Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)

Detalhes bibliográficos
Autor(a) principal: Dantas, Luiz Antônio Muñoz
Data de Publicação: 2022
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/17147
Resumo: This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results.
id UFS-2_27333e65b65ef8e64bad68a285789537
oai_identifier_str oai:ufs.br:riufs/17147
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Dantas, Luiz Antônio MuñozCeleste, Alcigeimes Batista2023-02-15T12:21:52Z2023-02-15T12:21:52Z2022-11-17Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022http://ri.ufs.br/jspui/handle/riufs/17147This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results.Este trabalho apresenta a aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na bacia hidrográfica do rio Piauitinga, em Sergipe. Os dados de entrada utilizados na modelagem foram os do posto fluviométrico de Estância e do pluviométrico de Salgado, os quais foram divididos entre calibração e validação, selecionados de maneira randômica. A execução das simulações ocorreu através do software de aprendizado de máquina Weka, e foram testadas quatro formulações diferentes para as situações diária e mensal. A eficiência das simulações realizadas foi verificada a partir do coeficiente de Nash-Sutcliffe, conforme o qual obtiveram-se resultados consideráveis para as situações apresentadas, principalmente nos modelos baseados em redes neurais artificiais. A formulação contendo como atributos chuva e vazão de até três períodos anteriores foi a que apresentou os melhores resultados, atingindo índices de eficiência classificados como bons para a abordagem diária e muito bons para a mensal. Modelagens alternativas foram realizadas para comparar o modelo usando apenas um posto de chuva com outra usando a chuva média na bacia, e notou-se que o modelo que utiliza apenas o posto de precipitação de Salgado apresentou resultados melhores ou iguais aos demais. Por fim, foram feitas novas simulações que utilizaram os períodos iniciais para calibração e os finais para validação, e percebeu-se que as simulações que classificaram os dados de forma randômica apresentaram resultados bastante superiores.São Cristóvão, SEporEngenharia CivilEnsino de engenharia civilModelagem chuva-VazãoRedes Neurais Artificiais (RNA)Algoritmo dos k-vizinhosWekaRio Piauitinga (Bacia)Rainfall-runoff ModelingArtificial Neural NetworksK-Nearest NeighborsWekaENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIAAplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDEC - Departamento de Engenharia Civil – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17147/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALLuiz_Antonio_Munoz_Dantas.pdfLuiz_Antonio_Munoz_Dantas.pdfapplication/pdf4302140https://ri.ufs.br/jspui/bitstream/riufs/17147/2/Luiz_Antonio_Munoz_Dantas.pdf09c86d657a9e5629b08a49bced4df33bMD52TEXTLuiz_Antonio_Munoz_Dantas.pdf.txtLuiz_Antonio_Munoz_Dantas.pdf.txtExtracted texttext/plain64779https://ri.ufs.br/jspui/bitstream/riufs/17147/3/Luiz_Antonio_Munoz_Dantas.pdf.txtb69546450af50afac9ceb2cd34fc34e7MD53THUMBNAILLuiz_Antonio_Munoz_Dantas.pdf.jpgLuiz_Antonio_Munoz_Dantas.pdf.jpgGenerated Thumbnailimage/jpeg1329https://ri.ufs.br/jspui/bitstream/riufs/17147/4/Luiz_Antonio_Munoz_Dantas.pdf.jpg83353d9a3b28c774cbecb3dba49fdb98MD54riufs/171472023-02-15 09:21:52.793oai:ufs.br:riufs/17147TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-02-15T12:21:52Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
title Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
spellingShingle Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
Dantas, Luiz Antônio Muñoz
Engenharia Civil
Ensino de engenharia civil
Modelagem chuva-Vazão
Redes Neurais Artificiais (RNA)
Algoritmo dos k-vizinhos
Weka
Rio Piauitinga (Bacia)
Rainfall-runoff Modeling
Artificial Neural Networks
K-Nearest Neighbors
Weka
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
title_short Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
title_full Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
title_fullStr Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
title_full_unstemmed Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
title_sort Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE)
author Dantas, Luiz Antônio Muñoz
author_facet Dantas, Luiz Antônio Muñoz
author_role author
dc.contributor.author.fl_str_mv Dantas, Luiz Antônio Muñoz
dc.contributor.advisor1.fl_str_mv Celeste, Alcigeimes Batista
contributor_str_mv Celeste, Alcigeimes Batista
dc.subject.por.fl_str_mv Engenharia Civil
Ensino de engenharia civil
Modelagem chuva-Vazão
Redes Neurais Artificiais (RNA)
Algoritmo dos k-vizinhos
Weka
Rio Piauitinga (Bacia)
topic Engenharia Civil
Ensino de engenharia civil
Modelagem chuva-Vazão
Redes Neurais Artificiais (RNA)
Algoritmo dos k-vizinhos
Weka
Rio Piauitinga (Bacia)
Rainfall-runoff Modeling
Artificial Neural Networks
K-Nearest Neighbors
Weka
ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
dc.subject.eng.fl_str_mv Rainfall-runoff Modeling
Artificial Neural Networks
K-Nearest Neighbors
Weka
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA CIVIL::ENGENHARIA HIDRAULICA::HIDROLOGIA
description This work presents the application of artificial neural networks and the k-nearest neighbors algorithm to model the rainfall-runoff process in the Piauitinga river basin, Sergipe. The input data used in the modeling were those from the Estância streamgauge station and from the Salgado raingauge station, which were grouped into calibration and validation sets, selected randomly. The simulation runs took place by means of the machine learning software Weka, and four different formulations were tested for the daily and monthly situations. The efficiency of the simulations performed was verified by the Nash-Sutcliffe coefficient, according to which considerable results were obtained for the situations presented, mainly for the models based on artificial neural networks. The formulation containing as features rainfall and streamflow of up to three previous periods was the one with best results, providing efficiency classified as good for the daily approach and very good for the monthly approach. Alternative modeling was carried out to compare the model using only one raingauge station with another using the average rainfall in the basin, and it was noted that the model that uses only the Salgado raingauge station achieved better or equal results than the others. Finally, new simulations were carried out using the initial periods for calibration and the final ones for validation, and it was noticed that the simulations that randomly classified the data gave much better results.
publishDate 2022
dc.date.issued.fl_str_mv 2022-11-17
dc.date.accessioned.fl_str_mv 2023-02-15T12:21:52Z
dc.date.available.fl_str_mv 2023-02-15T12:21:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/17147
identifier_str_mv Dantas, Luiz Antônio Muñoz. Aplicação de redes neurais artificiais e do algoritmo dos k-vizinhos mais próximos para modelar o processo chuva-vazão na Bacia do Rio Piauitinga (SE). São Cristóvão, 2022. Monografia (graduação em Engenharia Civil) – Departamento de Engenharia Civil, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2022
url http://ri.ufs.br/jspui/handle/riufs/17147
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.publisher.department.fl_str_mv DEC - Departamento de Engenharia Civil – São Cristóvão - Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/17147/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/17147/2/Luiz_Antonio_Munoz_Dantas.pdf
https://ri.ufs.br/jspui/bitstream/riufs/17147/3/Luiz_Antonio_Munoz_Dantas.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/17147/4/Luiz_Antonio_Munoz_Dantas.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
09c86d657a9e5629b08a49bced4df33b
b69546450af50afac9ceb2cd34fc34e7
83353d9a3b28c774cbecb3dba49fdb98
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110698231169024