Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/jspui/handle/riufs/14187 |
Resumo: | Electric power is very important for the economic development of all countries, and its consumption has been growing at an impressive rate, doing so faster than other types of power. Along with the increase in consumption, there are also concerns about environmental sustainability; after all, ensuring access to electric power in a reliable, sustainable, modern, and affordable way for all is one of the objectives of the Sustainable Development Goals, an agenda proposed by the United Nations (UN). In addition to encouraging the usage of renewable and less environmentally impactful energy, there are also concerns to create increasingly more power efficient devices, and to reduce the waste of electric power by seeking alternatives for a more efficient use of it. The active involvement of consumers results, for the most part, in a more efficient use of electric power, which increases interest in the development of technologies that make them aware of their habits. Studies show that, the greater the detail of information about electrical power consumption, the greater the amount of electric power saved by consumers. One of the most used techniques to analyze such details is Non-Intrusive Load Monitoring (NILM), who, by disaggregating the loads, distinguishes between each of the appliances and explores the electric power consumption of each one individually. Therefore, in order to contribute to this technique, and considering the ever-growing progress in the electronic and machine-learning areas, this study proposes a set of training strategies using a deep-learning method for load classification in an embedded system, and therefore, contribute to a more efficient use of electric power. Based on literature and experiments, we adopted the binary image of the voltage-current as the distinguishing feature, as it obtained the best results. In order to classify the devices, we used said images as input to the Convolutional Neural Network (CNN), which was chosen after obtaining the best results in the tests that were performed. After we used the leave-one-out cross-validation method, our CNN model was evaluated using the PLAID dataset and obtained an F-Score macro-average of 74.76% for PLAID1, 56.48% for PLAID2, and 73.97% for PLAID1+2, and those results were very close to literature. The novelty of this study is the quantization of the CNN model using TensorFlow Lite, and its application in a resource-constrained embedded system (ESP32). The accuracy rate achieved in testes performed with all data from the PLAID1+2 dataset was 98.55%, which shows that the embedded device can be used to perform the load classification with a high accuracy rate. |
id |
UFS-2_2d34fbc6da3197357e66fda7863cbce1 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/14187 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Tavares, Hugo MenezesPrado, Bruno Otávio PiedadeBispo, Kalil Araujo2021-05-06T16:52:21Z2021-05-06T16:52:21Z2020-11-25TAVARES, Hugo Menezes. Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional. 2020. 150 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, Sergipe, 2020.https://ri.ufs.br/jspui/handle/riufs/14187Autorização para publicação no Repositório da Universidade Federal de Sergipe (RI-UFS), concedida pelo autor.Electric power is very important for the economic development of all countries, and its consumption has been growing at an impressive rate, doing so faster than other types of power. Along with the increase in consumption, there are also concerns about environmental sustainability; after all, ensuring access to electric power in a reliable, sustainable, modern, and affordable way for all is one of the objectives of the Sustainable Development Goals, an agenda proposed by the United Nations (UN). In addition to encouraging the usage of renewable and less environmentally impactful energy, there are also concerns to create increasingly more power efficient devices, and to reduce the waste of electric power by seeking alternatives for a more efficient use of it. The active involvement of consumers results, for the most part, in a more efficient use of electric power, which increases interest in the development of technologies that make them aware of their habits. Studies show that, the greater the detail of information about electrical power consumption, the greater the amount of electric power saved by consumers. One of the most used techniques to analyze such details is Non-Intrusive Load Monitoring (NILM), who, by disaggregating the loads, distinguishes between each of the appliances and explores the electric power consumption of each one individually. Therefore, in order to contribute to this technique, and considering the ever-growing progress in the electronic and machine-learning areas, this study proposes a set of training strategies using a deep-learning method for load classification in an embedded system, and therefore, contribute to a more efficient use of electric power. Based on literature and experiments, we adopted the binary image of the voltage-current as the distinguishing feature, as it obtained the best results. In order to classify the devices, we used said images as input to the Convolutional Neural Network (CNN), which was chosen after obtaining the best results in the tests that were performed. After we used the leave-one-out cross-validation method, our CNN model was evaluated using the PLAID dataset and obtained an F-Score macro-average of 74.76% for PLAID1, 56.48% for PLAID2, and 73.97% for PLAID1+2, and those results were very close to literature. The novelty of this study is the quantization of the CNN model using TensorFlow Lite, and its application in a resource-constrained embedded system (ESP32). The accuracy rate achieved in testes performed with all data from the PLAID1+2 dataset was 98.55%, which shows that the embedded device can be used to perform the load classification with a high accuracy rate.A energia elétrica é de grande importância para o desenvolvimento econômico dos países e o seu consumo vem crescendo em um ritmo vertiginoso, mais rápido que os demais modais energéticos. Concomitantemente com o aumento do consumo, surge também a preocupação com o meio ambiente e a sustentabilidade, sendo que assegurar o acesso à energia elétrica de forma confiável, sustentável, moderna e a preço acessível para todos é um dos objetivos da Agenda 2030 proposta pela Organização das Nações Unidas (ONU). Além do incentivo ao uso de energias renováveis e de menor impacto ambiental, há também duas preocupações: criar dispositivos energeticamente cada vez mais eficientes e reduzir o desperdício de energia elétrica, buscando alternativas para um uso mais eficiente desta. O envolvimento ativo dos consumidores resulta, na maioria das vezes, em um uso mais eficiente da energia elétrica, aumentando o interesse no desenvolvimento de tecnologias que os conscientizem quanto aos seus hábitos. Estudos mostram que quanto maior o detalhamento de informações acerca do consumo elétrico, maior a quantidade de energia elétrica economizada pelos consumidores. Uma das técnicas mais utilizadas para esse detalhamento é o Monitoramento Não-Intrusivo de Cargas, que através da desagregação de cargas, faz a distinção entre as cargas elétricas e explora o consumo elétrico de cada uma delas individualmente. A fim de contribuir para essa técnica, e diante do crescente avanço nas áreas de eletrônica e aprendizado de máquina, este estudo propõe realizar a classificação de cargas em sistema embarcado utilizando um método de aprendizado profundo e, dessa forma, contribuir para um consumo mais eficiente de energia elétrica. Baseado na literatura e em experimentos realizados, adotamos como característica de distinção a imagem binária da trajetória tensão-corrente, que foi a que obteve melhores resultados. Para realizar a classificação dos aparelhos, utilizamos essas imagens como entrada para um método de aprendizado profundo, que foi a Rede Neural Convolucional (RNC), escolhido após obter melhores resultados nos testes que foram realizados. A contribuição deste trabalho é a quantização do modelo da RNC usando o TensorFlow Lite e a sua aplicação em um dispositivo embarcado, que foi o ESP32. Usando o método de validação cruzada leave-one-out, nosso modelo da RNC foi avaliado usando o dataset PLAID e obteve uma média macro F-Score de 74,76% para PLAID1, 56,48% para PLAID2 e 73,97% para PLAID1+2, resultados bastante próximos ao da literatura. Em testes realizados com todos os dados do PLAID1+2, a acurácia foi de 98,55% no ESP32, demostrando que o dispositivo embarcado pode ser utilizado para realizar a classificação de cargas com alta taxa de acurácia.Fundação de Apoio a Pesquisa e à Inovação Tecnológica do Estado de Sergipe - FAPITEC/SESão Cristóvão, SEporComputaçãoInteligência artificialRedes neurais (computação)Sistemas embarcados (Computadores)Monitoramento não-intrusivo de cargasRede neural convolucionalNon-Intrusive load monitoringLoad classificationConvolutional neural networkEmbedded systemsCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOClassificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucionalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/14187/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALHUGO_MENEZES_TAVARES.pdfHUGO_MENEZES_TAVARES.pdfapplication/pdf6491620https://ri.ufs.br/jspui/bitstream/riufs/14187/2/HUGO_MENEZES_TAVARES.pdffdef03084f92492c225bba5be693dbcaMD52TEXTHUGO_MENEZES_TAVARES.pdf.txtHUGO_MENEZES_TAVARES.pdf.txtExtracted texttext/plain311691https://ri.ufs.br/jspui/bitstream/riufs/14187/3/HUGO_MENEZES_TAVARES.pdf.txtc86f09c4c24ffd9a57bf6d885cf84eefMD53THUMBNAILHUGO_MENEZES_TAVARES.pdf.jpgHUGO_MENEZES_TAVARES.pdf.jpgGenerated Thumbnailimage/jpeg1439https://ri.ufs.br/jspui/bitstream/riufs/14187/4/HUGO_MENEZES_TAVARES.pdf.jpg8ab48e9b850cb7f9d3f63ec947e073b5MD54riufs/141872021-05-06 13:52:24.327oai:ufs.br:riufs/14187TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2021-05-06T16:52:24Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
title |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
spellingShingle |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional Tavares, Hugo Menezes Computação Inteligência artificial Redes neurais (computação) Sistemas embarcados (Computadores) Monitoramento não-intrusivo de cargas Rede neural convolucional Non-Intrusive load monitoring Load classification Convolutional neural network Embedded systems CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
title_full |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
title_fullStr |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
title_full_unstemmed |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
title_sort |
Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional |
author |
Tavares, Hugo Menezes |
author_facet |
Tavares, Hugo Menezes |
author_role |
author |
dc.contributor.author.fl_str_mv |
Tavares, Hugo Menezes |
dc.contributor.advisor1.fl_str_mv |
Prado, Bruno Otávio Piedade |
dc.contributor.advisor-co1.fl_str_mv |
Bispo, Kalil Araujo |
contributor_str_mv |
Prado, Bruno Otávio Piedade Bispo, Kalil Araujo |
dc.subject.por.fl_str_mv |
Computação Inteligência artificial Redes neurais (computação) Sistemas embarcados (Computadores) Monitoramento não-intrusivo de cargas Rede neural convolucional |
topic |
Computação Inteligência artificial Redes neurais (computação) Sistemas embarcados (Computadores) Monitoramento não-intrusivo de cargas Rede neural convolucional Non-Intrusive load monitoring Load classification Convolutional neural network Embedded systems CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Non-Intrusive load monitoring Load classification Convolutional neural network Embedded systems |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Electric power is very important for the economic development of all countries, and its consumption has been growing at an impressive rate, doing so faster than other types of power. Along with the increase in consumption, there are also concerns about environmental sustainability; after all, ensuring access to electric power in a reliable, sustainable, modern, and affordable way for all is one of the objectives of the Sustainable Development Goals, an agenda proposed by the United Nations (UN). In addition to encouraging the usage of renewable and less environmentally impactful energy, there are also concerns to create increasingly more power efficient devices, and to reduce the waste of electric power by seeking alternatives for a more efficient use of it. The active involvement of consumers results, for the most part, in a more efficient use of electric power, which increases interest in the development of technologies that make them aware of their habits. Studies show that, the greater the detail of information about electrical power consumption, the greater the amount of electric power saved by consumers. One of the most used techniques to analyze such details is Non-Intrusive Load Monitoring (NILM), who, by disaggregating the loads, distinguishes between each of the appliances and explores the electric power consumption of each one individually. Therefore, in order to contribute to this technique, and considering the ever-growing progress in the electronic and machine-learning areas, this study proposes a set of training strategies using a deep-learning method for load classification in an embedded system, and therefore, contribute to a more efficient use of electric power. Based on literature and experiments, we adopted the binary image of the voltage-current as the distinguishing feature, as it obtained the best results. In order to classify the devices, we used said images as input to the Convolutional Neural Network (CNN), which was chosen after obtaining the best results in the tests that were performed. After we used the leave-one-out cross-validation method, our CNN model was evaluated using the PLAID dataset and obtained an F-Score macro-average of 74.76% for PLAID1, 56.48% for PLAID2, and 73.97% for PLAID1+2, and those results were very close to literature. The novelty of this study is the quantization of the CNN model using TensorFlow Lite, and its application in a resource-constrained embedded system (ESP32). The accuracy rate achieved in testes performed with all data from the PLAID1+2 dataset was 98.55%, which shows that the embedded device can be used to perform the load classification with a high accuracy rate. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-11-25 |
dc.date.accessioned.fl_str_mv |
2021-05-06T16:52:21Z |
dc.date.available.fl_str_mv |
2021-05-06T16:52:21Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
TAVARES, Hugo Menezes. Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional. 2020. 150 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, Sergipe, 2020. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/14187 |
dc.identifier.license.pt_BR.fl_str_mv |
Autorização para publicação no Repositório da Universidade Federal de Sergipe (RI-UFS), concedida pelo autor. |
identifier_str_mv |
TAVARES, Hugo Menezes. Classificação para o monitoramento não-intrusivo de cargas em sistema embarcado com rede neural convolucional. 2020. 150 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Sergipe, São Cristóvão, Sergipe, 2020. Autorização para publicação no Repositório da Universidade Federal de Sergipe (RI-UFS), concedida pelo autor. |
url |
https://ri.ufs.br/jspui/handle/riufs/14187 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Ciência da Computação |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/14187/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/14187/2/HUGO_MENEZES_TAVARES.pdf https://ri.ufs.br/jspui/bitstream/riufs/14187/3/HUGO_MENEZES_TAVARES.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/14187/4/HUGO_MENEZES_TAVARES.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c fdef03084f92492c225bba5be693dbca c86f09c4c24ffd9a57bf6d885cf84eef 8ab48e9b850cb7f9d3f63ec947e073b5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110658134671360 |