Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/handle/riufs/5267 |
Resumo: | The present work is focused on the structural, chemical and optical properties of phosphate and fluorides micro and nanoparticles. The phosphate material was the lanthanum lithium phosphate (LiLaP4O12), undoped and doped with 2mol% of europium. The fluorides were: barium fluoride (BaF2), lithium yttrium fluoride (LiYF4) and the potassium magnesium fluoride (KMgF3), where the last two were doped with 4mol% of europium, terbium, cerium and dysprosium ions. For LiLaP4O12, the Sol-Gel route was chosen as the synthesis method. The X-ray diffraction and Rietveld refinement were used to investigate the crystalline phase present in the samples. The morphology and particles size determination were carried out by scanning electron microscopy (SEM) and the results showed two types of particles, small isolated nanoparticles and regions showing agglomerates of particles. Photoluminescence excitation and emission spectra were used to identify the charge transfer band and the optical bandgap for LiLaP4O12. For fluoride materials, the synthesis method used was the hydrothermal assisted microwave route. X-ray diffraction analyses were done to confirm the crystalline phase formation. Rietveld refinement analyses in BaF2 showed that this material samples, in nanometric form, exhibited strong strain, and this observation was investigate via Williamson-Hall formalism. Scanning electron microscopy (SEM) was also used to study the morphology and particles size distribution in the fluoride materials. SEM results showed that the BaF2 and KMgF3 samples were formed by nanometric particles and the LiYF4 samples were formed by micrometric particles. Chemical properties of the fluorides materials were studied by X-ray photoelectron spectroscopy (XPS) aiming the quantification of the oxygen present in the samples surface. The oxygen concentrations found were discussed in terms of the defects, like colour centres, produced in the matrix, of the fluoride materials. The electronic transitions of the dopant ions were investigated by photoluminescence spectroscopy, and in this part, the self-trapped exciton (STE), the exciton emission and the optical band gap were also estimated. The optical gap was found to be 10.5 eV for BaF2, 11.1 eV for LiYF4 and 12.1 eV for KMgF3. Additionally, studies related to the defects present at KMgF3 due to oxygen contaminant and dopant ions were carried out by thermoluminescence (TL) and optically stimulated luminescence (OSL). |
id |
UFS-2_0368df0b379a0bd9c0a2619017c788c8 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/5267 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Andrade, Adriano BorgesValério, Mário Ernesto Giroldohttp://lattes.cnpq.br/35249143752978722017-09-26T18:23:57Z2017-09-26T18:23:57Z2016-07-26ANDRADE, Adriano Borges. Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados. 2016. 118 f. Tese (Pós-Graduação em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2016.https://ri.ufs.br/handle/riufs/5267The present work is focused on the structural, chemical and optical properties of phosphate and fluorides micro and nanoparticles. The phosphate material was the lanthanum lithium phosphate (LiLaP4O12), undoped and doped with 2mol% of europium. The fluorides were: barium fluoride (BaF2), lithium yttrium fluoride (LiYF4) and the potassium magnesium fluoride (KMgF3), where the last two were doped with 4mol% of europium, terbium, cerium and dysprosium ions. For LiLaP4O12, the Sol-Gel route was chosen as the synthesis method. The X-ray diffraction and Rietveld refinement were used to investigate the crystalline phase present in the samples. The morphology and particles size determination were carried out by scanning electron microscopy (SEM) and the results showed two types of particles, small isolated nanoparticles and regions showing agglomerates of particles. Photoluminescence excitation and emission spectra were used to identify the charge transfer band and the optical bandgap for LiLaP4O12. For fluoride materials, the synthesis method used was the hydrothermal assisted microwave route. X-ray diffraction analyses were done to confirm the crystalline phase formation. Rietveld refinement analyses in BaF2 showed that this material samples, in nanometric form, exhibited strong strain, and this observation was investigate via Williamson-Hall formalism. Scanning electron microscopy (SEM) was also used to study the morphology and particles size distribution in the fluoride materials. SEM results showed that the BaF2 and KMgF3 samples were formed by nanometric particles and the LiYF4 samples were formed by micrometric particles. Chemical properties of the fluorides materials were studied by X-ray photoelectron spectroscopy (XPS) aiming the quantification of the oxygen present in the samples surface. The oxygen concentrations found were discussed in terms of the defects, like colour centres, produced in the matrix, of the fluoride materials. The electronic transitions of the dopant ions were investigated by photoluminescence spectroscopy, and in this part, the self-trapped exciton (STE), the exciton emission and the optical band gap were also estimated. The optical gap was found to be 10.5 eV for BaF2, 11.1 eV for LiYF4 and 12.1 eV for KMgF3. Additionally, studies related to the defects present at KMgF3 due to oxygen contaminant and dopant ions were carried out by thermoluminescence (TL) and optically stimulated luminescence (OSL).Neste trabalho foram estudadas propriedades estruturais, químicas e ópticas de micro e nanopartículas de compostos fosfato e fluoretos. Os materiais estudados foram: fosfato de lítio e lantânio (LiLaP4O12) não dopado e dopado com 2 mol% de európio; fluoretos de bário (BaF2), lítio e ítrio (LiYF4) e ainda o fluoreto de potássio e magnésio (KMgF3), sendo estes dois últimos não dopados e também dopados com 4 mol% de európio, térbio, cério e disprósio. Para o LiLaP4O12, o método de síntese utilizado foi a rota sol-gel. Os resultados de difração de raios X (DRX) e refinamento Rietveld confirmaram a formação da fase cristalina correspondente. A morfologia e o tamanho de partícula foram estudados por microscopia eletrônica de varredura (MEV), as análises mostraram a formação predominante de nanopartículas desaglomeradas e também a formação de pequenas regiões com aglomerados isolados. Através dos espectros de excitação e emissão, foi possível determinar características ópticas do LiLaP4O12, tais como, a banda de transferência de carga e também o bandgap. Para os compostos fluoretos, o método de síntese utilizado foi o hidrotermal assistido por microondas. Os estudos através da difração de raios X confirmaram a formação das fases cristalinas das amostras. O uso do método de refinamento Rietveld na amostra de BaF2 mostrou que a rede cristalina apresenta um alto grau de microdeformação, que foi investigado através do formalismo de Williamson-Hall. Imagens de microscopia eletrônica de varredura também foram utilizadas para estudo de morfologia e tamanho de partícula, revelando a formação de nanopartículas para o BaF2 e o KMgF3 e micropartículas para o LiYF4. As propriedades químicas dos fluoretos foram investigadas através da espectroscopia de fotoelétrons excitados por raios X (XPS), em que a concentração de impurezas de oxigênio na matriz dos fluoretos foi determinada e discutida em termos da criação de defeitos do tipo centros de cor. As transições eletrônicas dos íons dopantes e da matriz cristalina dos fluoretos foi estudada através da espectroscopia de excitação e emissão fotoluminescente. A absorção fundamental associada ao band gap foi estimada em 10,5 eV para o BaF2, 11,1 eV para o LiYF4 e 12,1 eV para o KMgF3. Um estudo dos defeitos associados a incorporação de íons terras raras e impurezas de oxigênio no KMgF3 foi realizado através das técnicas de termoluminescência (TL) e luminescência opticamente estimulada (LOE).application/pdfporUniversidade Federal de SergipePós-Graduação em FísicaUFSBrasilFísicaFosfatoFluoretosPropriedades ópticasPropriedades estruturaisSínteseMateriais nanoestruturadosCIENCIAS EXATAS E DA TERRA::FISICASíntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturadosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSORIGINALADRIANO_BORGES_ANDRADE.pdfapplication/pdf5309982https://ri.ufs.br/jspui/bitstream/riufs/5267/1/ADRIANO_BORGES_ANDRADE.pdf133271ea6d6614241e459c6608926980MD51TEXTADRIANO_BORGES_ANDRADE.pdf.txtADRIANO_BORGES_ANDRADE.pdf.txtExtracted texttext/plain220084https://ri.ufs.br/jspui/bitstream/riufs/5267/2/ADRIANO_BORGES_ANDRADE.pdf.txt254f224641dcf5ed5febdc160a1a4026MD52THUMBNAILADRIANO_BORGES_ANDRADE.pdf.jpgADRIANO_BORGES_ANDRADE.pdf.jpgGenerated Thumbnailimage/jpeg1255https://ri.ufs.br/jspui/bitstream/riufs/5267/3/ADRIANO_BORGES_ANDRADE.pdf.jpg153ef7f12b177317e2372d70ab26ebbfMD53riufs/52672017-11-29 20:25:47.56oai:ufs.br:riufs/5267Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2017-11-29T23:25:47Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.por.fl_str_mv |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
title |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
spellingShingle |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados Andrade, Adriano Borges Física Fosfato Fluoretos Propriedades ópticas Propriedades estruturais Síntese Materiais nanoestruturados CIENCIAS EXATAS E DA TERRA::FISICA |
title_short |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
title_full |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
title_fullStr |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
title_full_unstemmed |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
title_sort |
Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados |
author |
Andrade, Adriano Borges |
author_facet |
Andrade, Adriano Borges |
author_role |
author |
dc.contributor.author.fl_str_mv |
Andrade, Adriano Borges |
dc.contributor.advisor1.fl_str_mv |
Valério, Mário Ernesto Giroldo |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3524914375297872 |
contributor_str_mv |
Valério, Mário Ernesto Giroldo |
dc.subject.por.fl_str_mv |
Física Fosfato Fluoretos Propriedades ópticas Propriedades estruturais Síntese Materiais nanoestruturados |
topic |
Física Fosfato Fluoretos Propriedades ópticas Propriedades estruturais Síntese Materiais nanoestruturados CIENCIAS EXATAS E DA TERRA::FISICA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA |
description |
The present work is focused on the structural, chemical and optical properties of phosphate and fluorides micro and nanoparticles. The phosphate material was the lanthanum lithium phosphate (LiLaP4O12), undoped and doped with 2mol% of europium. The fluorides were: barium fluoride (BaF2), lithium yttrium fluoride (LiYF4) and the potassium magnesium fluoride (KMgF3), where the last two were doped with 4mol% of europium, terbium, cerium and dysprosium ions. For LiLaP4O12, the Sol-Gel route was chosen as the synthesis method. The X-ray diffraction and Rietveld refinement were used to investigate the crystalline phase present in the samples. The morphology and particles size determination were carried out by scanning electron microscopy (SEM) and the results showed two types of particles, small isolated nanoparticles and regions showing agglomerates of particles. Photoluminescence excitation and emission spectra were used to identify the charge transfer band and the optical bandgap for LiLaP4O12. For fluoride materials, the synthesis method used was the hydrothermal assisted microwave route. X-ray diffraction analyses were done to confirm the crystalline phase formation. Rietveld refinement analyses in BaF2 showed that this material samples, in nanometric form, exhibited strong strain, and this observation was investigate via Williamson-Hall formalism. Scanning electron microscopy (SEM) was also used to study the morphology and particles size distribution in the fluoride materials. SEM results showed that the BaF2 and KMgF3 samples were formed by nanometric particles and the LiYF4 samples were formed by micrometric particles. Chemical properties of the fluorides materials were studied by X-ray photoelectron spectroscopy (XPS) aiming the quantification of the oxygen present in the samples surface. The oxygen concentrations found were discussed in terms of the defects, like colour centres, produced in the matrix, of the fluoride materials. The electronic transitions of the dopant ions were investigated by photoluminescence spectroscopy, and in this part, the self-trapped exciton (STE), the exciton emission and the optical band gap were also estimated. The optical gap was found to be 10.5 eV for BaF2, 11.1 eV for LiYF4 and 12.1 eV for KMgF3. Additionally, studies related to the defects present at KMgF3 due to oxygen contaminant and dopant ions were carried out by thermoluminescence (TL) and optically stimulated luminescence (OSL). |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-07-26 |
dc.date.accessioned.fl_str_mv |
2017-09-26T18:23:57Z |
dc.date.available.fl_str_mv |
2017-09-26T18:23:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ANDRADE, Adriano Borges. Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados. 2016. 118 f. Tese (Pós-Graduação em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2016. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/handle/riufs/5267 |
identifier_str_mv |
ANDRADE, Adriano Borges. Síntese, caracterização e estrutural e óptica de compostos fosfato e fluoretos micro e nanoestruturados. 2016. 118 f. Tese (Pós-Graduação em Física) - Universidade Federal de Sergipe, São Cristóvão, SE, 2016. |
url |
https://ri.ufs.br/handle/riufs/5267 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Física |
dc.publisher.initials.fl_str_mv |
UFS |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/5267/1/ADRIANO_BORGES_ANDRADE.pdf https://ri.ufs.br/jspui/bitstream/riufs/5267/2/ADRIANO_BORGES_ANDRADE.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/5267/3/ADRIANO_BORGES_ANDRADE.pdf.jpg |
bitstream.checksum.fl_str_mv |
133271ea6d6614241e459c6608926980 254f224641dcf5ed5febdc160a1a4026 153ef7f12b177317e2372d70ab26ebbf |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110692695736320 |