Constructing a statistical mechanics for Beck-Cohen superstatistics

Detalhes bibliográficos
Autor(a) principal: Souza, André Maurício Conceição de
Data de Publicação: 2003
Outros Autores: Tsallis, Constantino
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/handle/riufs/475
Resumo: The basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen.
id UFS-2_86c62d5e78f0f14150c4fb59b3b4dd0d
oai_identifier_str oai:ufs.br:riufs/475
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Souza, André Maurício Conceição deTsallis, Constantino2013-04-18T22:04:16Z2013-04-18T22:04:16Z2003-02SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013.1550-2376https://ri.ufs.br/handle/riufs/475© 2003 The American Physical SocietyThe basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen.American Physical SocietySuperestatística de Beck-CohenConstructing a statistical mechanics for Beck-Cohen superstatisticsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleengreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessTHUMBNAILBeck-CohenSuperstatistics.pdf.jpgBeck-CohenSuperstatistics.pdf.jpgGenerated Thumbnailimage/jpeg1620https://ri.ufs.br/jspui/bitstream/riufs/475/4/Beck-CohenSuperstatistics.pdf.jpgcf91ee57ee83b2b06c5093305485c7caMD54ORIGINALBeck-CohenSuperstatistics.pdfBeck-CohenSuperstatistics.pdfapplication/pdf68389https://ri.ufs.br/jspui/bitstream/riufs/475/1/Beck-CohenSuperstatistics.pdf463dd11d6daa0379b5683bbd77892da9MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://ri.ufs.br/jspui/bitstream/riufs/475/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTBeck-CohenSuperstatistics.pdf.txtBeck-CohenSuperstatistics.pdf.txtExtracted texttext/plain19026https://ri.ufs.br/jspui/bitstream/riufs/475/3/Beck-CohenSuperstatistics.pdf.txt2d2613328a7e9943b40894845a3f494eMD53riufs/4752013-04-19 02:00:07.094oai:ufs.br:riufs/475Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2013-04-19T05:00:07Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Constructing a statistical mechanics for Beck-Cohen superstatistics
title Constructing a statistical mechanics for Beck-Cohen superstatistics
spellingShingle Constructing a statistical mechanics for Beck-Cohen superstatistics
Souza, André Maurício Conceição de
Superestatística de Beck-Cohen
title_short Constructing a statistical mechanics for Beck-Cohen superstatistics
title_full Constructing a statistical mechanics for Beck-Cohen superstatistics
title_fullStr Constructing a statistical mechanics for Beck-Cohen superstatistics
title_full_unstemmed Constructing a statistical mechanics for Beck-Cohen superstatistics
title_sort Constructing a statistical mechanics for Beck-Cohen superstatistics
author Souza, André Maurício Conceição de
author_facet Souza, André Maurício Conceição de
Tsallis, Constantino
author_role author
author2 Tsallis, Constantino
author2_role author
dc.contributor.author.fl_str_mv Souza, André Maurício Conceição de
Tsallis, Constantino
dc.subject.por.fl_str_mv Superestatística de Beck-Cohen
topic Superestatística de Beck-Cohen
description The basic aspects of both Boltzmann-Gibbs (BG) and nonextensive statistical mechanics can be seen through three different stages. First, the proposal of an entropic functional (SBG=-k∑ipilnpi for the BG formalism) with the appropriate constraints (∑ipi=1 and ∑ipiEi=U for the BG canonical ensemble). Second, through optimization, the equilibrium or stationary-state distribution (pi=e-βEi/ZBG with ZBG=∑je-βEj for BG). Third, the connection to thermodynamics (e.g., FBG=-(1/β)lnZBG and UBG=-(∂/∂β)lnZBG). Assuming temperature fluctuations, Beck and Cohen recently proposed a generalized Boltzmann factor B(E)=∫0∞dβf(β)e-βE. This corresponds to the second stage described above. In this paper, we solve the corresponding first stage, i.e., we present an entropic functional and its associated constraints which lead precisely to B(E). We illustrate with all six admissible examples given by Beck and Cohen.
publishDate 2003
dc.date.issued.fl_str_mv 2003-02
dc.date.accessioned.fl_str_mv 2013-04-18T22:04:16Z
dc.date.available.fl_str_mv 2013-04-18T22:04:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/handle/riufs/475
dc.identifier.issn.none.fl_str_mv 1550-2376
dc.identifier.license.pt_BR.fl_str_mv © 2003 The American Physical Society
identifier_str_mv SOUZA, A. M. C.; TSALLIS, C. Constructing a statistical mechanics for Beck-Cohen superstatistics. Physical Review E, New York, v. 67, n. 2, fev. 2003. Disponível em: <http://link.aps.org/doi/10.1103/PhysRevE.67.026106>. Acesso em: 18 abr. 2013.
1550-2376
© 2003 The American Physical Society
url https://ri.ufs.br/handle/riufs/475
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv American Physical Society
publisher.none.fl_str_mv American Physical Society
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/475/4/Beck-CohenSuperstatistics.pdf.jpg
https://ri.ufs.br/jspui/bitstream/riufs/475/1/Beck-CohenSuperstatistics.pdf
https://ri.ufs.br/jspui/bitstream/riufs/475/2/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/475/3/Beck-CohenSuperstatistics.pdf.txt
bitstream.checksum.fl_str_mv cf91ee57ee83b2b06c5093305485c7ca
463dd11d6daa0379b5683bbd77892da9
8a4605be74aa9ea9d79846c1fba20a33
2d2613328a7e9943b40894845a3f494e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110703821127680