Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/16211 |
Resumo: | With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances. |
id |
UFS-2_7d1481a32b5144d13a0eae25b929d6a1 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/16211 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Chagas, Talita Santos AlvesFerreira, Tarso Vilela2022-08-25T14:46:31Z2022-08-25T14:46:31Z2020-06-04CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020.http://ri.ufs.br/jspui/handle/riufs/16211With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances.Com o crescimento da demanda por energia elétrica, percebe-se que o sistema elétrico de potência brasileiro tende a ficar mais complexo, bem como vulnerável à ocorrência de vários tipos de falhas. Distúrbios causadores de interrupções no fornecimento de energia, por exemplo, são monitorados diariamente por meio de regulações de serviços de distribuição de energia. No entanto, ainda existe a necessidade de automatizar os sistemas de distribuição para que seus equipamentos, como os religadores automáticos, atuem de forma rápida, segura e eficaz durante os processos de classificação de distúrbios. De posse da informação advinda da identificação e classificação dos distúrbios, as concessionárias de energia podem atuar no sentido de minimizar sua frequência de ocorrência. A fim de atingir este objetivo, este trabalho apresenta um conjunto de métodos capazes de classificar determinados distúrbios e faltas no sistema de distribuição – curtos-circuitos, corrente de inrush, carga notável, distorção harmônica, desequilíbrio de corrente e variação de frequência – com base apenas da análise do comportamento de oscilografias de sinais de corrente. Essa classificação ocorre mediante a segmentação dos sinais empregando-se, majoritariamente a transformada wavelet discreta, via análise multirresolução. Outras técnicas, tais como transformada de Fourier e método dos mínimos quadrados, são utilizadas em segundo plano a fim de auxiliar em algumas decisões. Ao todo, uma base de dados com 510 sinais sintéticos (simulados em um sistema-teste, parametrizado com dados reais de um sistema de distribuição e construído no software Alternative Transients Program), e 41 sinais de correntes reais de curtoscircuitos foram aplicados com o intuito de validar a metodologia. Os resultados apontam para a viabilidade do uso do algoritmo como ferramenta para classificação de distúrbios.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporEngenharia elétricaTransformada wavelet discretaAnálise multirresoluçãoTransformada de FourierMétodo dos mínimos quadradosWavelet DaubechiesDecomposiçãoDistúrbios de qualidade de energiaFaltasDiscrete wavelet transformMultiresolution analysisFourier transformOrdinary least squaresDaubechies waveletDecompositionPower quality disturbancesFaultsENGENHARIAS::ENGENHARIA ELETRICAUma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de correnteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Engenharia ElétricaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/16211/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTALITA_SANTOS_ALVES_CHAGAS.pdfTALITA_SANTOS_ALVES_CHAGAS.pdfapplication/pdf4678532https://ri.ufs.br/jspui/bitstream/riufs/16211/2/TALITA_SANTOS_ALVES_CHAGAS.pdfbbe21395cff42feb91528080eb9c5e10MD52TEXTTALITA_SANTOS_ALVES_CHAGAS.pdf.txtTALITA_SANTOS_ALVES_CHAGAS.pdf.txtExtracted texttext/plain190103https://ri.ufs.br/jspui/bitstream/riufs/16211/3/TALITA_SANTOS_ALVES_CHAGAS.pdf.txtf53b9c23d90e30cedc6a2729c2f0fa85MD53THUMBNAILTALITA_SANTOS_ALVES_CHAGAS.pdf.jpgTALITA_SANTOS_ALVES_CHAGAS.pdf.jpgGenerated Thumbnailimage/jpeg1362https://ri.ufs.br/jspui/bitstream/riufs/16211/4/TALITA_SANTOS_ALVES_CHAGAS.pdf.jpg01df6a947d65c4c88f5a8d63dc1e20c5MD54riufs/162112022-08-25 11:46:31.484oai:ufs.br:riufs/16211TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-08-25T14:46:31Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
title |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
spellingShingle |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente Chagas, Talita Santos Alves Engenharia elétrica Transformada wavelet discreta Análise multirresolução Transformada de Fourier Método dos mínimos quadrados Wavelet Daubechies Decomposição Distúrbios de qualidade de energia Faltas Discrete wavelet transform Multiresolution analysis Fourier transform Ordinary least squares Daubechies wavelet Decomposition Power quality disturbances Faults ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
title_full |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
title_fullStr |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
title_full_unstemmed |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
title_sort |
Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente |
author |
Chagas, Talita Santos Alves |
author_facet |
Chagas, Talita Santos Alves |
author_role |
author |
dc.contributor.author.fl_str_mv |
Chagas, Talita Santos Alves |
dc.contributor.advisor1.fl_str_mv |
Ferreira, Tarso Vilela |
contributor_str_mv |
Ferreira, Tarso Vilela |
dc.subject.por.fl_str_mv |
Engenharia elétrica Transformada wavelet discreta Análise multirresolução Transformada de Fourier Método dos mínimos quadrados Wavelet Daubechies Decomposição Distúrbios de qualidade de energia Faltas |
topic |
Engenharia elétrica Transformada wavelet discreta Análise multirresolução Transformada de Fourier Método dos mínimos quadrados Wavelet Daubechies Decomposição Distúrbios de qualidade de energia Faltas Discrete wavelet transform Multiresolution analysis Fourier transform Ordinary least squares Daubechies wavelet Decomposition Power quality disturbances Faults ENGENHARIAS::ENGENHARIA ELETRICA |
dc.subject.eng.fl_str_mv |
Discrete wavelet transform Multiresolution analysis Fourier transform Ordinary least squares Daubechies wavelet Decomposition Power quality disturbances Faults |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA ELETRICA |
description |
With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances. |
publishDate |
2020 |
dc.date.issued.fl_str_mv |
2020-06-04 |
dc.date.accessioned.fl_str_mv |
2022-08-25T14:46:31Z |
dc.date.available.fl_str_mv |
2022-08-25T14:46:31Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/16211 |
identifier_str_mv |
CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020. |
url |
http://ri.ufs.br/jspui/handle/riufs/16211 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Engenharia Elétrica |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/16211/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/16211/2/TALITA_SANTOS_ALVES_CHAGAS.pdf https://ri.ufs.br/jspui/bitstream/riufs/16211/3/TALITA_SANTOS_ALVES_CHAGAS.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/16211/4/TALITA_SANTOS_ALVES_CHAGAS.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c bbe21395cff42feb91528080eb9c5e10 f53b9c23d90e30cedc6a2729c2f0fa85 01df6a947d65c4c88f5a8d63dc1e20c5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110711475732480 |