Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico

Detalhes bibliográficos
Autor(a) principal: Mascarenhas, Reginaldo Matheus Gois
Data de Publicação: 2019
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/12266
Resumo: Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals.
id UFS-2_53ab756ab001db9af322017e25d8c84c
oai_identifier_str oai:ufs.br:riufs/12266
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Mascarenhas, Reginaldo Matheus GoisOliveira, Tiago Branquinho2019-10-30T22:29:14Z2019-10-30T22:29:14Z2019-06-11MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/12266Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals.O conhecimento preliminar sobre a toxicidade de novas substâncias para uso alimentar pode contribuir com a rápida seleção de substâncias úteis e cada vez mais seguras. Com esse objetivo, um modelo de QSTR (Quantitative Structure-Toxicity Relationship) foi desenvolvido com 139.395 estruturas obtidas a partir de três diferentes listas de substâncias tóxicas (US EPA DSSTox) e atóxicas (FEMA GRAS™ e FDA GRAS). As coordenadas 2D foram obtidas, padronizadas e checadas, resultando em um total de 4.860 fragmentos dos fingerprints definidos por Klekota e Roth, que foram calculados para cada substância, sendo utilizados como variáveis independentes. Os dados foram processados com o objetivo de eliminar as variáveis altamente correlacionadas e os fragmentos com variância próxima a zero, reduzindo o número de fragmentos a 166. As variáveis dependentes consistiram na classificação 0 (atóxicos)/1(tóxicos). Os modelos de classificação foram criados com árvore de decisão usando o algoritmo J48 e árvore aleatória. Já os modelos treino, validação cruzada e validação externa, foram avaliados com base no seu desempenho de previsão. O melhor modelo selecionado foi a árvore aleatória, por obter os melhores valores para validação externa (acurácia = 0,9658; sensibilidade = 0,9798; especificidade = 0,5495; eficiência = 0,7640 e coeficiente phi = 0,4941). O modelo de QSTR desenvolvido pode ser utilizado para prever a toxicidade de novos aditivos alimentares, coadjuvantes de tecnologia de fabricação e nutracêuticos.São Cristóvão, SEporFarmáciaEnsino de farmáciaAditivos alimentaresToxicidadeQuimioinformáticaFood additivesToxicityChemoinformaticsCIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICAAvaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silicoEvaluation of general toxicity in food constituents using in silico toolsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDFA - Departamento de Farmácia – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/12266/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALReginaldo_Matheus_Gois_Mascarenhas.pdfReginaldo_Matheus_Gois_Mascarenhas.pdfapplication/pdf487964https://ri.ufs.br/jspui/bitstream/riufs/12266/2/Reginaldo_Matheus_Gois_Mascarenhas.pdf5402ea48d652e59d52736a5a46aa3d2cMD52TEXTReginaldo_Matheus_Gois_Mascarenhas.pdf.txtReginaldo_Matheus_Gois_Mascarenhas.pdf.txtExtracted texttext/plain42493https://ri.ufs.br/jspui/bitstream/riufs/12266/3/Reginaldo_Matheus_Gois_Mascarenhas.pdf.txt58729f6e7434aeea51b16893d9adfe79MD53THUMBNAILReginaldo_Matheus_Gois_Mascarenhas.pdf.jpgReginaldo_Matheus_Gois_Mascarenhas.pdf.jpgGenerated Thumbnailimage/jpeg1210https://ri.ufs.br/jspui/bitstream/riufs/12266/4/Reginaldo_Matheus_Gois_Mascarenhas.pdf.jpgec13c77ac8e6e3cde81dab02cd1d6191MD54riufs/122662019-10-30 19:30:13.425oai:ufs.br:riufs/12266TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-10-30T22:30:13Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
dc.title.alternative.eng.fl_str_mv Evaluation of general toxicity in food constituents using in silico tools
title Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
spellingShingle Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
Mascarenhas, Reginaldo Matheus Gois
Farmácia
Ensino de farmácia
Aditivos alimentares
Toxicidade
Quimioinformática
Food additives
Toxicity
Chemoinformatics
CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA
title_short Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
title_full Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
title_fullStr Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
title_full_unstemmed Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
title_sort Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
author Mascarenhas, Reginaldo Matheus Gois
author_facet Mascarenhas, Reginaldo Matheus Gois
author_role author
dc.contributor.author.fl_str_mv Mascarenhas, Reginaldo Matheus Gois
dc.contributor.advisor1.fl_str_mv Oliveira, Tiago Branquinho
contributor_str_mv Oliveira, Tiago Branquinho
dc.subject.por.fl_str_mv Farmácia
Ensino de farmácia
Aditivos alimentares
Toxicidade
Quimioinformática
topic Farmácia
Ensino de farmácia
Aditivos alimentares
Toxicidade
Quimioinformática
Food additives
Toxicity
Chemoinformatics
CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA
dc.subject.eng.fl_str_mv Food additives
Toxicity
Chemoinformatics
dc.subject.cnpq.fl_str_mv CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA
description Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals.
publishDate 2019
dc.date.accessioned.fl_str_mv 2019-10-30T22:29:14Z
dc.date.available.fl_str_mv 2019-10-30T22:29:14Z
dc.date.issued.fl_str_mv 2019-06-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/12266
identifier_str_mv MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019.
url http://ri.ufs.br/jspui/handle/riufs/12266
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.publisher.department.fl_str_mv DFA - Departamento de Farmácia – São Cristóvão - Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/12266/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/12266/2/Reginaldo_Matheus_Gois_Mascarenhas.pdf
https://ri.ufs.br/jspui/bitstream/riufs/12266/3/Reginaldo_Matheus_Gois_Mascarenhas.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/12266/4/Reginaldo_Matheus_Gois_Mascarenhas.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
5402ea48d652e59d52736a5a46aa3d2c
58729f6e7434aeea51b16893d9adfe79
ec13c77ac8e6e3cde81dab02cd1d6191
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110771604226048