por sais. Revista de Biologia e Ciências da Terra, v.7, n.1, p.39-50, 2007. HONG, Y. Y.; MA, Y. C.; ZHOU, Y. G.; GAO, F.; LIU, H. C.; CHEN, S. F. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. International journal of systematic and evolutionary microbiology, v. 59, n. 11, p. 2656-2661, 2009. HORIE, T.; HAUSER, F.; SCHROEDER, J.I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, v. 14, n. 12, p. 660-668, 2009. HRENOVIC, J.; DURN, G.; GOIC-BARISIC, I.; KOVACIC, A. Occurrence of an environmental Acinetobacter baumannii strain similar to a clinical isolate in paleosol from Croatia. Applied and environmental microbiology, v. 80, n. 9, p. 2860–2866, 2014. HUMM, H. J. Marine agar-digesting bacteria of the South Atlantic coast. Duke Univ Mar Stn Bull v.3, p.45–75, 1946. HUSCHEK, D.; WITZEL, K. Rapid dereplication of microbial isolates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: A mini-review. J Adv Res. v.2, n.19, p.99-104., 2019. ISLAM, F.; Wang, J.; Farooq, M. A.; Gill, R. A.; Ali, S.; Zhou, W. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiology and Biochemistry, v. 107, p. 82-95, 2016. JHA, Y.; SUBRAMANIAN, R. B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, v. 20, n. 2, p. 201-207, 2014. JIANG, J.; PAN, Y.; HU, S.; ZHANG, X.; HU, B.; HUANG, H.; HONG, S.; MENG, J.; LI, C.; WANG, K. Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int. J. Syst. Evol. Microbiol. v.64, p.1662-1669, 2014. JURINAK, J. J.; SUAREZ, D. L. The chemistry of salt-affected soils and waters. In: Tanji, K. K. (Ed.). Agricultural Salinity Assessment and Management. American Society of Civil Engineers. New York: p.42-63, 1990. KÄMPF, N.; CURI, N. Formação e evolução do solo (Pedogênese). In: KER, J.C.; CURI, N.; SCHAEFER, C.E.G.R.; VIDAL-TORRADO, P. (Eds.). Pedologia: fundamentos. Viçosa: Sociedade Brasileira de Ciência do Solo, p. 273-276, 2012. KANDI, V.; PALANGE, P.; VAISH, R.; BHATTI, A.B.; KALE, V.; KANDI, M.R.; BHOOMAGIRI, MR. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species. Cureus, v. 8, n. 8, 2016. KARNWAL, A. Screening, isolation and characterization of culturable stress-tolerant bacterial endophytes associated with Salicornia brachiata and their effect on wheat (Triticum aestivum L.) and maize (Zea mays) growth. Journal of Plant Protection Research, p. 293-303, 2019. KATERJI, N.; VAN HOORN, J.W.; HAMDY, A.; MASTRORILLI, M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manage. v.43, n. 1, p.99–109, 2000. KHALIFA, A. Y.; ALSYEEH, A. M.; ALMALKI, M. A.; SALEH, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi journal of biological sciences, v.23, n. 1, p.79-86, 2016. KHAN, M. A.; SAHILE, A. A.; JAN, R.; ASAF, S.; HAMAYUN, M.; IMRAN, M.; LEE, I. J. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC plant biology, v. 21, n. 1, p. 1-15, 2021. KHAN, M. A., BOËR, B., ÖZTURK„ M., CLÜSENER-GODT, M., GUL, B., BRECKLE, S.-W. SABKHA. Ecosystems: Vol. V: The Americas. Springer. 2016. KHATUN, S.; FLOWERS, T.J. Effects of salinity on seed set in rice. Plant Cell Environment, v. 18, p. 61–67, 1995. KIM, KK; LEE, JS; STEVENS, DA. Microbiology and epidemiology of Halomonas species. Future Microbiol. Erratum in: Future Microbiol. 2014 KOYRO, H.W.; GEISSLER N.; HUSSIN S.; DEBEZ A.; HUCHZERMEYER B. Strategies of halophytes to survive in a salty environment. In: Abiotic stress and plant responses, ed. N. A. Khan and S. Singh, p.83–104. New Delhi: I.K. International, 2008. KRADER, P.; EMERSON, D. Identification of Archaea and some Extremophilic Bacteria Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry. Extremophiles: life under extreme conditions. v.8, p.259-68. 2004. KRISHNAMURTHY, P.; RANATHUNGE, K.; FRANKE, R.; PRAKASH, H. S.; SCHREIBER, L.; MATHEW, M. K. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, v. 230, n. 1, p. 119-134, 2009. KUMAR S.; STECHER G.; PETERSON D.; TAMURA K. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics v.28, p. 2685-2686, 2012. KUMAR, P.; HUANG, C.; CAI, J.; MIKLAVCIC, S. J. Root phenotyping by root tip detection and classification through statistical learning. Plant and soil, v. 380, n. 1, p. 193-209, 2014. KUMAR, A.; SINGH, S.; MUKHERJEE, A.; RASTOGI, R. P.; VERMA, J. P. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, v. 242, p. 126616, 2021. KUMARI, A.; DAS, P.; PARIDA, A. K.; AGARWAL, P. K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, v. 6, p. 537, 2015. LANE, D.J. 16S/23S rRNA sequencing. In: STACKEBRANDT, E; GOODFELLOW, M Nucleic acid techniques in bacterial systematics. p. 115–175. New York: Wiley, 1991. LARSEN, H. Biochemical aspects of extreme halophilism. Adv. Microb. Physiol. v.1, p.97–132, 1967. LE RUDULIER, D.; BOUILLARD, L. Glycine Betaine, an osmotic effector in Klebsiella pneumonia and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. v.46, p.152–159, 1983. LEBUHN, M.; ACHOUAK, W.; SCHLOTER, M.; BERGE, O.; MEIER, H., BARAKAT, M., HEULIN, T. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 50, n. 6, p.2207-2223, 2000. LEITE, M.C.B.S.; FARIAS A.R.B.; FREIRE F.J.; ANDREOTE F.D.; KUKLINSKY-SOBRAL J.; FREIRE M.B.G.S. Isolation, bioprospecting and diversity of salt-tolerant bactéria associated with sugarcane in soils of Pernambuco, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental v.18, p.73–79, 2014. LEROY, S.; VERMASSEN, A.; TALON, R. Staphylococcus: Occurrence and Properties, Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Encyclopedia of Food and Health. Academic Press, p. 140-145, 2016. LINDGREN, A.R.; BUCKLEY, B.A.; EPPLEY, S.M.; REYSENBACH, A.-L.; STEDMAN, K.M.; WAGNER, J.T. Life on the edge-the biology of organisms inhabiting extreme environments: an Introduction to the symposium. Integr. Comp. Biol. v.56, p.493–499, 2017. LISZKA, M.J.; CLARK, M.E.; SCHNEIDER, E.; CLARK, D.S. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annual Review of Chemical and Biomolecular Engineering. v.3, n.1, p.77-102. 2012. MA, F.; PETERSON, C. A. Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Canadian Journal of Botany, v. 81, n. 5, p. 405-421, 2003. MA, Y., XIA, Z.; LIU, X.; CHEN, S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. International journal of systematic and evolutionary microbiology, v. 57, n. 1, p. 6-11, 2007. MA, Y. C.; CHEN, S. F. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. International journal of systematic and evolutionary microbiology, v. 58, n. 2, p. 319-323, 2008. MACELROY, R.D. Some comments on the evolution of extremophiles. Biosyst v.6, p.74–5, 1974. MAPELLI, F.; MARASCO, R.; ROLLI, E.; BARBATO, M.; CHERIF, H.; GUESMI, A.; OUZARI, I.; DAFFONCHIO, D.; BORIN, S. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed research international, v. 2013, 2013. MAYAK, S.; TIROSH, T.; GLICK, B. R. Plant growth-promoting bactéria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem, v.42, p.565–572., 2004. MCPHERSON, M. R.; WANG, P.; MARSH, E. L.; MITCHELL, R. B.; SCHACHTMAN, D. P. Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. JoVE (Journal of Visualized Experiments), n. 137, p. e57932, 2018. MISRA, S.; DIXIT, V. K.; KHAN, M. H.; MISHRA, S. K.; DVIWEDI, G.; YADAV, S.; CHAUHAN, P. S. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiological research, v. 205, p. 25-34, 2017. MONTEOLIVA-SANCHEZ, M.; A. RAMOS-CORMENZANA. Cellular fatty acid composition of Planococcus halophilus NRCC 14033 as affected by growth temperature and salt concentration. Curr. Microbiol. v.15, p.133–136, 1987. MORITA RY. Extremes of biodiversity. Bioscience v.49, p.245–8, 1999. MUNNS, R.; TESTER, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, v.59, p.651-681, 2008. MUNOZ, R.; LÓPEZ-LÓPEZ, A.; URDIAIN, M.; MOORE, E. R.; ROSSELLÓ-MÓRA, R. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Systematic and applied microbiology, v. 34, n. 1, p. 69-75, 2011. MUKHTAR, S.; MALIK, K. A.; MEHNAZ, S. Osmoadaptation in halophilic bacteria and archaea. Res. J. Biotech, v. 15 n. 5, 2020. NADEEM, S.M.; ZAHIR, Z.A.; NAVEED, M.; NAWAZ, S. Mitigation of salinityinduced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol, v. 63, n. 1, p. 225–232, 2013. NAVARRO‐TORRE, S.; BARCIA‐PIEDRAS, J. M.; MATEOS‐NARANJO, E.; REDONDO‐GÓMEZ, S.; CAMACHO, M.; CAVIEDES, M. A.; RODRÍGUEZ‐LLORENTE, I. D. Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biology, v. 19, n. 2, p. 249-256, 2017. NYBROE, O.; SØRENSEN, J. Production of cyclic lipopeptides by fluorescent pseudomonads. In: Pseudomonas. Springer, Boston, MA, p. 147-172, 2004. OREN, A. Bioenergetics aspects of halophilism. Microbiol. Mol. Biol. Rev. v.63, p.334‐348,1999. OREN, A. The bioenergetic basis for the metabolic diversity at increasing salt concentrations: Implication for the function in of salt lake ecosystems. Hydrobiologia. v.466. p.61-72, 2001. OREN, A. Diversity of halophilic microorganisms: environments,phylogeny,physiology, and applications. J. of Indust. Microbiol. & Biotechno. v.28, p.56-63. 2002. OREN, Aharon. Halophilic microorganisms and their environments. Springer Science & Business Media, 2006. OREN, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems, v.4, n. 1, p. 1-13, 2008. OREN, A. Thermodynamic limits to microbial life at high salt concentrations. Environmental microbiology, v. 13, n. 8, p. 1908-1923, 2011. OREN, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Frontiers in microbiology, v. 4, p. 315, 2013. ORHAN, F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). brazilian journal of microbiology, v. 47, p. 621-627, 2016. OZAWA, T., WU, J.; FUJII, S. Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Sci. Plant Nutr., v. 53, p. 12-16, 2007. PEREIRA, J.R. Solos salinos e sódicos. In: Reunião Brasileira de Fertilidade do Solo, 15. Campinas. Acidez e calagem no Brasil. Campinas: Sociedade Brasileira de Ciência do Solo, 1983, p.129-143, 1982. PALLERONI N. J. Genus I. Pseudomonas Migula 1894, 237AL. In: Bergey’s Manual of Systematic Bacteriology, 2nd edn., v.2, part B, p.323–379.New York: Springer. 2005. PELLEGRINI, J. A. C. Caracterização da planície hipersalina (Apicum) associada a um bosque de mangue em Guaratiba, Baía de Sepetiba, Rio de Janeiro - RJ. 2000. Dissertação (Mestrado em Oceanografia Biológica) - Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 2000. PRIMO, P.B.S.; BIZERRIL, C.R.S.F. Lagoa de Araruama. Perfil ambiental do maior ecossistema lagunar hipersalino do mundo. 1a ed. Rio de Janeiro, SEMADS, p. 264, 2002. PRISCO, J.T.; FILHO, E.G. MIRANDA, R.S. Physiology and biochemistry of plants growing under salt stress. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. QADIR, M.; OSTER, J. D. Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrig. Sci. v.21, p.91–101, 2002. QADIR, M.; OSTER, J. D.; SCHUBERT, S.; NOBLE, A. D.; SAHRAWAT, K. L. Phytoremediations of sodic and salinesodic soils. Adv. Agron., v.96, p.197-247, 2007. QUESADA, E.; VENTOSA, A. RODRIGUEZ-VALERAF; RAMOS-CORMENZANAA. Types and properties of some bacteria isolated from hypersaline soils. Journal of Applied Bacteriology v.53, p.155-161. 1982. QIN, S.; FENG, W. W.; ZHANG, Y. J.; WANG, T. T.; XIONG, Y. W.; XING, K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and environmental microbiology, v. 84, n. 19, p. e01533-18, 2018. QIN, Y.; DRUZHININA, I. S.; PAN, X.; YUAN, Z. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnology Advances, v. 34, n. 7, p. 1245-1259, 2016. RAHI, PRAVEEN; PRAKASH, OM; SHOUCHE, YOGESH S. Matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Frontiers in microbiology, v. 7, p.1359, 2016. RAGHAVAN, C.; ONG, E. K.; DALLING, M. J.; STEVENSON, T. W. Regulation of genes associated with auxin, ethylene and ABA pathways by 2, 4-dichlorophenoxyacetic acid in Arabidopsis. Functional & integrative genomics, v. 6, n. 1, p. 60-70, 2006. RAPOSO, D.; CLEMENTE, I.; FIGUEIREDO, M.; VILAR, A.; LORINI, M. L.; FRONTALINI, F.; LAUT, L. Benthic foraminiferal and organic matter compounds as proxies of environmental quality in a tropical coastal lagoon: the Itaipu lagoon (Brazil). Marine Pollution Bulletin, v. 129, n. 1, p. 114-125. 2018. RAVINE, T.J. Bacillus: An Environmental Contaminant or Misunderstood Pathogen? J Bacteriol Mycol.; v. 6 n. 6, p. 1117. 2019. RYAN, M. P.; PEMBROKE, J. T. The genus Ochrobactrum as major opportunistic pathogens. Microorganisms, v. 8, n. 11, p. 1797, 2020. RAZZAGHI, K. B.; ALIKHANI, H.A.; ETESAMI, H.; KHOSHKHOLGH-SIMA, N.A. Improved growth and salinity tolerance of the halophyte Salicornia sp. by co–inoculation with endophytic and rhizosphere bacteria. Appl Soil Ecol v.138, p.160–170. 2019. RIBEIRO, M. R. Origem e Classificação dos Solos Afetados por Sais. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. RICHARDS. USSL STAFF - United States Salinity Laboratory Staff. Diagnosis and improvement of saline and alkali soils. Washington: U.S. 160p. Handbook 60. Department of Agriculture, 1954. RIVERO, M.; ALONSO, J.; RAMÓN, M.F. Infections due to Cellulosimicrobium species: case report and literature review. BMC Infect Dis v. 19, p. 816, 2019. ROBBINS, C. W. Sodic calcareous soil reclamation as affected by different amendments and crops. Agron. J., v.78, p.916–920, 1986. ROOHI, A.; AHMED, I.; IQBAL, M.; JAMIL, M. Preliminary isolation and characterization of halotolerant and halophilic bacteria from salt mines of Karak, Pakistan. Pak J Bot, v.44, n. 1, p.365-370, 2012. ROTHSCHILD LJ, MANCINELLI RL. Life in extreme environments. Nature, v.409, p.1092–101, 2001. RUPPEL, S., FRANKEN, P., AND WITZEL, K. Properties of the halophyte microbiome and their implications for plant salt tolerance. Funct. Plant Biol., v. 40, p. 940–951, 2013. RUSSELL, N. J. Adaptive modifications in membranes of halotolerant and halophilic microorganisms. J. Bioenerg. Biomembr. v.21, p.93–113, 1989. RYAN, M.P.; PEMBROKE, J.T. The Genus Ochrobactrum as Major Opportunistic Pathogens. Microorganisms, v. 8, n. 11, p. 1797, 2020. RYU, H.; CHO, Y. G. Plant hormones in salt stress tolerance. Journal of Plant Biology, v. 58, n 3, p. 147-155, 2015. SALT, D. E.; SMITH, R. D.; RASKIN, I. Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol. v.49, p.643–668, 1998. SANCHEZ-PORRO, C.; RAFAEL, R.; SOTO-RAMIREZ, N.; MÁRQUEZ, M. C.; MONTALVO-RODRIGUEZ, R.; VENTOSA, A. Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov. International Journal of Systematic and Evolutionary Microbiology, v. 59, n. 2, p. 397-405, 2009. SANDHYA, M. V. S. E.; DIVYA, P.; KUMAR, A. P.; KARTHIK, R.; YAZEIN, E. Isolation of antibiotic producing bacteria from soil. International Journal of Applied Biology and Pharmaceutical Technology, v. 1, n. 6, p. 46-51, 2012. SANTOS, H. G.; JACOMINE, P. K. T.; ANJOS, L. H. C.; OLIVEIRA, V. A.; LUMBRERAS, J. F.; COELHO, M. R., ALMEIDA, J. A. de; ARAUJO FILHO, J. C. de; OLIVEIRA, J. B. de; CUNHA, T. J. F. Sistema Brasileiro de Classificação dos Solos. Brasília, DF: Embrapa, 2018. SANTOS, R.G.; HURTADO, R.; GOMES, L.G.R.; PROFETA, R.; RIFICI, C.; ATTILI, A.R.; SPIER, S.J.; MAZZULLO, G.; MORAIS-RODRIGUES, F.; GOMIDE, A.C.P.; BRENIG, B.; GALA-GARCÍA, A.; CUTERI, V.; CASTRO, T.L.P.; GHOSH, P.; SEYFFERT, N.; AZEVEDO, V. Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene, v. 741, p. 144566, 2020. SANTOS, H.; DA COSTA, M.S. Compatible solutes of organisms that live in hot saline environments. Environ. Microbiolo., v.4, p.501 –509, 2002. SARKAR, A.; GHOSH, P. K.; PRAMANIK, K.; MITRA, S.; SOREN, T.; PANDEY, S.; MAITI, T. K. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in microbiology, v. 169, n. 1, p. 20-32, 2018. SAXENA, S. C.; KAUR, H.; VERMA P.; PETLA, B. P.; ANDUGULA, V. R.; MAJEE, M. Osmoprotectants: potential for crop improvement under adverse conditions. In: Tuteja, N.; Gill, S. S. (ed.) Plant acclimation to environmental stress. New York: Springer. p.197-232, 2013. SAXENA, ANIL; MURUGAN, KUMAR; CHAKDAR, HILLOL; ANUROOPA, N; BAGYARAJ, D. Bacillus species in soil as a natural resource for plant health and nutrition. Journal of Applied Microbiology., v. 128, n. 6, p. 1583-1594, 2020. SCHAEFFER-NOVELLI, Y.; CINTRÓN-MOLERO, G.; SOARES, M. L. G.; DE-ROSA, M. T. Brazilian mangroves. Aquatic Ecossystem Health and Manegement, v.3, p.561-570, 2000. SHAHAROONA, B.; ARSHAD, M.; ZAHIR, Z. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) grown under axenic conditions and on nodulation in mungbean (Vigna radiata L.). Letters in applied microbiology., v. 42, p.155-9, 2006. SHAHID, S.A.; ZAMAN, M.; HENG, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland. p. 43–53, 2018. SHAHID, M.; AHMED, T.; NOMAN, M.; JAVED, M. T.; JAVED, M. R.; TAHIR, M.; SHAH, S. M. Non-pathogenic Staphylococcus strains augmented the maize growth through oxidative stress management and nutrient supply under induced salt stress. Annals of Microbiology, v. 69, n. 7, p. 727-739, 2019. SHARMA, S.; KULKARNI, J.; JHA, B. Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in microbiology, v. 7, p. 1600, 2016. SHIH, C. J.; CHEN, S. C.; WENG, C. Y.; LAI, M. C.; YANG, Y. L. Rapid identification of haloarchaea and methanoarchaea using the matrix assisted laser desorption/ionization time-of-flight mass spectrometry. Scientific reports, v.5, n. 1, p.1-11, 2015. SHI, H. Z; ISHITANI, M.; KIM, C. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the national academy of sciences, v. 97 n. 12, p. 6896-6901, 2000. SHI, W.; TAKANO, T.; LIU, S. Isolation and characterization of novel bacterial taxa from extreme alkali-saline soil. World Journal of Microbiology and Biotechnology, v. 28, n. 5, p. 2147-2157, 2012. SILVA, M.A.M; SANTOS, C.L. Halitas das Salinas de Cabo Frio: reconhecimento das morfologias como subsídios para o entendimento das halitas pretéritas. Boletim de Geociências da Petrobrás, v.11, p.74-83, 1997. SINGHAL, N.; KUMAR, M.; KANAUJIA, P. K.; VIRDI, J. S. MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Frontiers in microbiology, v.6, p.791, 2015. SINGH, M.; KUMAR, J.; SINGH, S.; SINGH, V. P.; PRASAD, S. M. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology, v. 14, n. 3, p. 407-426, 2015. SINGH, P.; JAIN, K.; DESAI, C.; TIWARI, O.; MADAMWAR, D. “Microbial community dynamics of extremophiles/extreme environment”. Microbial Diversity in the Genomic Era, eds S. Das and H. R. Dash (San Dieg, CA: Academic Press), p.323–332, 2019. SMIRNOFF, N.; CUMBES, Q. J. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, v. 28, n. 4, p. 1057-1060, 1989. SOARES, M. L. G. Estrutura vegetal e grau de perturbação dos manguezais da Lagoa da Tijuca, Rio de Janeiro, RJ, Brasil. Revista Brasileira de Biologia, v. 59, p. 503-515, 1999. SORTY, A. M.; MEENA, K. K.; CHOUDHARY, K.; BITLA, U. M.; MINHAS, P. S.; KRISHNANI, K. K. Effect of plant growth promoting bacteria associated with halophytic weed (Psoralea corylifolia L) on germination and seedling growth of wheat under saline conditions. Applied biochemistry and biotechnology, v. 180, n.5, p. 872-882, 2016. STEUDLE, E.; PETERSON, C. A. How does water get through roots? Journal of experimental Botany, v. 49, n. 322, p. 775-788, 1998. SPAEPEN, S.; VANDERLEYDEN, J. Auxin and Plant-Microbe Interactions. Cold Spring Harbor perspectives in biology. v. 3, n. 4, p. a001438, 2011. SPARK, D. The chemistry of saline and sodic soils. In: Environmental Soil Chemistry. 2nd ed. Academic Press. London, 2003. STREJCEK, M.; SMRHOVA, T.; JUNKOVA, P.; UHLIK, O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Frontiers in microbiology, v.9, p.1294, 2018. SULTANA, S.; PAUL, S.C.; PARVEEN, S.; ALAM, S.; RAHMAN, N.; JANNAT, B.; KARIM, M.M. Isolation and identification of salt-tolerant plant-growth-promoting rhizobacteria and their application for rice cultivation under salt stress. Canadian journal of microbiology, v. 66, n. 2, p. 144-160,2020. SUN, JI-QUAN; XU, LIAN; WU, XIAO-LEI. Lysinibacillus alkalisoli sp. Nov., isolated from saline-alkaline soil. International Journal of Systematic and Evolutionary Microbiology. 2016. SUTTON, G. C.; RUSSELL N. J.; QUINN P. J. The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from moderately halophilic eubacterium. Biochim. Biophys. Acta v.1061, p.235–246, 1991. SZABOLCS, I. Review of research on salt affected soils. Paris: UNESCO. p.137, 1979. SZYMAŃSKA, S.; PŁOCINICZAK, T.; PIOTROWSKA-SEGET, Z.; ZŁOCH, M.; RUPPEL, S.; HRYNKIEWICZ, K. Metabolic potential and community structure of endophytic and rhizosphere bacteria associated with the roots of the halophyte Aster tripolium L. Microbiological research, v.182, p.68-79, 2016. TAN, K.Z; RADZIAH O.; HALIMI, M.S.; KHAIRUDDIN, A.R.; HABIB, S.H.; SHAMSUDDIN, Z.H. Isolation and characterization of rhizobia and plant growth-promoting rhizobacteria and their effects on growth of rice seedlings. American Journal of Agricultural and Biological Sciences, v. 9, n. 3, p. 342-360, 2014. TANJI, K.K. The nature and extent of agricultural salinity problems. In: TANJI K.K. (ed.), Agricultural salinity assessment and management. ASCE Manual Reports on Engineering Practices, v.71, p.1–41, 1990. TEIXEIRA, P. C.; DONAGEMMA, G. K.; FONTANA, A.; TEIXEIRA, W. G. Manual de métodos de análise de solo. Brasília: Embrapa, p. 573, 2017. TITO, T. M., RODRIGUES, N. D. M. B., COELHO, S. M. O., SOUZA, M. M. S., ZONTA, E.; COELHO, I. S. Choice of DNA extraction protocols from Gram negative and positive bacteria and directly from the soil. Afr J Microbiol Res, v. 9, n. 12, p.863-871, 2015. TÜRKAN, I.; DEMIRAL, T. Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, v. 67, n. 1, p. 2-9, 2009. UHLIK, O.; STREJCEK, M.; JUNKOVA, P.; SANDA, M.; HROUDOVA, M.; VLCEK, C.; MACEK, T. Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry-and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Applied and environmental microbiology, v.77, n. 19, p. 6858-6866, 2011. VACHERON, J.; DESBROSSES, G.; BOUFFAUD, M. L.; TOURAINE, B.; MOËNNE-LOCCOZ, Y.; MULLER, D.; PRIGENT-COMBARET, C. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in plant science, v. 4, p. 356, 2013. VENTOSA, A.; NIETO, J.J.; OREN, A. Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev., v. 62, p.504-544, 1998. VENTOSA, A.; ARAHAL, D.R. Halophily (halophilism and halophilic microorganisms). In: Gerday C, Glansdorff N (eds) Extremophiles. EOLSS, Oxford, United Kingdom. 2009. VENTOSA A.; MELLADO E.; SANCHEZ-PORRO C.; MARQUEZ M.C. Halophilic and Halotolerant Micro-Organisms from Soils. In: Dion P., Nautiyal C.S. (eds) Microbiology of Extreme Soils. Soil Biology, vol 13. Springer, Berlin, Heidelberg. 2008. VREELAND, R. H. Mechanisms of halotolerance in microorganisms. Crit. Rev. Microbiol. v.14, p.311–356, 1987. WANG, M.; XIA, G. The landscape of molecular mechanisms for salt tolerance in wheat. The Crop Journal, v. 6, n. 1, p. 42-47, 2018. WEISBURG, W. G.; BARNS, S. M.; PELLETIER, D. A.; LANE, D. J. 16S ribosomal DNA amplification for phylogenetic study. Journal of bacteriology, v. 173, n. 2, p. 697-703, 1991. WEIHUI, W.; YONGXIN J.; FANG, B.; SHOUGUANG, J. Chapter 41 - Pseudomonas aeruginosa, Editor(s): Yi-Wei T.; Max S.; Dongyou L.; Ian P.; Joseph S. Molecular Medical Microbiology (Second Edition), Academic Press, p. 753-767, 2016. WIJEWARDANA, C.; HOCK, M.; HENRY, B.; REDDY, K. R. Screening corn hybrids for cold tolerance using morphological traits for early‐season seeding. Crop Science, v. 55, n. 2, p. 851-867, 2015. XIE, J. B.; ZHANG, L. H.; ZHOU, Y. G.; LIU, H. C.; CHEN, S. F. Paenibacillus taohuashanense sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of the root of Caragana kansuensis Pojark. Antonie Van Leeuwenhoek, v. 102, n. 4, p. 735-741, 2012. YAMAGUCHI, T.; HAMAMOTO, S.; UOZUMI, N. Sodium transport system in plant cells. Frontiers in plant science, v. 4, p. 410, 2013. YEOMANS, J. C.; BREMNER, J. M. A rapid and precise method for routine determination of organic carbon in soil. Communications in soil science and plant analysis, v. 19, n. 13, p. 1467-1476, 1988. YOON, J. H., KANG, S. J., LEE, J. S., & OH, T. K. Brevundimonas terrae sp. nov., isolated from an alkaline soil in Korea. International journal of systematic and evolutionary microbiology, v. 56, n. 12, p. 2915-2919, 2006. YOON, J. H.; KANG, S. J.; SCHUMANN, P.; OH, T. K. Cellulosimicrobium terreum sp. nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, v. 57, n. 11, p. 2493-2497, 2007. YUAN, F.; LYU, M. J. A.; LENG, B. Y.; ZHENG, G. Y.; FENG, Z. T.; LI, P. H.; WANG, B. S. Comparative transcriptome analysis of developmental stages of the L. imonium bicolor leaf generates insights into salt gland differentiation. Plant, cell & environment, v. 38, n. 8, p. 1637-1657, 2015. YUAN, F.; LENG, B.; WANG, B. Progress in studying salt secretion from the salt glands in recretohalophytes: how do plants secrete salt? Frontiers in Plant Science, v. 7, p. 977, 2016. ZAFRILLA, B.; MARTÍNEZ-ESPINOSA, R.M.; ALONSO, M.A.; BONETE, M.J. Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopó Valley, Spain. Saline Syst. v.13, n.6, p.10, 2010. ZHAO, S.; ZHOU, N.; ZHAO, Z. Y.; ZHANG, K.; WU, G. H.; TIAN, C. Y. Isolation of endophytic plant growth-promoting bacteria associated with the halophyte Salicornia europaea and evaluation of their promoting activity under salt stress. Current microbiology, v. 73, n. 4, p. 574-581, 2016. ZONTA, E.; BRASIL, F.; ROCHA, J.; SANTOS, L.; MARTINS FERREIRA, L.; TAVARES, O.; PIMENTEL, R.; ROSSIELLO, R.; GOI, S. O sistema radicular e suas interações com o ambiente edáfico. In book: NUTRIÇÃO MINERAL DE PLANTAS (pp.47-123) Publisher: SOCIEDADE BRASILEIRA DE CICÊNCIA DO SOLO. 2018.https://tede.ufrrj.br/retrieve/71119/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf.jpghttps://tede.ufrrj.br/jspui/handle/jspui/6081Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2022-10-18T17:54:16Z No. of bitstreams: 1 2021 - Júlia Ferreira Xavier.pdf: 1751247 bytes, checksum: ad39303a61045be0a5da3f507089b30a (MD5)Made available in DSpace on 2022-10-18T17:54:16Z (GMT). No. of bitstreams: 1 2021 - Júlia Ferreira Xavier.pdf: 1751247 bytes, checksum: ad39303a61045be0a5da3f507089b30a (MD5) Previous issue date: 2021-10-08info:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2021 - Júlia Ferreira Xavier.pdf.jpgGenerated Thumbnailimage/jpeg1943https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/1/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf.jpgcc73c4c239a4c332d642ba1e7c7a9fb2MD51TEXT2021 - Júlia Ferreira Xavier.pdf.txtExtracted Texttext/plain165364https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/2/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf.txt3100888ed0cd3eeb4692fafb274c5c04MD52ORIGINAL2021 - Júlia Ferreira Xavier.pdfapplication/pdf1751247https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/3/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdfad39303a61045be0a5da3f507089b30aMD53LICENSElicense.txttext/plain2089https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/4/license.txt7b5ba3d2445355f386edab96125d42b7MD5420.500.14407/105852023-12-21 22:39:46.774oai:rima.ufrrj.br:20.500.14407/10585Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2023-12-22T01:39:46Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false |
dc.title.por.fl_str_mv |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
dc.title.alternative.eng.fl_str_mv |
Isolation and characterization of bacteria associated with the rhizosphere of halophyte plants |
title |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
spellingShingle |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas Xavier, Julia Ferreira Arroz Bactéria halotolerante Promoção de crescimento vegetal Solos salinos Rice Halotolerant bacteria Plant growth promotion Saline soils Agronomia |
title_short |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
title_full |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
title_fullStr |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
title_full_unstemmed |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
title_sort |
Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas |
author |
Xavier, Julia Ferreira |
author_facet |
Xavier, Julia Ferreira |
author_role |
author |
dc.contributor.author.fl_str_mv |
Xavier, Julia Ferreira |
dc.contributor.advisor1.fl_str_mv |
Coelho, Irene da Silva |
dc.contributor.advisor1ID.fl_str_mv |
044.355.796-93 |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2191695584157582 |
dc.contributor.advisor-co1.fl_str_mv |
Zonta, Everaldo |
dc.contributor.referee1.fl_str_mv |
Coelho, Irene da Silva |
dc.contributor.referee2.fl_str_mv |
Berbara, Ricardo Luís Louro |
dc.contributor.referee3.fl_str_mv |
Rouws, Luc Felicianus Marie |
dc.contributor.authorID.fl_str_mv |
https://orcid.org/0000-0002-8609-1825 154.346.717-24 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0947454764872786 |
contributor_str_mv |
Coelho, Irene da Silva Zonta, Everaldo Coelho, Irene da Silva Berbara, Ricardo Luís Louro Rouws, Luc Felicianus Marie |
dc.subject.por.fl_str_mv |
Arroz Bactéria halotolerante Promoção de crescimento vegetal Solos salinos |
topic |
Arroz Bactéria halotolerante Promoção de crescimento vegetal Solos salinos Rice Halotolerant bacteria Plant growth promotion Saline soils Agronomia |
dc.subject.eng.fl_str_mv |
Rice Halotolerant bacteria Plant growth promotion Saline soils |
dc.subject.cnpq.fl_str_mv |
Agronomia |
description |
A maioria das espécies vegetais, principalmente culturas agrícolas, não toleram altas concentrações de sais. No entanto, plantas do grupo halófitas são adaptadas a solos salinos. Na rizosfera das plantas halófitas ocorrem associações com microrganismos que auxiliam o crescimento vegetal aumentando a resistência ao estresse salino. Desse modo, o objetivo do trabalho foi isolar e identificar bactérias da rizosfera de plantas halófitas de diferentes ambientes salinos no estado do Rio de Janeiro e avaliar sua capacidade de promoção de germinação e crescimento de sementes de arroz. Foram coletadas amostras de solos rizoféricos das plantas halófitas Salicornia gaudicahudiana, Salicornia fruticosa, Blutaparon portulacoides, Sporobolus virginucus e Cyperus ligularis encontradas em ambientes costeiros, como mangue e salinas. Para o isolamento das bactérias foram utilizados meios de cultura acrescidos de 1%, 5%, 15%, 20% e 25% de NaCl. As bactérias isoladas foram classificadas de acordo o crescimento em diferentes concentrações NaCl e foram identificadas pela técnica Matrix Assisted Laser Desorption Ionization Time Of Flight/ Mass Spectrometry (MALDI-TOF MS) e pelo sequenciamento do gene rrs que codifica o rRNA 16S. Foi avaliado o potencial de promoção de crescimento do arroz na concentração de 50 mM e 200 mM de NaCl de nove estirpes de bactérias halotolerantes pertencentes aos gêneros Pseudomonas e Bacillus. Foram analisados a porcentagem de germinação, o comprimento total da raiz, volume da raiz, superfície de contato radicular, número de ápices e comprimento total da parte aérea. Foram isoladas um total de 315 bactérias classificadas como não halofílicas (99/315), halotolerantes (171/315) e halofílicas moderadas (32/315). Destas, 286 foram analisadas pela técnica proteômica MALDI-TOF MS, sendo 57% (165/286) identificadas em nível seguro para gênero. Dentre as bactérias não identificadas pela técnica MALDI TOF-MS, foram selecionados isolados halotolerantes e halofílicos moderados para a identificação pelo sequenciamento do gene rrs. A inferência do gênero foi possível em 97,7% (42/43) dos isolados. Os gêneros mais abundantes identificados foram Pseudomonas, Ochrobactrum e Bacillus. Na concentração de 50 mM de NaCl, que se mostrou ideal para a germinação das sementes de arroz, os isolados P51 e P164, relacionadas ao gênero Pseudomonas, proporcionaram aumento da maioria dos parâmetros analisados em comparação ao tratamento não inoculado. Nessa concentração, os isolados B231, B67 e B143, pertencentes ao gênero Bacillus, promoveram alongamento radicular e maior número de ápices. Já a 200 mM, concentração inibitória do processo germinativo, os isolados B231 e B294, pertencentes ao gênero Bacillus, proporcionaram aumento no comprimento total das raízes em comparação ao tratamento não inoculado. Estes resultados confirmam que a rizosfera de plantas halófitas representa um ambiente promissor para o isolamento de bactérias halotolerantes e halofílicas, e que isolados de Pseudomonas e Bacillus halolerantes podem promover o crescimento de plantas de arroz na presença ou ausência de estresse salino. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-10-08 |
dc.date.accessioned.fl_str_mv |
2023-12-22T01:39:46Z |
dc.date.available.fl_str_mv |
2023-12-22T01:39:46Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
XAVIER, Júlia Ferreira. Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas. 2021. 55 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, RJ, 2021. |
dc.identifier.uri.fl_str_mv |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10585 |
identifier_str_mv |
XAVIER, Júlia Ferreira. Isolamento e caracterização de bactérias associadas a rizosfera de plantas halófitas. 2021. 55 f. Dissertação (Mestrado em Agronomia - Ciência do Solo) - Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, RJ, 2021. |
url |
https://rima.ufrrj.br/jspui/handle/20.500.14407/10585 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.references.por.fl_str_mv |
AHMAD, P.; SHARMA, S. Salt stress and phyto-biochemical responses of plants. Plant Soil Environ., v. 54, n. 3, p. 89–99, 2008. ALBUQUERQUE, A. G. B. M.; FERREIRA, T. O.; NÓBREGA, G. N.; ROMERO, R. E.; JÚNIOR, V. S.; MEIRELES, A. J. A.; OTERO, X. L. Soil genesis on hypersaline tidal flats (apicum ecosystem) in a tropical semi-arid estuary (Ceará, Brazil). Soil Research, v. 52, n. 2, p. 140-154, 2014. ALTSCHUL, S. F.; MADDEN, T. L.; SCHÄFFER, A. A.; ZHANG, J.; ZHANG, Z.; MILLER, W.; LIPMAN, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, v. 25, n. 17, p. 3389–3402, 1997. AMOOZEGAR, M. A.; SHAHINPEI, A.; SEPAHY, A. A.; MAKHDOUMI-KAKHKI, A.; SEYEDMAHDI, S. S.; SCHUMANN, P.; VENTOSA, A. Pseudomonas salegens sp. nov., a halophilic member of the genus Pseudomonas isolated from a wetland. International journal of systematic and evolutionary microbiology, v. 64, n. 10, p. 3565-3570, 2014. AMOOZEGAR, M. A.; SAFARPOUR, A.; NOGHABI, K. A.; BAKHTIARY, T.; VENTOSA, A. Halophiles and their vast potential in biofuel production. Frontiers in microbiology, v. 10, p. 1895, 2019. ANZAI Y.; KIM H.; PARK J.Y.; WAKABAYASHI H.; OYAIZU H. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol., 2000. ARAHAL, D.; VENTOSA, A. Moderately Halophilic and Halotolerant Species of Bacillus and Related Genera. In book: Applications and Systematics of Bacillus and Relatives, p. 83 – 99. 2008. ARGANDOÑA, M.; FERNÁNDEZ-CARAZO, R.; LLAMAS, I.; MARTÍNEZ-CHECA, F.; CABA, J. M.; QUESADA, E. The moderately halophilic bacterium Halomonas maura is a free living diazotroph. FEMS Microbiol. Lett., v. 244, p. 69-74, 2005. ARORA, S.; PATEL, P. N.; VANZA, M. J.; RAO, G. G. Isolation and characterization of endophytic bacteria colonizing halophyte and other salt tolerant plant species from coastal Gujarat. African Journal of Microbiology Research, v. 8, n. 17, p. 1779-1788, 2014. ARZANI, A. Improving salinity tolerance in crop plants: A biotechnological view. In Vitro Cell Developmental Biology - Plant, v. 44, p. 373-383, 2008. ASCH, F.; WOPEREIS, M. C. S. Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. Field Crops Research, v. 70, n. 2, p. 127-137, 2001. BAL, H.; ADHYA, T. Diversity of plant growth promoting rhizobacteria (PGPR) in rice soils of Odisha. Plant Science Research, v. 34, p. 7-33, 2012. BANGASH, A.; AHMED, I.; ABBAS, S.; KUDO, T.; SHAHZAD, A.; FUJIWARA, T.; OHKUMA, M. Kushneria pakistanensis sp. nov., a novel moderately halophilic bacterium isolated from rhizosphere of a plant (Saccharum spontaneum) growing in salt mines of the Karak area in Pakistan. Antonie van Leeuwenhoek, v. 107, n. 4, p. 991-1000, 2015. BATHE, S.; ACHOUAK, W.; HARTMANN, A.; HEULIN, T., SCHLOTER, M.; LEBUHN, M. Genetic and phenotypic microdiversity of Ochrobactrum spp. FEMS microbiology ecology, v. 56, n. 2, p. 272-280, 2006. BARROS, M. F. C.; FONTES, M. P. F.; RUIZ, H. A.; ALVAREZ, V. V. H. Recuperação de solos afetados por sais no Nordeste do Brasil pela aplicação de gesso de jazida e calcário. R. Bras. Eng. Agríc. Ambiental, v. 8, n. 1, p. 59-64, 2004. BASHAN, Y.; MORENO, M.; TROYO, E. Growth promotion of the seawater irrigated oilseed halophyte Salicornia bigelovii inoculated with mangrove rhizosphere bacteria and halotolerant Azospirillum spp. Biol. Fertil. Soils, v. 32, p. 265–272, 2000. BASKAR, B.; PRABAKARAN, P. Characterization of mangrove associated nitrogen fixing halophilic bacterium Paenibacillus sp. International Journal of Current Research, v. 3, p. 065-067, 2011. BERG, G. Plant microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol, v. 84, p. 11–8. 2009. BLUMWALD, E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol., v. 12, p. 431–434, 2000. BOUKHATEM, Z. F.; DOMERGUE, O.; BEKKI, A.; MERABET, C.; SEKKOUR, S.; BOUAZZA, F.; GALIANA, A. Symbiotic characterization and diversity of rhizobia associated with native and introduced acacias in arid and semi-arid regions in Algeria. FEMS microbiology ecology, v. 80, n. 3, p. 534-547, 2012. BRECKLE, S. W. How do halophytes overcome salinity? Biology of salt tolerant plants, v. 23, p. 199-203, 1995. BUSSE, H. J.; WIESER, M. P. Glutamicibacter. Bergey's Manual of Systematics of Archaea and Bacteria. 2015. CACHORRO, P.; OLMOS, E.; ORTIZ, A.; CERDÁ, A. Salinity-induced changes in the structure and ultrastructure of bean root cells. Biologia Plantarum, v. 37, n. 2, p. 273-283, 1995. CALZADA, U. C.; ARVIZU, H. I.; CRUZ, M. J. A., RAMOS, L. M. A.; PEREZ, C.J., RIVERA, Z. R. L.; CAMPOS-GUILLEN, J. Identification by MALDI-TOF mass spectrometry of mercury-resistant bacteria associated with the rhizosphere of an apple orchard. Geomicrobiology Journal, v. 34, n. 2, p. 176-182, 2017. CARVALHO, A. S. da R. Restinga de Massambaba: vegetação, flora, propagação e usos. Vertente Edições, Rio de Janeiro. 2018. CARVALHO FILHO, A. de; LUMBRERAS, J. F.; DOS SANTOS, R. D. Os solos do Estado do Rio de Janeiro. Embrapa Solos-Outras publicações científicas (ALICE), 2000. COMPANT S.; DUFFY B.; NOWAK J.; CLEMENT C.; EA BI. Use of plant growth-promoting bacterial for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol, v. 71, p. 4951–4955, 2005. CORDEIRO, G. G.; BARRETO, A. N.; CARVAJAL, A. C. N. Levantamento das condições de salinidade e sodicidade do Projeto de irrigação de São Gonçalo (2a parte). Petrolina: EMBRAPA-CPATSA, p. 57, 1988. COSTA, C. S. B.; HERRERA, O. B. Halophytic life in Brazilian salt flats: Biodiversity, uses and threats. In: Sabkha ecosystems. Springer, Cham, p. 11-27, 2016. CROSSAY, T.; ANTHEAUME, C.; REDECKER, D.; BON, L.; CHEDRI, N.; RICHERT, C.; AMIR, H. New method for the identification of arbuscular mycorrhizal fungi by proteomic-based biotyping of spores using MALDI-TOF-MS. Scientific reports, v. 7, n. 1, p. 1-16, 2017. DA SILVA, L. H.; FEDER, F.; DE OLIVEIRA DELFINO, D.; DOS SANTOS LOPES, F. A. Análise da composição cianobacteriana das esteiras pustulares em salina, Araruama, Rio de Janeiro. Anuário do Instituto de Geociências, v.30, n. 1, p. 175-180, 2007. DA SILVA, R. E.; SANTOS, S. N.; TAKETANI, R. G.; MELO, I. S. de. Rizobactérias halotolerantes/halofílicas isoladas de plantas halofílicas pioneiras de salinas do semiárido brasileiro. In: Embrapa Meio Ambiente-Resumo em anais de congresso (ALICE). In: CONGRESSO BRASILEIRO DE MICROBIOLOGIA, 26., 2011, Foz do Iguaçu. Anais... Foz do Iguaçu: Sociedade Brasileira de Microbiologia, 2011. Resumo 1274-2., 2011. DASSARMA, S.; ARORA, P. Genetic analysis of the gas vesicle gene cluster in haloarchaea. FEMS Microbiolo. Lett., v.153, p.1–10, 1997. DAVIN-REGLI, A.; LAVIGNE, J. P.; PAGÈS, J. M. Enterobacter spp.: Update on Taxonomy, Clinical Aspects, and Emerging Antimicrobial Resistance. Clinical microbiology reviews, v. 32, n. 4, p. e00002-19, 2019. DENET, E.; VASSELON, V.; BURDIN, B.; NAZARET, S.; FAVRE-BONTÉ, S. Survival and growth of Stenotrophomonas maltophilia in free-living amoebae (FLA) and bacterial virulence properties. PloS one, v. 13, n. 2, 2018. DESLANDES, R.S.; REGALLO, F.L.S.; MULLER, J.E.P. Mapeamento do uso e ocupação do solo atual pela atividade salineira em praia seca, distrito de araruama, RJ. X Seminário de Pesquisa da Estácio. 2000. DESALE, P.; PATEL, B.; SINGH, S.; MALHOTRA, A.; NAWANI, N. Plant growth promoting properties of Halobacillus sp. and Halomonas sp. in presence of salinity and heavy metals. Journal of basic microbiology, v. 54, n. 8, p. 781-791, 2014. DIAS, N.S.; BLANCO F.F.; SOUZA E.R.; FERREIRA J.F.S.; NETO, O.N.S.; QUEIROZ, I.S.R. Efeitos dos sais na planta e tolerância das culturas à salinidade. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. DÍAZ-CÁRDENAS, C.; CANTILLO, A.; ROJAS, L. Y.; SANDOVAL, T.; FIORENTINO, S.; ROBLES, J.; BAENA, S. Microbial diversity of saline environments: searching for cytotoxic activities. AMB Express, v. 7, n. 1, p. 1-16, 2017. DÖBEREINER, J.; ANDRADE, V. D. O.; BALDANI, V. L. D. Protocolos para preparo de meios de cultura da Embrapa Agrobiologia. Embrapa Agrobiologia-Documentos (INFOTECA-E). 1999. DODD, I. C.; PÉREZ-ALFOCEA, F. Microbial amelioration of crop salinity stress. Journal of Experimental Botany, v. 63, n. 9, p. 3415-3428, 2012. DOLKAR, D.; DOLKAR, P.; ANGMO, S.; CHAURASIA, O. P.; STOBDAN, T. Stress tolerance and plant growth promotion potential of Enterobacter ludwigii PS1 isolated from Seabuckthorn rhizosphere. Biocatalysis and Agricultural Biotechnology, v.14, p.438-443. 2018. DRIDI B.; RAOULT D.; DRANCOURT M. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of Archaea: towards the universal identification of living organisms. Apmis, v. 120, n. 2, p. 85-91, 2012. DÜRR, R.; NEUMANN, A.; VIELHAUER, O.; ALTENBUCHNER, J.; BURTON, S. G.; COWAN, D. A.; SYLDATK, C. Genes responsible for hydantoin degradation of a halophilic Ochrobactrum sp. G21 and Delftia sp. I24—New insight into relation of d-hydantoinases and dihydropyrimidinases. Journal of Molecular Catalysis B: Enzymatic, v.52, p.2-12, 2008. EGAMBERDIEVA D.; KAMILOVA F.; VALIDOV S.; GAFUROVA L.; KUCHAROVA Z.; LUGTENBERG B. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol, v.10, n. 1, p.1–9, 2008. EGAMBERDIEVA, D.; WIRTH, S.; BELLINGRATH-KIMURA, S. D.; MISHRA, J.; ARORA, N. K. Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in microbiology, v. 10, p. 2791, 2019. EKKELENKAMP, M.B.; ROOIJAKKERS S.H.M.; BONTEN M.J.M. Chapter 165 - Staphylococci and micrococci, Editor(s): Jonathan Cohen, Steven M. Opal, William G. Powderly, Infectious Diseases (Third Edition), Mosby, Pages 1632-1644, ISBN 9780323045797, 2010. ETESAMI, H. Can interaction between silicon and plant growth promoting rhizobacteria benefit in alleviating abiotic and biotic stresses in crop plants? Agriculture, Ecosystems & Environment, v. 253, p. 98-112, 2018. ETESAMI, H.; BEATTIE, G. A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in microbiology, v. 9, p. 148, 2018. ETESAMI, H.; HOSSEINI, H. M.; ALIKHANI, H. A.; MOHAMMADI, L. Bacterial biosynthesis of 1-aminocyclopropane-1-carboxylate (ACC) deaminase and indole-3-acetic acid (IAA) as endophytic preferential selection traits by rice plant seedlings. Journal of plant growth regulation, v. 33, n. 3, p. 654-670, 2014. FELSENSTEIN, J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, p.783-791, 1985. FENDRICH C. Halovibrio variabilis gen. nov. sp. nov., Pseudomonas halophila sp. nov. and a new halophilic aerobic coccoid eubacterium from Great Salt Lake, Utah, USA. Syst Appl Microbiol v.11, p.36–43, 1988. FENG, W. W.; WANG, T. T.; BAI, J. L.; DING, P.; XING, K.; JIANG, J. H.; QIN, S. Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. International journal of systematic and evolutionary microbiology, v. 67, n. 5, p.1120-1125, 2017. FERGUSSON, C. H.; COLOMA, J. M.; VALENTINE, M. C.; HAECKL, F. J.; LININGTON, R. G. Development of a Custom MALDI-TOF Mass Spectrometric Database for Identification of Environmental Burkholderia and Related Genera. Applied and Environmental Microbiology, 2020. FERNANDES, P.D.; BRITO, M.E.B.; GHEYI, H.R.; ANDRADE, A.P.; MEDEIROS, S.S. Halofitismo e agricultura brasileira. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. FERREIRA, M. J.; CUNHA, A.; FIGUEIREDO, S.; FAUSTINO, P.; PATINHA, C.; SILVA, H.; SIERRA-GARCIA, I. N. The Root Microbiome of Salicornia ramosissima as a Seedbank for Plant-Growth Promoting Halotolerant Bacteria. Applied Sciences, v. 11, n. 5, p. 2233, 2021. FINKEL, O. M.; CASTRILLO, G.; PAREDES, S. H.; GONZÁLEZ, I. S.; DANGL, J. L. Understanding and exploiting plant beneficial microbes. Current opinion in plant biology, v. 38, p. 155-163, 2017. FLOWERS, T.J.; COLMER, T.D. Salinity tolerance in halophytes. New Phytologist v.179, p.945- 963, 2008. FLOWERS, T. J.; FLOWERS, S. A. Why does salinity pose such a difficult problem for plant breeders? Agricultural water management, v. 78, n. 1-2, p. 15-24, 2005. FLOWERS, T. J.; MUNNS, R.; COLMER, T. D. Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, v.115, p.419–431, 2015. GAO, M.; XIE, L. Q.; WANG, Y. X.; CHEN, J.; XU, J.; ZHANG, X. X.; SUN, J. G. Paenibacillus beijingensis sp. nov., a novel nitrogen-fixing species isolated from jujube garden soil. Antonie Van Leeuwenhoek, v. 104, n. 4, p. 689-694, 2012. GLICK, B.R.; PENROSE, D.M.; LI, J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J. Theoret. Biol., v. 190, p. 63-68, 1998. GLICK, B.R.; CHENG, Z.; CZARNY, J.; DUAN, J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. v.119, p.329–339, 2007. GLICK, B.R. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. v.169, p.30–39, 2014. GOSWAMI, D.; PITHWA, S.; DHANDHUKIA, P.; THAKKER, J. N. Delineating Kocuria turfanensis 2M4 as a credible PGPR: a novel IAA-producing bacteria isolated from saline desert. Journal of Plant Interactions, v. 9, n. 1, p. 566-576, 2014. GUPTA, R. K.; ABROL, I. P. Sal-affected soils: their reclamations and management for crop production. Advances in Soil Science, v.11, p.223-288, 1990. HADLICH, G. M.; UCHA, J. M.; CELINO, J. J. Apicuns na Baía de Todos os Santos: distribuição espacial, descrição e caracterização física e química. In: Queiroz, A. F. de S.; CELINO, J. J. (Org.). Avaliação de ambientes na Baía de Todos os Santos: aspectos geoquímicos, geofísicos e biológicos, cap. 2, p. 59-72. Salvador: UFBA 2008. HALL, J.A.; PEIRSON, D.; GHOSH, S.; GLICK, B.R. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR 12–2. Isr J Plant Sci, v. 44, p. 37–42, 1996. HALL, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In: Nucleic acids symposium series. [London]: Information Retrieval Ltd., c1979-c2000., 1999. p.95-98 HASANUZZAMAN, M.; NAHAR, K.; ALAM, M.M.; BHOWMIK, P.C.; HOSSAIN, M.A.; RAHMAN, M.M.; PRASAD, M.N.V.; OZTURK, M.; FUJITA, M. Potential use of halophytes to remediate saline soils. Biomed. Res. Int. 2014. HAYAT, R.; ALI, S.; AMARA, U.; KHALID, R.; AHMED, I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol v.60, p.579–98. 2010. HE, F. E. coli genomic DNA extraction. Bio-protocol, p. e97-e97, 2011. HIGGINS, DESMOND G. CLUSTAL V: multiple alignment of DNA and protein sequences. In: Computer analysis of sequence data. Springer, Totowa, NJ. p.307-318, 1994. HIMABINDU, Y.; CHAKRADHAR, T.; REDDY, M. C.; KANYGIN, A.; REDDING, K. E.; CHANDRASEKHAR, T. Salt-tolerant genes from halophytes are potential key players of salt tolerance in glycophytes. Environmental and Experimental Botany, v. 124, p. 39-63, 2016. HÖHN, A.; TOBSCHAL, H. J.; MADDOCK, J. E. L. Biogeochemistry of a hipersaline lagoon east of Rio de Janeiro, Brazil. The Science of the total environment. Amsterdam Eselvier Science, v.58, p.175-185, 1986. HOLANDA, F. S. R.; MARCIANO, C. R.; PEDROTTI, A.; AGUIAR, J. F. de; SANTOS, V. P. Recuperação de áreas com problemas de salinização. Informe Agropecuário, Belo Horizonte, v.22, n.210, p.57-61, 2001. HOLANDA, A. C.; SANTOS, R. V.; SOUTO, J. S.; ALVES, A. R. Desenvolvimento inicial de espécies arbóreas em ambientes degradados por sais. Revista de Biologia e Ciências da Terra, v.7, n.1, p.39-50, 2007. HONG, Y. Y.; MA, Y. C.; ZHOU, Y. G.; GAO, F.; LIU, H. C.; CHEN, S. F. Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus. International journal of systematic and evolutionary microbiology, v. 59, n. 11, p. 2656-2661, 2009. HORIE, T.; HAUSER, F.; SCHROEDER, J.I. HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends in Plant Science, v. 14, n. 12, p. 660-668, 2009. HRENOVIC, J.; DURN, G.; GOIC-BARISIC, I.; KOVACIC, A. Occurrence of an environmental Acinetobacter baumannii strain similar to a clinical isolate in paleosol from Croatia. Applied and environmental microbiology, v. 80, n. 9, p. 2860–2866, 2014. HUMM, H. J. Marine agar-digesting bacteria of the South Atlantic coast. Duke Univ Mar Stn Bull v.3, p.45–75, 1946. HUSCHEK, D.; WITZEL, K. Rapid dereplication of microbial isolates using matrix-assisted laser desorption ionization time-of-flight mass spectrometry: A mini-review. J Adv Res. v.2, n.19, p.99-104., 2019. ISLAM, F.; Wang, J.; Farooq, M. A.; Gill, R. A.; Ali, S.; Zhou, W. Combined herbicide and saline stress differentially modulates hormonal regulation and antioxidant defense system in Oryza sativa cultivars. Plant Physiology and Biochemistry, v. 107, p. 82-95, 2016. JHA, Y.; SUBRAMANIAN, R. B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiology and Molecular Biology of Plants, v. 20, n. 2, p. 201-207, 2014. JIANG, J.; PAN, Y.; HU, S.; ZHANG, X.; HU, B.; HUANG, H.; HONG, S.; MENG, J.; LI, C.; WANG, K. Halomonas songnenensis sp. nov., a moderately halophilic bacterium isolated from saline and alkaline soils. Int. J. Syst. Evol. Microbiol. v.64, p.1662-1669, 2014. JURINAK, J. J.; SUAREZ, D. L. The chemistry of salt-affected soils and waters. In: Tanji, K. K. (Ed.). Agricultural Salinity Assessment and Management. American Society of Civil Engineers. New York: p.42-63, 1990. KÄMPF, N.; CURI, N. Formação e evolução do solo (Pedogênese). In: KER, J.C.; CURI, N.; SCHAEFER, C.E.G.R.; VIDAL-TORRADO, P. (Eds.). Pedologia: fundamentos. Viçosa: Sociedade Brasileira de Ciência do Solo, p. 273-276, 2012. KANDI, V.; PALANGE, P.; VAISH, R.; BHATTI, A.B.; KALE, V.; KANDI, M.R.; BHOOMAGIRI, MR. Emerging Bacterial Infection: Identification and Clinical Significance of Kocuria Species. Cureus, v. 8, n. 8, 2016. KARNWAL, A. Screening, isolation and characterization of culturable stress-tolerant bacterial endophytes associated with Salicornia brachiata and their effect on wheat (Triticum aestivum L.) and maize (Zea mays) growth. Journal of Plant Protection Research, p. 293-303, 2019. KATERJI, N.; VAN HOORN, J.W.; HAMDY, A.; MASTRORILLI, M. Salt tolerance classification of crops according to soil salinity and to water stress day index. Agric. Water Manage. v.43, n. 1, p.99–109, 2000. KHALIFA, A. Y.; ALSYEEH, A. M.; ALMALKI, M. A.; SALEH, F. A. Characterization of the plant growth promoting bacterium, Enterobacter cloacae MSR1, isolated from roots of non-nodulating Medicago sativa. Saudi journal of biological sciences, v.23, n. 1, p.79-86, 2016. KHAN, M. A.; SAHILE, A. A.; JAN, R.; ASAF, S.; HAMAYUN, M.; IMRAN, M.; LEE, I. J. Halotolerant bacteria mitigate the effects of salinity stress on soybean growth by regulating secondary metabolites and molecular responses. BMC plant biology, v. 21, n. 1, p. 1-15, 2021. KHAN, M. A., BOËR, B., ÖZTURK„ M., CLÜSENER-GODT, M., GUL, B., BRECKLE, S.-W. SABKHA. Ecosystems: Vol. V: The Americas. Springer. 2016. KHATUN, S.; FLOWERS, T.J. Effects of salinity on seed set in rice. Plant Cell Environment, v. 18, p. 61–67, 1995. KIM, KK; LEE, JS; STEVENS, DA. Microbiology and epidemiology of Halomonas species. Future Microbiol. Erratum in: Future Microbiol. 2014 KOYRO, H.W.; GEISSLER N.; HUSSIN S.; DEBEZ A.; HUCHZERMEYER B. Strategies of halophytes to survive in a salty environment. In: Abiotic stress and plant responses, ed. N. A. Khan and S. Singh, p.83–104. New Delhi: I.K. International, 2008. KRADER, P.; EMERSON, D. Identification of Archaea and some Extremophilic Bacteria Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) Mass Spectrometry. Extremophiles: life under extreme conditions. v.8, p.259-68. 2004. KRISHNAMURTHY, P.; RANATHUNGE, K.; FRANKE, R.; PRAKASH, H. S.; SCHREIBER, L.; MATHEW, M. K. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.). Planta, v. 230, n. 1, p. 119-134, 2009. KUMAR S.; STECHER G.; PETERSON D.; TAMURA K. MEGA-CC: Computing core of molecular evolutionary genetics analysis program for automated and iterative data analysis. Bioinformatics v.28, p. 2685-2686, 2012. KUMAR, P.; HUANG, C.; CAI, J.; MIKLAVCIC, S. J. Root phenotyping by root tip detection and classification through statistical learning. Plant and soil, v. 380, n. 1, p. 193-209, 2014. KUMAR, A.; SINGH, S.; MUKHERJEE, A.; RASTOGI, R. P.; VERMA, J. P. Salt-tolerant plant growth-promoting Bacillus pumilus strain JPVS11 to enhance plant growth attributes of rice and improve soil health under salinity stress. Microbiological Research, v. 242, p. 126616, 2021. KUMARI, A.; DAS, P.; PARIDA, A. K.; AGARWAL, P. K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science, v. 6, p. 537, 2015. LANE, D.J. 16S/23S rRNA sequencing. In: STACKEBRANDT, E; GOODFELLOW, M Nucleic acid techniques in bacterial systematics. p. 115–175. New York: Wiley, 1991. LARSEN, H. Biochemical aspects of extreme halophilism. Adv. Microb. Physiol. v.1, p.97–132, 1967. LE RUDULIER, D.; BOUILLARD, L. Glycine Betaine, an osmotic effector in Klebsiella pneumonia and other members of the Enterobacteriaceae. Appl. Environ. Microbiol. v.46, p.152–159, 1983. LEBUHN, M.; ACHOUAK, W.; SCHLOTER, M.; BERGE, O.; MEIER, H., BARAKAT, M., HEULIN, T. Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov. International Journal of Systematic and Evolutionary Microbiology, v. 50, n. 6, p.2207-2223, 2000. LEITE, M.C.B.S.; FARIAS A.R.B.; FREIRE F.J.; ANDREOTE F.D.; KUKLINSKY-SOBRAL J.; FREIRE M.B.G.S. Isolation, bioprospecting and diversity of salt-tolerant bactéria associated with sugarcane in soils of Pernambuco, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental v.18, p.73–79, 2014. LEROY, S.; VERMASSEN, A.; TALON, R. Staphylococcus: Occurrence and Properties, Editor(s): Benjamin Caballero, Paul M. Finglas, Fidel Toldrá, Encyclopedia of Food and Health. Academic Press, p. 140-145, 2016. LINDGREN, A.R.; BUCKLEY, B.A.; EPPLEY, S.M.; REYSENBACH, A.-L.; STEDMAN, K.M.; WAGNER, J.T. Life on the edge-the biology of organisms inhabiting extreme environments: an Introduction to the symposium. Integr. Comp. Biol. v.56, p.493–499, 2017. LISZKA, M.J.; CLARK, M.E.; SCHNEIDER, E.; CLARK, D.S. Nature Versus Nurture: Developing Enzymes That Function Under Extreme Conditions. Annual Review of Chemical and Biomolecular Engineering. v.3, n.1, p.77-102. 2012. MA, F.; PETERSON, C. A. Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Canadian Journal of Botany, v. 81, n. 5, p. 405-421, 2003. MA, Y., XIA, Z.; LIU, X.; CHEN, S. Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. International journal of systematic and evolutionary microbiology, v. 57, n. 1, p. 6-11, 2007. MA, Y. C.; CHEN, S. F. Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira. International journal of systematic and evolutionary microbiology, v. 58, n. 2, p. 319-323, 2008. MACELROY, R.D. Some comments on the evolution of extremophiles. Biosyst v.6, p.74–5, 1974. MAPELLI, F.; MARASCO, R.; ROLLI, E.; BARBATO, M.; CHERIF, H.; GUESMI, A.; OUZARI, I.; DAFFONCHIO, D.; BORIN, S. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. BioMed research international, v. 2013, 2013. MAYAK, S.; TIROSH, T.; GLICK, B. R. Plant growth-promoting bactéria confer resistance in tomato plants to salt stress. Plant Physiol. Biochem, v.42, p.565–572., 2004. MCPHERSON, M. R.; WANG, P.; MARSH, E. L.; MITCHELL, R. B.; SCHACHTMAN, D. P. Isolation and analysis of microbial communities in soil, rhizosphere, and roots in perennial grass experiments. JoVE (Journal of Visualized Experiments), n. 137, p. e57932, 2018. MISRA, S.; DIXIT, V. K.; KHAN, M. H.; MISHRA, S. K.; DVIWEDI, G.; YADAV, S.; CHAUHAN, P. S. Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiological research, v. 205, p. 25-34, 2017. MONTEOLIVA-SANCHEZ, M.; A. RAMOS-CORMENZANA. Cellular fatty acid composition of Planococcus halophilus NRCC 14033 as affected by growth temperature and salt concentration. Curr. Microbiol. v.15, p.133–136, 1987. MORITA RY. Extremes of biodiversity. Bioscience v.49, p.245–8, 1999. MUNNS, R.; TESTER, M. Mechanisms of salinity tolerance. Annual Review of Plant Biology, v.59, p.651-681, 2008. MUNOZ, R.; LÓPEZ-LÓPEZ, A.; URDIAIN, M.; MOORE, E. R.; ROSSELLÓ-MÓRA, R. Evaluation of matrix-assisted laser desorption ionization-time of flight whole cell profiles for assessing the cultivable diversity of aerobic and moderately halophilic prokaryotes thriving in solar saltern sediments. Systematic and applied microbiology, v. 34, n. 1, p. 69-75, 2011. MUKHTAR, S.; MALIK, K. A.; MEHNAZ, S. Osmoadaptation in halophilic bacteria and archaea. Res. J. Biotech, v. 15 n. 5, 2020. NADEEM, S.M.; ZAHIR, Z.A.; NAVEED, M.; NAWAZ, S. Mitigation of salinityinduced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol, v. 63, n. 1, p. 225–232, 2013. NAVARRO‐TORRE, S.; BARCIA‐PIEDRAS, J. M.; MATEOS‐NARANJO, E.; REDONDO‐GÓMEZ, S.; CAMACHO, M.; CAVIEDES, M. A.; RODRÍGUEZ‐LLORENTE, I. D. Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biology, v. 19, n. 2, p. 249-256, 2017. NYBROE, O.; SØRENSEN, J. Production of cyclic lipopeptides by fluorescent pseudomonads. In: Pseudomonas. Springer, Boston, MA, p. 147-172, 2004. OREN, A. Bioenergetics aspects of halophilism. Microbiol. Mol. Biol. Rev. v.63, p.334‐348,1999. OREN, A. The bioenergetic basis for the metabolic diversity at increasing salt concentrations: Implication for the function in of salt lake ecosystems. Hydrobiologia. v.466. p.61-72, 2001. OREN, A. Diversity of halophilic microorganisms: environments,phylogeny,physiology, and applications. J. of Indust. Microbiol. & Biotechno. v.28, p.56-63. 2002. OREN, Aharon. Halophilic microorganisms and their environments. Springer Science & Business Media, 2006. OREN, A. Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline systems, v.4, n. 1, p. 1-13, 2008. OREN, A. Thermodynamic limits to microbial life at high salt concentrations. Environmental microbiology, v. 13, n. 8, p. 1908-1923, 2011. OREN, A. Life at high salt concentrations, intracellular KCl concentrations, and acidic proteomes. Frontiers in microbiology, v. 4, p. 315, 2013. ORHAN, F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). brazilian journal of microbiology, v. 47, p. 621-627, 2016. OZAWA, T., WU, J.; FUJII, S. Effect of inoculation with a strain of Pseudomonas pseudoalcaligenes isolated from the endorhizosphere of Salicornia europea on salt tolerance of the glasswort. Soil Sci. Plant Nutr., v. 53, p. 12-16, 2007. PEREIRA, J.R. Solos salinos e sódicos. In: Reunião Brasileira de Fertilidade do Solo, 15. Campinas. Acidez e calagem no Brasil. Campinas: Sociedade Brasileira de Ciência do Solo, 1983, p.129-143, 1982. PALLERONI N. J. Genus I. Pseudomonas Migula 1894, 237AL. In: Bergey’s Manual of Systematic Bacteriology, 2nd edn., v.2, part B, p.323–379.New York: Springer. 2005. PELLEGRINI, J. A. C. Caracterização da planície hipersalina (Apicum) associada a um bosque de mangue em Guaratiba, Baía de Sepetiba, Rio de Janeiro - RJ. 2000. Dissertação (Mestrado em Oceanografia Biológica) - Instituto Oceanográfico, Universidade de São Paulo, São Paulo, 2000. PRIMO, P.B.S.; BIZERRIL, C.R.S.F. Lagoa de Araruama. Perfil ambiental do maior ecossistema lagunar hipersalino do mundo. 1a ed. Rio de Janeiro, SEMADS, p. 264, 2002. PRISCO, J.T.; FILHO, E.G. MIRANDA, R.S. Physiology and biochemistry of plants growing under salt stress. In: GHEYI, H. R.; DIAS, N. S.; LACERDA, C. F. (Eds.). Manejo da Salinidade na Agricultura: Estudos Básicos e Aplicados. Fortaleza, INCTSal. p.11-19, 2016. QADIR, M.; OSTER, J. D. Vegetative bioremediation of calcareous sodic soils: History, mechanisms, and evaluation. Irrig. Sci. v.21, p.91–101, 2002. QADIR, M.; OSTER, J. D.; SCHUBERT, S.; NOBLE, A. D.; SAHRAWAT, K. L. Phytoremediations of sodic and salinesodic soils. Adv. Agron., v.96, p.197-247, 2007. QUESADA, E.; VENTOSA, A. RODRIGUEZ-VALERAF; RAMOS-CORMENZANAA. Types and properties of some bacteria isolated from hypersaline soils. Journal of Applied Bacteriology v.53, p.155-161. 1982. QIN, S.; FENG, W. W.; ZHANG, Y. J.; WANG, T. T.; XIONG, Y. W.; XING, K. Diversity of bacterial microbiota of coastal halophyte Limonium sinense and amelioration of salinity stress damage by symbiotic plant growth-promoting actinobacterium Glutamicibacter halophytocola KLBMP 5180. Applied and environmental microbiology, v. 84, n. 19, p. e01533-18, 2018. QIN, Y.; DRUZHININA, I. S.; PAN, X.; YUAN, Z. Mi |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Agronomia - Ciência do Solo |
dc.publisher.initials.fl_str_mv |
UFRRJ |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Agronomia |
publisher.none.fl_str_mv |
Universidade Federal Rural do Rio de Janeiro |
dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ) instacron:UFRRJ |
instname_str |
Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
instacron_str |
UFRRJ |
institution |
UFRRJ |
reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
collection |
Biblioteca Digital de Teses e Dissertações da UFRRJ |
bitstream.url.fl_str_mv |
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/1/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf.jpg https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/2/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf.txt https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/3/2021%20-%20J%c3%balia%20Ferreira%20Xavier.pdf https://rima.ufrrj.br/jspui/bitstream/20.500.14407/10585/4/license.txt |
bitstream.checksum.fl_str_mv |
cc73c4c239a4c332d642ba1e7c7a9fb2 3100888ed0cd3eeb4692fafb274c5c04 ad39303a61045be0a5da3f507089b30a 7b5ba3d2445355f386edab96125d42b7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ) |
repository.mail.fl_str_mv |
bibliot@ufrrj.br||bibliot@ufrrj.br |
_version_ |
1810108030298095616 |