Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.

Detalhes bibliográficos
Autor(a) principal: Ferreira, Camila Felix
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/17081
Resumo: Moringa seeds (Moringa oleífera) have received special attention because of the potential to be applied as natural coagulant in water treatment, as well as source for biodiesel production, due to high quality of the oil contained within them. However, they also have high moisture content, requiring to be submmitted to drying process. Aiming to contribute with P, D & I of energy saving dryers to this seed specie, this work had as main objective to evaluate the potential use of infrared radiation for drying seeds from Moringa oleífera Lam, through an experimental study involving the determination of drying kinetics, the shrinkage characterization, the evaluation of energy consumption as well as of the process effects on the product quality. Drying tests were performed at IR source temperatures of 90, 120 e 160°C. Image analysis was employed to quantify particles shrinkage during drying. IR drying of moringa seeds was accompanied by reductions of particles volume and surface area, which were found to be dependent only from dimensionless moisture and seed structure (with and without seed coat). The IR drying behavior of the material was characterized by the presence of three drying periods: heating up, constant moisture flux and falling moisture flux. This latter was predominant in all investigated conditions, indicating that diffusion controls the drying process. Neglecting shrinkage of kernel during IR drying led to an erroneous shortening of the constant flux period and overestimation of the mass transfer by diffusion. The shell that coats the seeds has limited the volume contraction of particle (10%), when compared to the shrinkage of unshelled seeds or kernels (60%), thus contributing to the development of a porous structure within the particle. Although the shell acts as a resistance to mass and heat transfer, mainly in initial stages of drying, the time required for the seed to reach the target moisture was not significantly different from that verified for the kernels. The specific energy consumption was in the range 36,4 a 45,8 MJ kg-1 evaporated water for seeds with tegument and 38,7 a 46,5 MJ kg-1 for seeds without tegument. All IR-dried samples presented physiological viability, according to tetrazolium test. The total changes in product color indicated that the seeds were more susceptible to degradation of their components and browning after shell removal, being recommended that in long processes final material temperature does not reach values higher than 40oC, or is submitted to rapid drying conditions. An overall analysis based on the combination of product quality, mass transfer and energy consumption aspects has indicated the IR heating temperature of 160oC as the optimum condition to fast and efficiently reduce the moisture to levels considered safe for storage, preserving quality attributes of the product. Regarding the influence of shell, it is not needed to peel the seeds before drying, leading to non-time consuming process, also avoiding additional costs with a pre - treatment step of the material.
id UFS-2_539a95ece699700a9fb9d299974dd947
oai_identifier_str oai:ufs.br:riufs/17081
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Ferreira, Camila FelixPrado, Manoel Marcelo do2023-02-07T15:27:35Z2023-02-07T15:27:35Z2015-07-31FERREIRA, Camila Felix. Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam. 2015. 121 f. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Sergipe, São Cristóvão, 2015.http://ri.ufs.br/jspui/handle/riufs/17081Moringa seeds (Moringa oleífera) have received special attention because of the potential to be applied as natural coagulant in water treatment, as well as source for biodiesel production, due to high quality of the oil contained within them. However, they also have high moisture content, requiring to be submmitted to drying process. Aiming to contribute with P, D & I of energy saving dryers to this seed specie, this work had as main objective to evaluate the potential use of infrared radiation for drying seeds from Moringa oleífera Lam, through an experimental study involving the determination of drying kinetics, the shrinkage characterization, the evaluation of energy consumption as well as of the process effects on the product quality. Drying tests were performed at IR source temperatures of 90, 120 e 160°C. Image analysis was employed to quantify particles shrinkage during drying. IR drying of moringa seeds was accompanied by reductions of particles volume and surface area, which were found to be dependent only from dimensionless moisture and seed structure (with and without seed coat). The IR drying behavior of the material was characterized by the presence of three drying periods: heating up, constant moisture flux and falling moisture flux. This latter was predominant in all investigated conditions, indicating that diffusion controls the drying process. Neglecting shrinkage of kernel during IR drying led to an erroneous shortening of the constant flux period and overestimation of the mass transfer by diffusion. The shell that coats the seeds has limited the volume contraction of particle (10%), when compared to the shrinkage of unshelled seeds or kernels (60%), thus contributing to the development of a porous structure within the particle. Although the shell acts as a resistance to mass and heat transfer, mainly in initial stages of drying, the time required for the seed to reach the target moisture was not significantly different from that verified for the kernels. The specific energy consumption was in the range 36,4 a 45,8 MJ kg-1 evaporated water for seeds with tegument and 38,7 a 46,5 MJ kg-1 for seeds without tegument. All IR-dried samples presented physiological viability, according to tetrazolium test. The total changes in product color indicated that the seeds were more susceptible to degradation of their components and browning after shell removal, being recommended that in long processes final material temperature does not reach values higher than 40oC, or is submitted to rapid drying conditions. An overall analysis based on the combination of product quality, mass transfer and energy consumption aspects has indicated the IR heating temperature of 160oC as the optimum condition to fast and efficiently reduce the moisture to levels considered safe for storage, preserving quality attributes of the product. Regarding the influence of shell, it is not needed to peel the seeds before drying, leading to non-time consuming process, also avoiding additional costs with a pre - treatment step of the material.As sementes de moringa (Moringa oleífera) vêm ganhando destaque devido ao grande potencial de aplicação no tratamento de água como coagulante natural e para a produção de biodiesel, devido à elevada qualidade de seu óleo. Entretanto, essas sementes possuem também um alto teor de umidade, necessitando serem submetidas a um processo de secagem. Visando contribuir para o P, D & I de secadores com menor custo energético para esta espécie de semente, este trabalho teve como objetivo geral avaliar o uso da radiação eletromagnética na região do infravermelho (IV) para a secagem de sementes de Moringa oleífera Lam, através de um estudo experimental envolvendo a determinação da cinética de secagem, a caracterização do encolhimento das partículas, a avaliação do consumo de energia do processo e da influência da intensidade de radiação IV sobre atributos de qualidade do produto. Os experimentos de secagem foram conduzidos com temperaturas da fonte de aquecimento IV de 90, 120 e 160°C. Análise de imagens foi utilizada para investigar o encolhimento das partículas durante o processo. A secagem IV de sementes de moringa em camada fina foi acompanhada por reduções de volume e de área superficial das partículas, as quais mostraram-se dependentes apenas do adimensional de umidade e da estrutura da semente (com e sem tegumento). O comportamento de secagem do material foi caracterizado pela presença de três períodos: de aquecimento, de fluxo de umidade constante e de fluxo decrescente. O período de fluxo decrescente predominou em toda a faixa de temperaturas, indicando que as resistências internas à transferência de massa governam o processo de secagem. Negligenciar o encolhimento das sementes sem tegumento abreviou erroneamente o período de fluxo constante, levando a uma superestimação da difusividade efetiva e, consequentemente da transferência de massa por difusão. A presença do tegumento restringiu a contração de volume da partícula (10%), comparado aos 60% de encolhimento das sementes sem tegumento, favorecendo o desenvolvimento de uma estrutura interna porosa. Apesar do tegumento atuar como resistência à transferência de calor e massa, principalmente nos estágios iniciais de secagem, o tempo necessário para as sementes com tegumento atingirem a umidade alvo não foi significativamente diferente daquele observado para sementes sem tegumento. O consumo de energia específica ficou na faixa de 36,4 a 45,8 MJ kg-1 água evaporada para sementes com tegumento, e na faixa de 38,7 a 46,5 MJ kg-1 para sementes sem tegumento. Todas as amostras de moringa com e sem tegumento submetidas ao processo de secagem via radiação IV apresentaram viabilidade de germinação de acordo com o teste de tetrazólio. A avaliação da variação total de cor do produto indicou que as sementes ficaram mais suscetíveis à degradação dos seus constituintes e ao escurecimento após a remoção do tegumento, sendo recomendado que o material não atinja durante processos longos uma temperatura final superior a 40oC ou que seja submetido a condições de secagem rápida. A avaliação combinada dos aspectos relacionados à transferência de massa, consumo de energia específica e qualidade do produto indicou a temperatura de aquecimento IV de 160oC como a condição ótima para reduzir de forma rápida e eficiente a umidade para níveis considerados seguros para o armazenamento, preservando atributos de qualidade do produto. Com respeito à influência do tegumento, não é necessário descascar as sementes antes da secagem, o que implica numa economia de tempo, evitando também o custo adicional de uma etapa de pré-tratamento do material.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporEngenharia químicaOndas eletromagnéticasMoringa oleiferaTransferência de massaSecagem IVMoringaEncolhimentoIR dryingMoringa seedsShrinkageMass transferENGENHARIAS::ENGENHARIA QUIMICAAplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Engenharia QuímicaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALCAMILA_FELIX_FERREIRA.pdfCAMILA_FELIX_FERREIRA.pdfapplication/pdf2164266https://ri.ufs.br/jspui/bitstream/riufs/17081/2/CAMILA_FELIX_FERREIRA.pdf5921e3985c12b8bcd28cff815769968dMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/17081/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51TEXTCAMILA_FELIX_FERREIRA.pdf.txtCAMILA_FELIX_FERREIRA.pdf.txtExtracted texttext/plain206094https://ri.ufs.br/jspui/bitstream/riufs/17081/3/CAMILA_FELIX_FERREIRA.pdf.txt00157926c3dc1f8885f73529ed5780b7MD53THUMBNAILCAMILA_FELIX_FERREIRA.pdf.jpgCAMILA_FELIX_FERREIRA.pdf.jpgGenerated Thumbnailimage/jpeg1206https://ri.ufs.br/jspui/bitstream/riufs/17081/4/CAMILA_FELIX_FERREIRA.pdf.jpg531e043033fa244a10f06f1262a3618aMD54riufs/170812023-02-07 12:27:35.327oai:ufs.br:riufs/17081TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2023-02-07T15:27:35Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
title Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
spellingShingle Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
Ferreira, Camila Felix
Engenharia química
Ondas eletromagnéticas
Moringa oleifera
Transferência de massa
Secagem IV
Moringa
Encolhimento
IR drying
Moringa seeds
Shrinkage
Mass transfer
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
title_full Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
title_fullStr Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
title_full_unstemmed Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
title_sort Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam.
author Ferreira, Camila Felix
author_facet Ferreira, Camila Felix
author_role author
dc.contributor.author.fl_str_mv Ferreira, Camila Felix
dc.contributor.advisor1.fl_str_mv Prado, Manoel Marcelo do
contributor_str_mv Prado, Manoel Marcelo do
dc.subject.por.fl_str_mv Engenharia química
Ondas eletromagnéticas
Moringa oleifera
Transferência de massa
Secagem IV
Moringa
Encolhimento
topic Engenharia química
Ondas eletromagnéticas
Moringa oleifera
Transferência de massa
Secagem IV
Moringa
Encolhimento
IR drying
Moringa seeds
Shrinkage
Mass transfer
ENGENHARIAS::ENGENHARIA QUIMICA
dc.subject.eng.fl_str_mv IR drying
Moringa seeds
Shrinkage
Mass transfer
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA QUIMICA
description Moringa seeds (Moringa oleífera) have received special attention because of the potential to be applied as natural coagulant in water treatment, as well as source for biodiesel production, due to high quality of the oil contained within them. However, they also have high moisture content, requiring to be submmitted to drying process. Aiming to contribute with P, D & I of energy saving dryers to this seed specie, this work had as main objective to evaluate the potential use of infrared radiation for drying seeds from Moringa oleífera Lam, through an experimental study involving the determination of drying kinetics, the shrinkage characterization, the evaluation of energy consumption as well as of the process effects on the product quality. Drying tests were performed at IR source temperatures of 90, 120 e 160°C. Image analysis was employed to quantify particles shrinkage during drying. IR drying of moringa seeds was accompanied by reductions of particles volume and surface area, which were found to be dependent only from dimensionless moisture and seed structure (with and without seed coat). The IR drying behavior of the material was characterized by the presence of three drying periods: heating up, constant moisture flux and falling moisture flux. This latter was predominant in all investigated conditions, indicating that diffusion controls the drying process. Neglecting shrinkage of kernel during IR drying led to an erroneous shortening of the constant flux period and overestimation of the mass transfer by diffusion. The shell that coats the seeds has limited the volume contraction of particle (10%), when compared to the shrinkage of unshelled seeds or kernels (60%), thus contributing to the development of a porous structure within the particle. Although the shell acts as a resistance to mass and heat transfer, mainly in initial stages of drying, the time required for the seed to reach the target moisture was not significantly different from that verified for the kernels. The specific energy consumption was in the range 36,4 a 45,8 MJ kg-1 evaporated water for seeds with tegument and 38,7 a 46,5 MJ kg-1 for seeds without tegument. All IR-dried samples presented physiological viability, according to tetrazolium test. The total changes in product color indicated that the seeds were more susceptible to degradation of their components and browning after shell removal, being recommended that in long processes final material temperature does not reach values higher than 40oC, or is submitted to rapid drying conditions. An overall analysis based on the combination of product quality, mass transfer and energy consumption aspects has indicated the IR heating temperature of 160oC as the optimum condition to fast and efficiently reduce the moisture to levels considered safe for storage, preserving quality attributes of the product. Regarding the influence of shell, it is not needed to peel the seeds before drying, leading to non-time consuming process, also avoiding additional costs with a pre - treatment step of the material.
publishDate 2015
dc.date.issued.fl_str_mv 2015-07-31
dc.date.accessioned.fl_str_mv 2023-02-07T15:27:35Z
dc.date.available.fl_str_mv 2023-02-07T15:27:35Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FERREIRA, Camila Felix. Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam. 2015. 121 f. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Sergipe, São Cristóvão, 2015.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/17081
identifier_str_mv FERREIRA, Camila Felix. Aplicação de energia eletromagnética na região do infravermelho para a secagem de sementes de Moringa oleifera Lam. 2015. 121 f. Dissertação (Mestrado em Engenharia Química) – Universidade Federal de Sergipe, São Cristóvão, 2015.
url http://ri.ufs.br/jspui/handle/riufs/17081
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Engenharia Química
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/17081/2/CAMILA_FELIX_FERREIRA.pdf
https://ri.ufs.br/jspui/bitstream/riufs/17081/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/17081/3/CAMILA_FELIX_FERREIRA.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/17081/4/CAMILA_FELIX_FERREIRA.pdf.jpg
bitstream.checksum.fl_str_mv 5921e3985c12b8bcd28cff815769968d
098cbbf65c2c15e1fb2e49c5d306a44c
00157926c3dc1f8885f73529ed5780b7
531e043033fa244a10f06f1262a3618a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110686120116224