Machine learning techniques for detecting hypoglycemic events using electrocardiograms

Detalhes bibliográficos
Autor(a) principal: Carmo, Natasha Rusty Silva
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/15019
Resumo: São Cristóvão
id UFS-2_21778c431085847414826211b5e6aaf6
oai_identifier_str oai:ufs.br:riufs/15019
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Carmo, Natasha Rusty SilvaMoreno, Edward David2022-02-07T19:17:03Z2022-02-07T19:17:03Z2021-08-20CARMO, Natasha Rusty Silva. Machine learning techniques for detecting hypoglycemic events using electrocardiograms. 2021. 86 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, 2021.https://ri.ufs.br/jspui/handle/riufs/15019engMachine learningBiosignal processingHypoglycemiaD1namo datasetNeurokit11dcnnCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOMachine learning techniques for detecting hypoglycemic events using electrocardiogramsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisSão CristóvãoBackground Machine learning methods have long been employed to automatically analyze electrocardiogram signals. In the past ten years, most studies have used a limited number of open databases to test their results, most of which were collected in clinical settings. The growth in the number of fitness trackers and other wearable devices that collect large amounts of data every day offer a new potential to use data analysis to derive information that can improve the quality of life for many people. Recently, an open database was released with data (electrocardiogram, respiratory rate, motion data, food intake annotations and blood glucose) from patients with type 1 diabetes. It gives the opportunity to explore the potential of this data to predict hypoglycemic events through a noninvasive method. Methods The study uses pre-processing techniques to clean the data and extract features from physiological signals in the dataset and verify how they correlate with blood glucose. Time and frequency domain features are derived from the signal for the analysis. Automatic machine learning is employed to determine the best classification model. The results are compared against a 1D Convolutional Neural Network approach that automatically extracts features from individual heart beats. The final models are evaluated in regards to performance metrics (accuracy, precision and sensitivity) with respect to their ability to predict hypoglycemic events. Results A 10-fold cross-validation provided the following percentage values for accuracy, precision and sensitivity, respectively: 86.89 ± 2.8, 87.03 ± 2.7 and 86.90 ± 2.8 for the Random Forest model and 93.00 ± 2.3, 93.08 ± 2.2 and 93.00 ± 2.3 for 1D CNN. The statistical evaluation of the mean accuracy for both models from an unpaired T test returned a p-value lower than 0.0001, meaning that the distributions are significantly different and 1D CNN model outperforms the decision tree model. Discussion and Conclusion The small number of positive samples for hypoglycemia and high data imbalance pose a challenge to classification. It is necessary to have reasonable number of samples from both classes to achieve classification metrics that are suitable for medical applications. When this condition is satisfied, data acquired from a wearable device under normal living conditions has shown to be suitable for the task of classifying hypoglycemic events.Pós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/15019/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALNATASHA_RUSTY_SILVA_CARMO.pdfNATASHA_RUSTY_SILVA_CARMO.pdfapplication/pdf4062827https://ri.ufs.br/jspui/bitstream/riufs/15019/2/NATASHA_RUSTY_SILVA_CARMO.pdf0fe1f94e176902467956e1bb98fa80b4MD52TEXTNATASHA_RUSTY_SILVA_CARMO.pdf.txtNATASHA_RUSTY_SILVA_CARMO.pdf.txtExtracted texttext/plain146873https://ri.ufs.br/jspui/bitstream/riufs/15019/3/NATASHA_RUSTY_SILVA_CARMO.pdf.txt04845de31766b81b99c81a218619fdc9MD53THUMBNAILNATASHA_RUSTY_SILVA_CARMO.pdf.jpgNATASHA_RUSTY_SILVA_CARMO.pdf.jpgGenerated Thumbnailimage/jpeg1426https://ri.ufs.br/jspui/bitstream/riufs/15019/4/NATASHA_RUSTY_SILVA_CARMO.pdf.jpg18a14c6ac6d5a8dde3381dde73259a80MD54riufs/150192022-02-07 16:17:04.02oai:ufs.br:riufs/15019TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-02-07T19:17:04Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Machine learning techniques for detecting hypoglycemic events using electrocardiograms
title Machine learning techniques for detecting hypoglycemic events using electrocardiograms
spellingShingle Machine learning techniques for detecting hypoglycemic events using electrocardiograms
Carmo, Natasha Rusty Silva
Machine learning
Biosignal processing
Hypoglycemia
D1namo dataset
Neurokit1
1dcnn
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Machine learning techniques for detecting hypoglycemic events using electrocardiograms
title_full Machine learning techniques for detecting hypoglycemic events using electrocardiograms
title_fullStr Machine learning techniques for detecting hypoglycemic events using electrocardiograms
title_full_unstemmed Machine learning techniques for detecting hypoglycemic events using electrocardiograms
title_sort Machine learning techniques for detecting hypoglycemic events using electrocardiograms
author Carmo, Natasha Rusty Silva
author_facet Carmo, Natasha Rusty Silva
author_role author
dc.contributor.author.fl_str_mv Carmo, Natasha Rusty Silva
dc.contributor.advisor1.fl_str_mv Moreno, Edward David
contributor_str_mv Moreno, Edward David
dc.subject.eng.fl_str_mv Machine learning
Biosignal processing
Hypoglycemia
D1namo dataset
Neurokit1
1dcnn
topic Machine learning
Biosignal processing
Hypoglycemia
D1namo dataset
Neurokit1
1dcnn
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description São Cristóvão
publishDate 2021
dc.date.issued.fl_str_mv 2021-08-20
dc.date.accessioned.fl_str_mv 2022-02-07T19:17:03Z
dc.date.available.fl_str_mv 2022-02-07T19:17:03Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARMO, Natasha Rusty Silva. Machine learning techniques for detecting hypoglycemic events using electrocardiograms. 2021. 86 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/15019
identifier_str_mv CARMO, Natasha Rusty Silva. Machine learning techniques for detecting hypoglycemic events using electrocardiograms. 2021. 86 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, 2021.
url https://ri.ufs.br/jspui/handle/riufs/15019
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/15019/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/15019/2/NATASHA_RUSTY_SILVA_CARMO.pdf
https://ri.ufs.br/jspui/bitstream/riufs/15019/3/NATASHA_RUSTY_SILVA_CARMO.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/15019/4/NATASHA_RUSTY_SILVA_CARMO.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
0fe1f94e176902467956e1bb98fa80b4
04845de31766b81b99c81a218619fdc9
18a14c6ac6d5a8dde3381dde73259a80
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110822067994624