Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito

Detalhes bibliográficos
Autor(a) principal: Santos Junior, Emanuel Vieira dos
Data de Publicação: 2019
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/13087
Resumo: This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented.
id UFS-2_31233792778966fe56d7b86ec4575fd0
oai_identifier_str oai:ufs.br:riufs/13087
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Santos Junior, Emanuel Vieira dosSmirnov, Andrei2020-03-20T11:46:17Z2020-03-20T11:46:17Z2019-12-13SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/13087This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented.Este trabalho trata do estudo sobre o hamiltoniano de Dirac unidimensional no intervalo finito. Foi aplicado a teoria de von Neumann de extensões auto-adjuntas de operadores sim´etricos para determinar a existência de uma família quadri-param´etrica de extens˜oes auto-adjuntas dos hamiltonianos de Dirac. Foi utilizado o formalismo AIM (Asorey, Ibort, Marmo) para determinar a forma expl´ıcita das condições de contorno e a constru¸c˜ao da fam´ılia dos hamiltonianos auto-adjuntos. Usando essas condi¸c˜oes de contorno foi obtida a equa¸c˜ao que define o espectro de energia da part´ıcula e a forma expl´ıcita das autofun¸c˜oes para todos os membros da fam´ılia quadri-param´etrica. Foi discutida a especificidade do problema que consiste na existˆencia de estados com energia menor do que a energia de repouso, ”edge states”. Foi demonstrado graficamente a dependˆencia da energia dos ”edge states” para algumas classes bi-param´etricas da fam´ılia. Para os conjuntos das autofun¸c˜oes dos hamiltonianos da fam´ılia quadri-param´etrica foi demonstrada de forma expl´ıcita a relação de ortogonalidade e apresentado o esquema de prova da completeza dos conjuntos das autofunções.São Cristóvão, SEporFísicaEnsino de FísicaHamiltoniano de DiracCondições de contorno auto-adjuntasEspectroCompletezaDirac HamiltonianSelf-adjoint boundary conditionsSpectrumCompletenessCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERALConstrução e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finitoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDFI - Departamento de Física – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/13087/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALEmanuel_Vieira_Santos_Junior.pdfEmanuel_Vieira_Santos_Junior.pdfapplication/pdf927071https://ri.ufs.br/jspui/bitstream/riufs/13087/2/Emanuel_Vieira_Santos_Junior.pdf07dad01ea29fd2923fd1272c04eca01fMD52TEXTEmanuel_Vieira_Santos_Junior.pdf.txtEmanuel_Vieira_Santos_Junior.pdf.txtExtracted texttext/plain106096https://ri.ufs.br/jspui/bitstream/riufs/13087/3/Emanuel_Vieira_Santos_Junior.pdf.txtdf53d6bc26c87554f61ba214da3eda32MD53THUMBNAILEmanuel_Vieira_Santos_Junior.pdf.jpgEmanuel_Vieira_Santos_Junior.pdf.jpgGenerated Thumbnailimage/jpeg1237https://ri.ufs.br/jspui/bitstream/riufs/13087/4/Emanuel_Vieira_Santos_Junior.pdf.jpgf718c73114b6292081218f198055a92cMD54riufs/130872020-03-20 08:46:17.734oai:ufs.br:riufs/13087TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2020-03-20T11:46:17Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
title Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
spellingShingle Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
Santos Junior, Emanuel Vieira dos
Física
Ensino de Física
Hamiltoniano de Dirac
Condições de contorno auto-adjuntas
Espectro
Completeza
Dirac Hamiltonian
Self-adjoint boundary conditions
Spectrum
Completeness
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
title_short Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
title_full Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
title_fullStr Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
title_full_unstemmed Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
title_sort Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito
author Santos Junior, Emanuel Vieira dos
author_facet Santos Junior, Emanuel Vieira dos
author_role author
dc.contributor.author.fl_str_mv Santos Junior, Emanuel Vieira dos
dc.contributor.advisor1.fl_str_mv Smirnov, Andrei
contributor_str_mv Smirnov, Andrei
dc.subject.por.fl_str_mv Física
Ensino de Física
Hamiltoniano de Dirac
Condições de contorno auto-adjuntas
Espectro
Completeza
topic Física
Ensino de Física
Hamiltoniano de Dirac
Condições de contorno auto-adjuntas
Espectro
Completeza
Dirac Hamiltonian
Self-adjoint boundary conditions
Spectrum
Completeness
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
dc.subject.eng.fl_str_mv Dirac Hamiltonian
Self-adjoint boundary conditions
Spectrum
Completeness
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL
description This work deals with the study of the one-dimensional Dirac Hamiltonian in a finite interval. Was applied von Neumann theory of self-adjoint extensions of symmetric operators to determine the existence of a four-parametric self-adjoint family of Dirac hamiltonians. For the construction of the self-adjoint hamiltonians of this family, was applied the AIM (Asorey, Ibort, Marmo) formalism where we explicitly determine the form of the boundary conditions. Using these boundary conditions we obtain the equation that defines the particle energy spectrum and the explicit form of the eigenfunctions for all the members of the four-parametric family. Was discussed the peculiarities of the problem that consists in the existence of the states with energy less than rest energy, edge states. Was graphically demonstrated the dependence of the energy of edge states for some biparametric classes of the family. For the sets of the eigenfunctions of the four-parametric family of hamiltonians, the orthogonality relationship was explicitly demonstrated and the scheme of the proof of completeness of the sets of the eigenfunctions was presented.
publishDate 2019
dc.date.issued.fl_str_mv 2019-12-13
dc.date.accessioned.fl_str_mv 2020-03-20T11:46:17Z
dc.date.available.fl_str_mv 2020-03-20T11:46:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/13087
identifier_str_mv SANTOS JUNIOR, Emanuel Vieira dos. Construção e propriedades de uma família de hamiltonianos de Dirac auto-adjuntos no intervalo finito. São Cristóvão, SE, 2019. Monografia – Departamento de Física, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, 2019.
url http://ri.ufs.br/jspui/handle/riufs/13087
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.publisher.department.fl_str_mv DFI - Departamento de Física – São Cristóvão - Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/13087/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/13087/2/Emanuel_Vieira_Santos_Junior.pdf
https://ri.ufs.br/jspui/bitstream/riufs/13087/3/Emanuel_Vieira_Santos_Junior.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/13087/4/Emanuel_Vieira_Santos_Junior.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
07dad01ea29fd2923fd1272c04eca01f
df53d6bc26c87554f61ba214da3eda32
f718c73114b6292081218f198055a92c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110663860944896