Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/handle/riufs/3511 |
Resumo: | Nanostructured carbon materials production can constitute an alternative for a sustainable management of residues originated from petrochemical waste and agriculture activities, toward the development of multifunctional ―green‖ materials. The coconut processing industry generate a significant amount of waste (45% of mass). The shell, fibers and coconut coir dust have been studied extensively to produce conventional carbon materials. The goal of this work was to produce carbon-clay nanocomposites and carbon nanostructures by hydrothermal route. By using coconut fiber residue as carbonaceous precursor along with lamellar (montmorillonite and kaolinite) and fibrous clays (sepiolite and attapulgite).The obtained materials were characterized by X-ray diffraction, Raman and Infrared spectroscopy, thermogravimetry, scanning and transmission electron microscopy and area and porosity measurements by BET. Carbon phase formation was indicated by infrared results with bands at ~ 1444 cm-1 and ~ 1512 cm-1 assigned to C=C of aromatic groups. Raman spectroscopy results showed presence of carbonaceous species by the appearance of D and G bands assigned to disordered and graphitic crystallites, respectively. The estimated particle size based on Raman bands was found between 8-33 nm. SEM results showed that the morphology of coconut coir dust was preserved and all materials showed overlapping sheets and plates formation. In transmission electron microscopy (TEM) images it was possible to observe three types of carbon nanostructures: sheets, fibers and nanoparticles. It was observed the formation of very thin amorphous sheets, as well as the presence of partially ordered graphitic domains and disperse carbon nanoparticles. |
id |
UFS-2_814635c3bd3f59fa8e5e8e4af52c3f57 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/3511 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Barin, Gabriela Borinhttp://lattes.cnpq.br/3104369029830651Barreto, Ledjane Silvahttp://lattes.cnpq.br/80055534641670992017-09-26T12:01:59Z2017-09-26T12:01:59Z2011-02-11https://ri.ufs.br/handle/riufs/3511Nanostructured carbon materials production can constitute an alternative for a sustainable management of residues originated from petrochemical waste and agriculture activities, toward the development of multifunctional ―green‖ materials. The coconut processing industry generate a significant amount of waste (45% of mass). The shell, fibers and coconut coir dust have been studied extensively to produce conventional carbon materials. The goal of this work was to produce carbon-clay nanocomposites and carbon nanostructures by hydrothermal route. By using coconut fiber residue as carbonaceous precursor along with lamellar (montmorillonite and kaolinite) and fibrous clays (sepiolite and attapulgite).The obtained materials were characterized by X-ray diffraction, Raman and Infrared spectroscopy, thermogravimetry, scanning and transmission electron microscopy and area and porosity measurements by BET. Carbon phase formation was indicated by infrared results with bands at ~ 1444 cm-1 and ~ 1512 cm-1 assigned to C=C of aromatic groups. Raman spectroscopy results showed presence of carbonaceous species by the appearance of D and G bands assigned to disordered and graphitic crystallites, respectively. The estimated particle size based on Raman bands was found between 8-33 nm. SEM results showed that the morphology of coconut coir dust was preserved and all materials showed overlapping sheets and plates formation. In transmission electron microscopy (TEM) images it was possible to observe three types of carbon nanostructures: sheets, fibers and nanoparticles. It was observed the formation of very thin amorphous sheets, as well as the presence of partially ordered graphitic domains and disperse carbon nanoparticles.A produção de materiais de carbono nanoestruturados pode constituir uma alternativa para a reutilização de resíduos provenientes da indústria petroquímica e atividades agrícolas, abrindo um caminho para o desenvolvimento de materiais ―verdes‖ multifuncionais. Da indústria do processamento do coco, origina-se uma quantidade significativa de resíduos (45% do fruto). A casca, fibras e pó de coco são estudados extensivamente para a produção de materiais de carbono convencionais. A proposta deste trabalho foi produzir nanocompósitos de carbono-argila e nanoestruturas de carbono, via rota hidrotérmica. Para tanto foi utilizado o pó de coco in natura como precursor carbonáceo e argilas lamelares (montmorillonita e caulinita) e fibrosas (atapulgita e sepiolita). Os materiais obtidos foram caracterizados por difração de Raios-X, espectroscopia Raman e no Infravermelho, Termogravimetria, Microscopia eletrônica de Varredura (MEV) e Transmissão (MET), e medidas de área superficial e porosidade por BET. A formação de carbono foi indicada pelos resultados de infravermelho com bandas em ~1444 cm-1 e ~1512 cm-1 atribuídas a C=C de grupos aromáticos. Os resultados de espectroscopia Raman evidenciaram a presença de espécies carbonáceas pelo aparecimento das bandas D e G atribuídas, respectivamente, a presença de desordem e cristalitos de grafite. A faixa de tamanho de partícula estimada a partir das bandas Raman está entre 8-33 nm. Os resultados de MEV mostraram que a morfologia do pó de coco foi preservada e todos os materiais obtidos apresentaram a formação de folhas sobrepostas e placas. Nas imagens de microscopia eletrônica de transmissão (MET) foi possível observar a formação de três tipos de nanoestruturas de carbono: folhas, fibras e nanopartículas. Observou-se a formação de folhas muito finas, de caráter predominantemente amorfo, bem como a presença de domínios grafiticos parcialmente ordenados, e nanopartículas de carbono dispersas.Coordenação de Aperfeiçoamento de Pessoal de Nível Superiorapplication/pdfporUniversidade Federal de SergipePós-Graduação em Ciência e Engenharia de MateriaisUFSBRBiomassaMétodo hidrotérmicoNanoestruturas de carbonoNanocompósitos carbono-argilaBiomassHydrothermal methodCarbon nanostructuresCarbon-clay nanocompositesCNPQ::ENGENHARIASPreparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassaPREPARATION AND CHARACTERIZATION OF CARBON NANOSTRUCTURES BY HYDROTHERMAL ROUTE FROM BIOMASS.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSTEXTGABRIELA_BORIN_BARIN.pdf.txtGABRIELA_BORIN_BARIN.pdf.txtExtracted texttext/plain142141https://ri.ufs.br/jspui/bitstream/riufs/3511/2/GABRIELA_BORIN_BARIN.pdf.txt1760e595773949273b2bee9df07986e5MD52THUMBNAILGABRIELA_BORIN_BARIN.pdf.jpgGABRIELA_BORIN_BARIN.pdf.jpgGenerated Thumbnailimage/jpeg1203https://ri.ufs.br/jspui/bitstream/riufs/3511/3/GABRIELA_BORIN_BARIN.pdf.jpgb422c7c17848a285248d1dd6b752cb03MD53ORIGINALGABRIELA_BORIN_BARIN.pdfapplication/pdf4978982https://ri.ufs.br/jspui/bitstream/riufs/3511/1/GABRIELA_BORIN_BARIN.pdf17dae5f7f892ca9a0c2830992bdc371eMD51riufs/35112017-11-27 21:30:18.501oai:ufs.br:riufs/3511Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2017-11-28T00:30:18Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.por.fl_str_mv |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
dc.title.alternative.eng.fl_str_mv |
PREPARATION AND CHARACTERIZATION OF CARBON NANOSTRUCTURES BY HYDROTHERMAL ROUTE FROM BIOMASS. |
title |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
spellingShingle |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa Barin, Gabriela Borin Biomassa Método hidrotérmico Nanoestruturas de carbono Nanocompósitos carbono-argila Biomass Hydrothermal method Carbon nanostructures Carbon-clay nanocomposites CNPQ::ENGENHARIAS |
title_short |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
title_full |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
title_fullStr |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
title_full_unstemmed |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
title_sort |
Preparação e caracterização de nanoestruturas de carbono por método hidrotérmico a partir de biomassa |
author |
Barin, Gabriela Borin |
author_facet |
Barin, Gabriela Borin |
author_role |
author |
dc.contributor.author.fl_str_mv |
Barin, Gabriela Borin |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3104369029830651 |
dc.contributor.advisor1.fl_str_mv |
Barreto, Ledjane Silva |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8005553464167099 |
contributor_str_mv |
Barreto, Ledjane Silva |
dc.subject.por.fl_str_mv |
Biomassa Método hidrotérmico Nanoestruturas de carbono Nanocompósitos carbono-argila |
topic |
Biomassa Método hidrotérmico Nanoestruturas de carbono Nanocompósitos carbono-argila Biomass Hydrothermal method Carbon nanostructures Carbon-clay nanocomposites CNPQ::ENGENHARIAS |
dc.subject.eng.fl_str_mv |
Biomass Hydrothermal method Carbon nanostructures Carbon-clay nanocomposites |
dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS |
description |
Nanostructured carbon materials production can constitute an alternative for a sustainable management of residues originated from petrochemical waste and agriculture activities, toward the development of multifunctional ―green‖ materials. The coconut processing industry generate a significant amount of waste (45% of mass). The shell, fibers and coconut coir dust have been studied extensively to produce conventional carbon materials. The goal of this work was to produce carbon-clay nanocomposites and carbon nanostructures by hydrothermal route. By using coconut fiber residue as carbonaceous precursor along with lamellar (montmorillonite and kaolinite) and fibrous clays (sepiolite and attapulgite).The obtained materials were characterized by X-ray diffraction, Raman and Infrared spectroscopy, thermogravimetry, scanning and transmission electron microscopy and area and porosity measurements by BET. Carbon phase formation was indicated by infrared results with bands at ~ 1444 cm-1 and ~ 1512 cm-1 assigned to C=C of aromatic groups. Raman spectroscopy results showed presence of carbonaceous species by the appearance of D and G bands assigned to disordered and graphitic crystallites, respectively. The estimated particle size based on Raman bands was found between 8-33 nm. SEM results showed that the morphology of coconut coir dust was preserved and all materials showed overlapping sheets and plates formation. In transmission electron microscopy (TEM) images it was possible to observe three types of carbon nanostructures: sheets, fibers and nanoparticles. It was observed the formation of very thin amorphous sheets, as well as the presence of partially ordered graphitic domains and disperse carbon nanoparticles. |
publishDate |
2011 |
dc.date.issued.fl_str_mv |
2011-02-11 |
dc.date.accessioned.fl_str_mv |
2017-09-26T12:01:59Z |
dc.date.available.fl_str_mv |
2017-09-26T12:01:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/handle/riufs/3511 |
url |
https://ri.ufs.br/handle/riufs/3511 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Ciência e Engenharia de Materiais |
dc.publisher.initials.fl_str_mv |
UFS |
dc.publisher.country.fl_str_mv |
BR |
publisher.none.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/3511/2/GABRIELA_BORIN_BARIN.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/3511/3/GABRIELA_BORIN_BARIN.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/3511/1/GABRIELA_BORIN_BARIN.pdf |
bitstream.checksum.fl_str_mv |
1760e595773949273b2bee9df07986e5 b422c7c17848a285248d1dd6b752cb03 17dae5f7f892ca9a0c2830992bdc371e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110715189788672 |