Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/17147 |
Resumo: | This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results. |
id |
UFS-2_27333e65b65ef8e64bad68a285789537 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/17147 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Dantas, Luiz Antônio MuñozCeleste, Alcigeimes Batista2023-02-15T12:21:52Z2023-02-15T12:21:52Z2022-11-17Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022http://ri.ufs.br/jspui/handle/riufs/17147This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results.Este trabalho apresenta a aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na bacia hidrográfica do rio Piauitinga, em Sergipe. Os dados de entrada utilizados na modelagem foram os do posto fluviométrico de Estância e do pluviométrico de Salgado, os quais foram divididos entre calibração e validação, selecionados de maneira randômica. A execução das simulações ocorreu através do software de aprendizado de máquina Weka, e foram testadas quatro formulações diferentes para as situações diária e mensal. A eficiência das simulações realizadas foi verificada a partir do coeficiente de Nash-Sutcliffe, conforme o qual obtiveram-se resultados consideráveis para as situações apresentadas, principalmente nos modelos baseados em redes neurais artificiais. A formulação contendo como atributos chuva e vazão de até três períodos anteriores foi a que apresentou os melhores resultados, atingindo índices de eficiência classificados como bons para a abordagem diária e muito bons para a mensal. Modelagens alternativas foram realizadas para comparar o modelo usando apenas um posto de chuva com outra usando a chuva média na bacia, e notou-se que o modelo que utiliza apenas o posto de precipitação de Salgado apresentou resultados melhores ou iguais aos demais. Por fim, foram feitas novas simulações que utilizaram os períodos iniciais para calibração e os finais para validação, e percebeu-se que as simulações que classificaram os dados de forma randômica apresentaram resultados bastante superiores.São Cristóvão, SEporEngenharia CivilEnsino de engenharia civilModelagem chuva-VazãoRedes Neurais Artificiais (RNA)Algoritmo dos k-vizinhosWekaRio Piauitinga (Bacia)Rainfall-runoff ModelingArtificial Neural NetworksK-Nearest NeighborsWekaENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIAAplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDEC - Departamento de Engenharia Civil – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17147/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALLuiz_Antonio_Munoz_Dantas.pdfLuiz_Antonio_Munoz_Dantas.pdfapplication/pdf4302140https://ri.ufs.br/jspui/bitstream/riufs/17147/2/Luiz_Antonio_Munoz_Dantas.pdf09c86d657a9e5629b08a49bced4df33bMD52TEXTLuiz_Antonio_Munoz_Dantas.pdf.txtLuiz_Antonio_Munoz_Dantas.pdf.txtExtracted texttext/plain64779https://ri.ufs.br/jspui/bitstream/riufs/17147/3/Luiz_Antonio_Munoz_Dantas.pdf.txtb69546450af50afac9ceb2cd34fc34e7MD53THUMBNAILLuiz_Antonio_Munoz_Dantas.pdf.jpgLuiz_Antonio_Munoz_Dantas.pdf.jpgGenerated Thumbnailimage/jpeg1329https://ri.ufs.br/jspui/bitstream/riufs/17147/4/Luiz_Antonio_Munoz_Dantas.pdf.jpg83353d9a3b28c774cbecb3dba49fdb98MD54riufs/171472023-02-15 09:21:52.793oai:ufs.br:riufs/17147TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-02-15T12:21:52Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
title |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
spellingShingle |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) Dantas, Luiz Antônio Muñoz Engenharia Civil Ensino de engenharia civil Modelagem chuva-Vazão Redes Neurais Artificiais (RNA) Algoritmo dos k-vizinhos Weka Rio Piauitinga (Bacia) Rainfall-runoff Modeling Artificial Neural Networks K-Nearest Neighbors Weka ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
title_short |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
title_full |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
title_fullStr |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
title_full_unstemmed |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
title_sort |
Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE) |
author |
Dantas, Luiz Antônio Muñoz |
author_facet |
Dantas, Luiz Antônio Muñoz |
author_role |
author |
dc.contributor.author.fl_str_mv |
Dantas, Luiz Antônio Muñoz |
dc.contributor.advisor1.fl_str_mv |
Celeste, Alcigeimes Batista |
contributor_str_mv |
Celeste, Alcigeimes Batista |
dc.subject.por.fl_str_mv |
Engenharia Civil Ensino de engenharia civil Modelagem chuva-Vazão Redes Neurais Artificiais (RNA) Algoritmo dos k-vizinhos Weka Rio Piauitinga (Bacia) |
topic |
Engenharia Civil Ensino de engenharia civil Modelagem chuva-Vazão Redes Neurais Artificiais (RNA) Algoritmo dos k-vizinhos Weka Rio Piauitinga (Bacia) Rainfall-runoff Modeling Artificial Neural Networks K-Nearest Neighbors Weka ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
dc.subject.eng.fl_str_mv |
Rainfall-runoff Modeling Artificial Neural Networks K-Nearest Neighbors Weka |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA |
description |
This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results. |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-11-17 |
dc.date.accessioned.fl_str_mv |
2023-02-15T12:21:52Z |
dc.date.available.fl_str_mv |
2023-02-15T12:21:52Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022 |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/17147 |
identifier_str_mv |
Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022 |
url |
http://ri.ufs.br/jspui/handle/riufs/17147 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.department.fl_str_mv |
DEC - Departamento de Engenharia Civil – São Cristóvão - Presencial |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/17147/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/17147/2/Luiz_Antonio_Munoz_Dantas.pdf https://ri.ufs.br/jspui/bitstream/riufs/17147/3/Luiz_Antonio_Munoz_Dantas.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/17147/4/Luiz_Antonio_Munoz_Dantas.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 09c86d657a9e5629b08a49bced4df33b b69546450af50afac9ceb2cd34fc34e7 83353d9a3b28c774cbecb3dba49fdb98 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110698231169024 |