Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente

Detalhes bibliográficos
Autor(a) principal: Chagas, Talita Santos Alves
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/16211
Resumo: With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances.
id UFS-2_7d1481a32b5144d13a0eae25b929d6a1
oai_identifier_str oai:ufs.br:riufs/16211
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Chagas, Talita Santos AlvesFerreira, Tarso Vilela2022-08-25T14:46:31Z2022-08-25T14:46:31Z2020-06-04CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020.http://ri.ufs.br/jspui/handle/riufs/16211With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances.Com o crescimento da demanda por energia elétrica, percebe-se que o sistema elétrico de potência brasileiro tende a ficar mais complexo, bem como vulnerável à ocorrência de vários tipos de falhas. Distúrbios causadores de interrupções no fornecimento de energia, por exemplo, são monitorados diariamente por meio de regulações de serviços de distribuição de energia. No entanto, ainda existe a necessidade de automatizar os sistemas de distribuição para que seus equipamentos, como os religadores automáticos, atuem de forma rápida, segura e eficaz durante os processos de classificação de distúrbios. De posse da informação advinda da identificação e classificação dos distúrbios, as concessionárias de energia podem atuar no sentido de minimizar sua frequência de ocorrência. A fim de atingir este objetivo, este trabalho apresenta um conjunto de métodos capazes de classificar determinados distúrbios e faltas no sistema de distribuição – curtos-circuitos, corrente de inrush, carga notável, distorção harmônica, desequilíbrio de corrente e variação de frequência – com base apenas da análise do comportamento de oscilografias de sinais de corrente. Essa classificação ocorre mediante a segmentação dos sinais empregando-se, majoritariamente a transformada wavelet discreta, via análise multirresolução. Outras técnicas, tais como transformada de Fourier e método dos mínimos quadrados, são utilizadas em segundo plano a fim de auxiliar em algumas decisões. Ao todo, uma base de dados com 510 sinais sintéticos (simulados em um sistema-teste, parametrizado com dados reais de um sistema de distribuição e construído no software Alternative Transients Program), e 41 sinais de correntes reais de curtoscircuitos foram aplicados com o intuito de validar a metodologia. Os resultados apontam para a viabilidade do uso do algoritmo como ferramenta para classificação de distúrbios.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporEngenharia elétricaTransformada wavelet discretaAnálise multirresoluçãoTransformada de FourierMétodo dos mínimos quadradosWavelet DaubechiesDecomposiçãoDistúrbios de qualidade de energiaFaltasDiscrete wavelet transformMultiresolution analysisFourier transformOrdinary least squaresDaubechies waveletDecompositionPower quality disturbancesFaultsENGENHARIAS::ENGENHARIA ELETRICAUma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de correnteinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Engenharia ElétricaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/16211/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTALITA_SANTOS_ALVES_CHAGAS.pdfTALITA_SANTOS_ALVES_CHAGAS.pdfapplication/pdf4678532https://ri.ufs.br/jspui/bitstream/riufs/16211/2/TALITA_SANTOS_ALVES_CHAGAS.pdfbbe21395cff42feb91528080eb9c5e10MD52TEXTTALITA_SANTOS_ALVES_CHAGAS.pdf.txtTALITA_SANTOS_ALVES_CHAGAS.pdf.txtExtracted texttext/plain190103https://ri.ufs.br/jspui/bitstream/riufs/16211/3/TALITA_SANTOS_ALVES_CHAGAS.pdf.txtf53b9c23d90e30cedc6a2729c2f0fa85MD53THUMBNAILTALITA_SANTOS_ALVES_CHAGAS.pdf.jpgTALITA_SANTOS_ALVES_CHAGAS.pdf.jpgGenerated Thumbnailimage/jpeg1362https://ri.ufs.br/jspui/bitstream/riufs/16211/4/TALITA_SANTOS_ALVES_CHAGAS.pdf.jpg01df6a947d65c4c88f5a8d63dc1e20c5MD54riufs/162112022-08-25 11:46:31.484oai:ufs.br:riufs/16211TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-08-25T14:46:31Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
title Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
spellingShingle Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
Chagas, Talita Santos Alves
Engenharia elétrica
Transformada wavelet discreta
Análise multirresolução
Transformada de Fourier
Método dos mínimos quadrados
Wavelet Daubechies
Decomposição
Distúrbios de qualidade de energia
Faltas
Discrete wavelet transform
Multiresolution analysis
Fourier transform
Ordinary least squares
Daubechies wavelet
Decomposition
Power quality disturbances
Faults
ENGENHARIAS::ENGENHARIA ELETRICA
title_short Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
title_full Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
title_fullStr Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
title_full_unstemmed Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
title_sort Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente
author Chagas, Talita Santos Alves
author_facet Chagas, Talita Santos Alves
author_role author
dc.contributor.author.fl_str_mv Chagas, Talita Santos Alves
dc.contributor.advisor1.fl_str_mv Ferreira, Tarso Vilela
contributor_str_mv Ferreira, Tarso Vilela
dc.subject.por.fl_str_mv Engenharia elétrica
Transformada wavelet discreta
Análise multirresolução
Transformada de Fourier
Método dos mínimos quadrados
Wavelet Daubechies
Decomposição
Distúrbios de qualidade de energia
Faltas
topic Engenharia elétrica
Transformada wavelet discreta
Análise multirresolução
Transformada de Fourier
Método dos mínimos quadrados
Wavelet Daubechies
Decomposição
Distúrbios de qualidade de energia
Faltas
Discrete wavelet transform
Multiresolution analysis
Fourier transform
Ordinary least squares
Daubechies wavelet
Decomposition
Power quality disturbances
Faults
ENGENHARIAS::ENGENHARIA ELETRICA
dc.subject.eng.fl_str_mv Discrete wavelet transform
Multiresolution analysis
Fourier transform
Ordinary least squares
Daubechies wavelet
Decomposition
Power quality disturbances
Faults
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA ELETRICA
description With a growth in demand for electrical energy, it is noticed that the Brazilian power system tends to become more complex, as well as more susceptible to the occurrence of various types of failures. Disturbances that cause interruptions in the power supply, for example, are monitored daily through regulations on energy distribution services. However, there is still a need to automate the distribution systems so their equipment, such as automatic reclosers, act swiftly, safely and effectively during the disturbance classification processes. With the information stemming from the identification and classification of disturbances, the electric power companies can act to minimize their frequency of occurrence. In order to achieve this objective, this work presents a set of methods able to classify certain disturbances and faults in the distribution system - short circuits, inrush current, connection of large loads, harmonic distortion, current unbalance and frequency variation - based only on the analysis of the behavior of current signal oscillographs. This classification occurs through the segmentation of the signals employing, mostly the discrete wavelet transform, via multiresolution analysis. Other techniques, such as the Fourier transform and the ordinary least squares, are used in the background in order to assist in some decisions. A database with 510 synthetic signals (simulated in a test system, parameterized with real data from a distribution system and built in the Alternative Transients Program software), and 41 real currents signals from short-circuit have been applied in order to validate the methods. The results indicate to feasibility of using the algorithm as a tool for classifying disturbances.
publishDate 2020
dc.date.issued.fl_str_mv 2020-06-04
dc.date.accessioned.fl_str_mv 2022-08-25T14:46:31Z
dc.date.available.fl_str_mv 2022-08-25T14:46:31Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/16211
identifier_str_mv CHAGAS, Talita Santos Alves. Uma metodologia de diagnóstico de distúrbios em sistemas de distribuição baseada nos sinais de corrente. 2020. 108 f. Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal de Sergipe, São Cristóvão, 2020.
url http://ri.ufs.br/jspui/handle/riufs/16211
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Engenharia Elétrica
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/16211/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/16211/2/TALITA_SANTOS_ALVES_CHAGAS.pdf
https://ri.ufs.br/jspui/bitstream/riufs/16211/3/TALITA_SANTOS_ALVES_CHAGAS.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/16211/4/TALITA_SANTOS_ALVES_CHAGAS.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
bbe21395cff42feb91528080eb9c5e10
f53b9c23d90e30cedc6a2729c2f0fa85
01df6a947d65c4c88f5a8d63dc1e20c5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110711475732480