Constructing a statistical mechanics for Beck-Cohen superstatistics
Autor(a) principal: | |
---|---|
Data de Publicação: | 2003 |
Outros Autores: | |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/handle/riufs/475 |
Resumo: | The basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen. |
id |
UFS-2_86c62d5e78f0f14150c4fb59b3b4dd0d |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/475 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Souza, André Maurício Conceição deTsallis, Constantino2013-04-18T22:04:16Z2013-04-18T22:04:16Z2003-02SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013.1550-2376https://ri.ufs.br/handle/riufs/475© 2003 The American Physical SocietyThe basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen.American Physical SocietySuperestatística de Beck-CohenConstructing a statistical mechanics for Beck-Cohen superstatisticsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTHUMBNAILBeck-CohenSuperstatistics.pdf.jpgBeck-CohenSuperstatistics.pdf.jpgGenerated Thumbnailimage/jpeg1620https://ri.ufs.br/jspui/bitstream/riufs/475/4/Beck-CohenSuperstatistics.pdf.jpgcf91ee57ee83b2b06c5093305485c7caMD54ORIGINALBeck-CohenSuperstatistics.pdfBeck-CohenSuperstatistics.pdfapplication/pdf68389https://ri.ufs.br/jspui/bitstream/riufs/475/1/Beck-CohenSuperstatistics.pdf463dd11d6daa0379b5683bbd77892da9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://ri.ufs.br/jspui/bitstream/riufs/475/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBeck-CohenSuperstatistics.pdf.txtBeck-CohenSuperstatistics.pdf.txtExtracted texttext/plain19026https://ri.ufs.br/jspui/bitstream/riufs/475/3/Beck-CohenSuperstatistics.pdf.txt2d2613328a7e9943b40894845a3f494eMD53riufs/4752013-04-19 02:00:07.094oai:ufs.br:riufs/475Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2013-04-19T05:00:07Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
title |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
spellingShingle |
Constructing a statistical mechanics for Beck-Cohen superstatistics Souza, André Maurício Conceição de Superestatística de Beck-Cohen |
title_short |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
title_full |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
title_fullStr |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
title_full_unstemmed |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
title_sort |
Constructing a statistical mechanics for Beck-Cohen superstatistics |
author |
Souza, André Maurício Conceição de |
author_facet |
Souza, André Maurício Conceição de Tsallis, Constantino |
author_role |
author |
author2 |
Tsallis, Constantino |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Souza, André Maurício Conceição de Tsallis, Constantino |
dc.subject.por.fl_str_mv |
Superestatística de Beck-Cohen |
topic |
Superestatística de Beck-Cohen |
description |
The basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen. |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003-02 |
dc.date.accessioned.fl_str_mv |
2013-04-18T22:04:16Z |
dc.date.available.fl_str_mv |
2013-04-18T22:04:16Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013. |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/handle/riufs/475 |
dc.identifier.issn.none.fl_str_mv |
1550-2376 |
dc.identifier.license.pt_BR.fl_str_mv |
© 2003 The American Physical Society |
identifier_str_mv |
SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013. 1550-2376 © 2003 The American Physical Society |
url |
https://ri.ufs.br/handle/riufs/475 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
American Physical Society |
publisher.none.fl_str_mv |
American Physical Society |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/475/4/Beck-CohenSuperstatistics.pdf.jpg https://ri.ufs.br/jspui/bitstream/riufs/475/1/Beck-CohenSuperstatistics.pdf https://ri.ufs.br/jspui/bitstream/riufs/475/2/license.txt https://ri.ufs.br/jspui/bitstream/riufs/475/3/Beck-CohenSuperstatistics.pdf.txt |
bitstream.checksum.fl_str_mv |
cf91ee57ee83b2b06c5093305485c7ca 463dd11d6daa0379b5683bbd77892da9 8a4605be74aa9ea9d79846c1fba20a33 2d2613328a7e9943b40894845a3f494e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110703821127680 |