Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/12266 |
Resumo: | Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals. |
id |
UFS-2_53ab756ab001db9af322017e25d8c84c |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/12266 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Mascarenhas, Reginaldo Matheus GoisOliveira, Tiago Branquinho2019-10-30T22:29:14Z2019-10-30T22:29:14Z2019-06-11MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/12266Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals.O conhecimento preliminar sobre a toxicidade de novas substâncias para uso alimentar pode contribuir com a rápida seleção de substâncias úteis e cada vez mais seguras. Com esse objetivo, um modelo de QSTR (Quantitative Structure-Toxicity Relationship) foi desenvolvido com 139.395 estruturas obtidas a partir de três diferentes listas de substâncias tóxicas (US EPA DSSTox) e atóxicas (FEMA GRAS™ e FDA GRAS). As coordenadas 2D foram obtidas, padronizadas e checadas, resultando em um total de 4.860 fragmentos dos fingerprints definidos por Klekota e Roth, que foram calculados para cada substância, sendo utilizados como variáveis independentes. Os dados foram processados com o objetivo de eliminar as variáveis altamente correlacionadas e os fragmentos com variância próxima a zero, reduzindo o número de fragmentos a 166. As variáveis dependentes consistiram na classificação 0 (atóxicos)/1(tóxicos). Os modelos de classificação foram criados com árvore de decisão usando o algoritmo J48 e árvore aleatória. Já os modelos treino, validação cruzada e validação externa, foram avaliados com base no seu desempenho de previsão. O melhor modelo selecionado foi a árvore aleatória, por obter os melhores valores para validação externa (acurácia = 0,9658; sensibilidade = 0,9798; especificidade = 0,5495; eficiência = 0,7640 e coeficiente phi = 0,4941). O modelo de QSTR desenvolvido pode ser utilizado para prever a toxicidade de novos aditivos alimentares, coadjuvantes de tecnologia de fabricação e nutracêuticos.São Cristóvão, SEporFarmáciaEnsino de farmáciaAditivos alimentaresToxicidadeQuimioinformáticaFood additivesToxicityChemoinformaticsCIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICAAvaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silicoEvaluation of general toxicity in food constituents using in silico toolsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDFA - Departamento de Farmácia – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/12266/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALReginaldo_Matheus_Gois_Mascarenhas.pdfReginaldo_Matheus_Gois_Mascarenhas.pdfapplication/pdf487964https://ri.ufs.br/jspui/bitstream/riufs/12266/2/Reginaldo_Matheus_Gois_Mascarenhas.pdf5402ea48d652e59d52736a5a46aa3d2cMD52TEXTReginaldo_Matheus_Gois_Mascarenhas.pdf.txtReginaldo_Matheus_Gois_Mascarenhas.pdf.txtExtracted texttext/plain42493https://ri.ufs.br/jspui/bitstream/riufs/12266/3/Reginaldo_Matheus_Gois_Mascarenhas.pdf.txt58729f6e7434aeea51b16893d9adfe79MD53THUMBNAILReginaldo_Matheus_Gois_Mascarenhas.pdf.jpgReginaldo_Matheus_Gois_Mascarenhas.pdf.jpgGenerated Thumbnailimage/jpeg1210https://ri.ufs.br/jspui/bitstream/riufs/12266/4/Reginaldo_Matheus_Gois_Mascarenhas.pdf.jpgec13c77ac8e6e3cde81dab02cd1d6191MD54riufs/122662019-10-30 19:30:13.425oai:ufs.br:riufs/12266TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-10-30T22:30:13Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
dc.title.alternative.eng.fl_str_mv |
Evaluation of general toxicity in food constituents using in silico tools |
title |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
spellingShingle |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico Mascarenhas, Reginaldo Matheus Gois Farmácia Ensino de farmácia Aditivos alimentares Toxicidade Quimioinformática Food additives Toxicity Chemoinformatics CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA |
title_short |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
title_full |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
title_fullStr |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
title_full_unstemmed |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
title_sort |
Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico |
author |
Mascarenhas, Reginaldo Matheus Gois |
author_facet |
Mascarenhas, Reginaldo Matheus Gois |
author_role |
author |
dc.contributor.author.fl_str_mv |
Mascarenhas, Reginaldo Matheus Gois |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Tiago Branquinho |
contributor_str_mv |
Oliveira, Tiago Branquinho |
dc.subject.por.fl_str_mv |
Farmácia Ensino de farmácia Aditivos alimentares Toxicidade Quimioinformática |
topic |
Farmácia Ensino de farmácia Aditivos alimentares Toxicidade Quimioinformática Food additives Toxicity Chemoinformatics CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA |
dc.subject.eng.fl_str_mv |
Food additives Toxicity Chemoinformatics |
dc.subject.cnpq.fl_str_mv |
CIENCIAS DA SAUDE::FARMACIA::ANALISE TOXICOLOGICA |
description |
Preliminary knowledge about the toxicity of new substances for food use may contribute to the rapid selection of useful and increasingly safe substances. For this purpose, a Quantitative Structure-Toxicity Relationship (QSTR) model was developed with 139,395 structures obtained in three different lists of toxic (US EPA DSSTox) and non-toxic (FEMA GRAS ™ and FDA GRAS) substances. The 2D coordinates were obtained, standardized and checked, and a total of 4,860 fingerprints fragments defined by Klekota and Roth were calculated for each substance and used as independent variables. The data were processed in order to remove highly correlated variables and fragments close to zero variance, reducing fragments to 166. Dependent variables consisted of a binary classification, where zero corresponds to non-toxic whereas 1 corresponds to toxic. The classification models were created with decision tree using the J48 algorithm and random tree. The models (training, cross-validation and external validation) were evaluated based on their predictive performance. The best selected model was the random tree to obtain the best values external validation (accuracy = 0.9658, sensitivity = 0.9798, specificity = 0.5495, efficiency = 0.7640 and phi coefficient = 0.4941). The developed of a QSTR model can be used to predict the toxicity of novel food additives, manufacturing technology adjuvants and nutraceuticals. |
publishDate |
2019 |
dc.date.accessioned.fl_str_mv |
2019-10-30T22:29:14Z |
dc.date.available.fl_str_mv |
2019-10-30T22:29:14Z |
dc.date.issued.fl_str_mv |
2019-06-11 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/12266 |
identifier_str_mv |
MASCARENHAS, Reginaldo Matheus Gois. Avaliação de toxicidade geral em constituintes alimentares utilizando ferramentas in silico. 2019. Monografia (Graduação em Farmácia) – Departamento de Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, São Cristóvão, 2019. |
url |
http://ri.ufs.br/jspui/handle/riufs/12266 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.department.fl_str_mv |
DFA - Departamento de Farmácia – São Cristóvão - Presencial |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/12266/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/12266/2/Reginaldo_Matheus_Gois_Mascarenhas.pdf https://ri.ufs.br/jspui/bitstream/riufs/12266/3/Reginaldo_Matheus_Gois_Mascarenhas.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/12266/4/Reginaldo_Matheus_Gois_Mascarenhas.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 5402ea48d652e59d52736a5a46aa3d2c 58729f6e7434aeea51b16893d9adfe79 ec13c77ac8e6e3cde81dab02cd1d6191 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110771604226048 |