Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/13087 |
Resumo: | This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented. |
id |
UFS-2_31233792778966fe56d7b86ec4575fd0 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/13087 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Santos Junior, Emanuel Vieira dosSmirnov, Andrei2020-03-20T11:46:17Z2020-03-20T11:46:17Z2019-12-13SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/13087This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented.Este trabalho trata do estudo sobre o hamiltoniano de Dirac unidimensional no intervalo finito. Foi aplicado a teoria de von Neumann de extensões auto-adjuntas de operadores sim´etricos para determinar a existência de uma família quadri-param´etrica de extens˜oes auto-adjuntas dos hamiltonianos de Dirac. Foi utilizado o formalismo AIM (Asorey, Ibort, Marmo) para determinar a forma expl´ıcita das condições de contorno e a constru¸c˜ao da fam´ılia dos hamiltonianos auto-adjuntos. Usando essas condi¸c˜oes de contorno foi obtida a equa¸c˜ao que define o espectro de energia da part´ıcula e a forma expl´ıcita das autofun¸c˜oes para todos os membros da fam´ılia quadri-param´etrica. Foi discutida a especificidade do problema que consiste na existˆencia de estados com energia menor do que a energia de repouso, ”edge states”. Foi demonstrado graficamente a dependˆencia da energia dos ”edge states” para algumas classes bi-param´etricas da fam´ılia. Para os conjuntos das autofun¸c˜oes dos hamiltonianos da fam´ılia quadri-param´etrica foi demonstrada de forma expl´ıcita a relação de ortogonalidade e apresentado o esquema de prova da completeza dos conjuntos das autofunções.São Cristóvão, SEporFísicaEnsino de FísicaHamiltoniano de DiracCondições de contorno auto-adjuntasEspectroCompletezaDirac HamiltonianSelf-adjoint boundary conditionsSpectrumCompletenessCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERALConstrução e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finitoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDFI - Departamento de Física – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/13087/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALEmanuel_Vieira_Santos_Junior.pdfEmanuel_Vieira_Santos_Junior.pdfapplication/pdf927071https://ri.ufs.br/jspui/bitstream/riufs/13087/2/Emanuel_Vieira_Santos_Junior.pdf07dad01ea29fd2923fd1272c04eca01fMD52TEXTEmanuel_Vieira_Santos_Junior.pdf.txtEmanuel_Vieira_Santos_Junior.pdf.txtExtracted texttext/plain106096https://ri.ufs.br/jspui/bitstream/riufs/13087/3/Emanuel_Vieira_Santos_Junior.pdf.txtdf53d6bc26c87554f61ba214da3eda32MD53THUMBNAILEmanuel_Vieira_Santos_Junior.pdf.jpgEmanuel_Vieira_Santos_Junior.pdf.jpgGenerated Thumbnailimage/jpeg1237https://ri.ufs.br/jspui/bitstream/riufs/13087/4/Emanuel_Vieira_Santos_Junior.pdf.jpgf718c73114b6292081218f198055a92cMD54riufs/130872020-03-20 08:46:17.734oai:ufs.br:riufs/13087TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2020-03-20T11:46:17Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
title |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
spellingShingle |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito Santos Junior, Emanuel Vieira dos Física Ensino de Física Hamiltoniano de Dirac Condições de contorno auto-adjuntas Espectro Completeza Dirac Hamiltonian Self-adjoint boundary conditions Spectrum Completeness CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
title_short |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
title_full |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
title_fullStr |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
title_full_unstemmed |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
title_sort |
Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito |
author |
Santos Junior, Emanuel Vieira dos |
author_facet |
Santos Junior, Emanuel Vieira dos |
author_role |
author |
dc.contributor.author.fl_str_mv |
Santos Junior, Emanuel Vieira dos |
dc.contributor.advisor1.fl_str_mv |
Smirnov, Andrei |
contributor_str_mv |
Smirnov, Andrei |
dc.subject.por.fl_str_mv |
Física Ensino de Física Hamiltoniano de Dirac Condições de contorno auto-adjuntas Espectro Completeza |
topic |
Física Ensino de Física Hamiltoniano de Dirac Condições de contorno auto-adjuntas Espectro Completeza Dirac Hamiltonian Self-adjoint boundary conditions Spectrum Completeness CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
dc.subject.eng.fl_str_mv |
Dirac Hamiltonian Self-adjoint boundary conditions Spectrum Completeness |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
description |
This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-12-13 |
dc.date.accessioned.fl_str_mv |
2020-03-20T11:46:17Z |
dc.date.available.fl_str_mv |
2020-03-20T11:46:17Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/13087 |
identifier_str_mv |
SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019. |
url |
http://ri.ufs.br/jspui/handle/riufs/13087 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.department.fl_str_mv |
DFI - Departamento de Física – São Cristóvão - Presencial |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/13087/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/13087/2/Emanuel_Vieira_Santos_Junior.pdf https://ri.ufs.br/jspui/bitstream/riufs/13087/3/Emanuel_Vieira_Santos_Junior.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/13087/4/Emanuel_Vieira_Santos_Junior.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 07dad01ea29fd2923fd1272c04eca01f df53d6bc26c87554f61ba214da3eda32 f718c73114b6292081218f198055a92c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110663860944896 |