Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas

Detalhes bibliográficos
Autor(a) principal: Amaral, Jomar Batista
Data de Publicação: 2013
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/handle/riufs/5304
Resumo: The scheelite type tungstates MWO4 have been studied for a long time due to their optical properties. The main property is the luminescence, both intrinsic and extrinsic (when doped with trivalent lanthanide ions, Ln3+). Another group of scheelite- typed are the double tungstates, ALn(WO4)2. The main feature of these tungstates is a structural disorder involving a random distribution of the ions A (alkali metals) and Ln in the crystal lattice that may influence the luminescence of the material. In literature there are several models to explain both intrinsic and extrinsic luminescence, as recombination of self-trapped excitons, MO and/or WO3 vacancies, stoichiometry deviation, other phases, oxygen at interstitial site, oxygen vacancies and M ion vacancies. As the main technology applications associated with these tungstates are such optics fiber, solid state lasers, scintillators in detectors and recently as white LEDs, it is necessary to better understand and possibly solve or dominate the many physical problems that surround them. Then, using computer simulation based on a model in which the ions are treated as charged spheres interacting through interaction potentials which aim to minimize the lattice energy, tungstates have their perfect and defective crystal lattices simulated to try to elucidate the defect mechanism that dominates and/or contributes for luminescence and its consequences. Using static computer simulation we have as main results: a) 21 different tungstates were modeled using a single set of potential parameters taking into account the covalency of the (WO4)2- group. This covalent interaction affects the behavior of defects, where (WO4)2- groups can be directly connected by an oxygen ion at an interstitial site; b) the charge compensation for extrinsic defects is via interstitial oxygen. When codoped, the codopant ionic radius directly influences the solution energy; c) the simulated energy levels for SrWO4:Eu3+ were compared with recent experimental studies and are in agreement, pointing two different symmetries to the Eu site and d) simulation of holes and electrons in these tungstates reveals that n-type conductivity is expected.
id UFS-2_8d3b9482993df4f8df230e0fd6d6b5a6
oai_identifier_str oai:ufs.br:riufs/5304
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Amaral, Jomar Batistahttp://lattes.cnpq.br/9710589741627606Valério, Mário Ernesto Giroldohttp://lattes.cnpq.br/15038029715539862017-09-26T18:27:18Z2017-09-26T18:27:18Z2013-03-01https://ri.ufs.br/handle/riufs/5304The scheelite type tungstates MWO4 have been studied for a long time due to their optical properties. The main property is the luminescence, both intrinsic and extrinsic (when doped with trivalent lanthanide ions, Ln3+). Another group of scheelite- typed are the double tungstates, ALn(WO4)2. The main feature of these tungstates is a structural disorder involving a random distribution of the ions A (alkali metals) and Ln in the crystal lattice that may influence the luminescence of the material. In literature there are several models to explain both intrinsic and extrinsic luminescence, as recombination of self-trapped excitons, MO and/or WO3 vacancies, stoichiometry deviation, other phases, oxygen at interstitial site, oxygen vacancies and M ion vacancies. As the main technology applications associated with these tungstates are such optics fiber, solid state lasers, scintillators in detectors and recently as white LEDs, it is necessary to better understand and possibly solve or dominate the many physical problems that surround them. Then, using computer simulation based on a model in which the ions are treated as charged spheres interacting through interaction potentials which aim to minimize the lattice energy, tungstates have their perfect and defective crystal lattices simulated to try to elucidate the defect mechanism that dominates and/or contributes for luminescence and its consequences. Using static computer simulation we have as main results: a) 21 different tungstates were modeled using a single set of potential parameters taking into account the covalency of the (WO4)2- group. This covalent interaction affects the behavior of defects, where (WO4)2- groups can be directly connected by an oxygen ion at an interstitial site; b) the charge compensation for extrinsic defects is via interstitial oxygen. When codoped, the codopant ionic radius directly influences the solution energy; c) the simulated energy levels for SrWO4:Eu3+ were compared with recent experimental studies and are in agreement, pointing two different symmetries to the Eu site and d) simulation of holes and electrons in these tungstates reveals that n-type conductivity is expected.Os tungstatos tipo scheelita MWO4 vêm sendo estudados há bastante tempo devido às suas propriedades ópticas. A principal é a luminescência, tanto intrínseca quanto extrínseca (quando dopados com íons lantanídeos trivalentes, Ln3+). Outro grupo de tungstatos tipo scheelita são os duplos, ALn(WO4)2. A principal característica deste tungstatos é uma desordem estrutural, envolvendo uma distribuição aleatória dos íons A (metais alcalinos) e Ln na rede que pode influenciar a luminescência deste material. Na literatura há diversos modelos para explicar tanto a luminescência intrínseca quanto a extrínseca, como recombinação de éxcitons auto-armadilhados, vacâncias de MO e/ou WO3, desvio de estequiometria, outras fases, oxigênio em um sítio intersticial e vacâncias de oxigênio e vacâncias do íon M. Como as principais aplicações tecnológicas associadas a estes tungstatos, são como fibras ópticas, lasers do estado sólido, cintiladores em detectores e recentemente como LEDs brancos, faz-se necessário entender melhor e se possível solucionar ou dominar os diversos problemas físicos que os cercam. Então, usando simulação computacional baseada em um modelo em que os íons são considerados como esferas carregadas interagindo entre si através de potenciais de interação que visam minimizar a energia da rede, os tungstatos têm suas redes cristalinas perfeitas e defeituosas simuladas para procurar elucidar o mecanismo de defeito que domina(m) e/ou contribui(em) para a luminescência e quais suas consequências. Usando a simulação computacional estática temos como principais resultados: a) 21 tungstatos diferentes foram modelados usando um único conjunto de parâmetros dos potenciais levando em conta a covalência do grupo (WO4)2-. Esta interação covalente afeta o comportamento dos defeitos, onde grupos de (WO4)2- podem ser diretamente ligados por um íon de oxigênio em um sítio intersticial; b) a compensação de cargas para defeitos extrínsecos é via oxigênio intersticial. Quando codopados, o raio iônico do codopante influencia diretamente na energia de solução; c) os níveis de energia simulados para o SrWO4:Eu3+ e comparados com trabalhos experimentais recentes estão em acordo, apontando duas simetrias diferentes para o sítio de Eu e d) a simulação de buracos e elétrons nestes tungstatos revela que condutividade tipo n é esperada.application/pdfporLuminescênciaPropriedades ópticasTungstatos tipo ScheelitaScheelitaSimulação computacional,ÓpticaComputer simulationScheeliteTungsten mines and miningScheelite type- tungstatesCNPQ::CIENCIAS EXATAS E DA TERRA::FISICASimulação computacional de tungstatos tipo Scheelita para aplicações ópticasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em Físicainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSORIGINALJOMAR_BATISTA_AMARAL.pdfapplication/pdf7655754https://ri.ufs.br/jspui/bitstream/riufs/5304/1/JOMAR_BATISTA_AMARAL.pdfdce72b25e7b472a9e316d07a0435b2cfMD51TEXTJOMAR_BATISTA_AMARAL.pdf.txtJOMAR_BATISTA_AMARAL.pdf.txtExtracted texttext/plain247244https://ri.ufs.br/jspui/bitstream/riufs/5304/2/JOMAR_BATISTA_AMARAL.pdf.txtf73b4e4a902a8fb08ab531f983d4af48MD52THUMBNAILJOMAR_BATISTA_AMARAL.pdf.jpgJOMAR_BATISTA_AMARAL.pdf.jpgGenerated Thumbnailimage/jpeg1464https://ri.ufs.br/jspui/bitstream/riufs/5304/3/JOMAR_BATISTA_AMARAL.pdf.jpg53c6f5c09cf2f43378ad4feb9fa80959MD53riufs/53042019-07-30 19:18:03.689oai:ufs.br:riufs/5304Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2019-07-30T22:18:03Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.por.fl_str_mv Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
title Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
spellingShingle Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
Amaral, Jomar Batista
Luminescência
Propriedades ópticas
Tungstatos tipo Scheelita
Scheelita
Simulação computacional,
Óptica
Computer simulation
Scheelite
Tungsten mines and mining
Scheelite type- tungstates
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
title_full Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
title_fullStr Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
title_full_unstemmed Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
title_sort Simulação computacional de tungstatos tipo Scheelita para aplicações ópticas
author Amaral, Jomar Batista
author_facet Amaral, Jomar Batista
author_role author
dc.contributor.author.fl_str_mv Amaral, Jomar Batista
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9710589741627606
dc.contributor.advisor1.fl_str_mv Valério, Mário Ernesto Giroldo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1503802971553986
contributor_str_mv Valério, Mário Ernesto Giroldo
dc.subject.por.fl_str_mv Luminescência
Propriedades ópticas
Tungstatos tipo Scheelita
Scheelita
Simulação computacional,
Óptica
topic Luminescência
Propriedades ópticas
Tungstatos tipo Scheelita
Scheelita
Simulação computacional,
Óptica
Computer simulation
Scheelite
Tungsten mines and mining
Scheelite type- tungstates
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Computer simulation
Scheelite
Tungsten mines and mining
Scheelite type- tungstates
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description The scheelite type tungstates MWO4 have been studied for a long time due to their optical properties. The main property is the luminescence, both intrinsic and extrinsic (when doped with trivalent lanthanide ions, Ln3+). Another group of scheelite- typed are the double tungstates, ALn(WO4)2. The main feature of these tungstates is a structural disorder involving a random distribution of the ions A (alkali metals) and Ln in the crystal lattice that may influence the luminescence of the material. In literature there are several models to explain both intrinsic and extrinsic luminescence, as recombination of self-trapped excitons, MO and/or WO3 vacancies, stoichiometry deviation, other phases, oxygen at interstitial site, oxygen vacancies and M ion vacancies. As the main technology applications associated with these tungstates are such optics fiber, solid state lasers, scintillators in detectors and recently as white LEDs, it is necessary to better understand and possibly solve or dominate the many physical problems that surround them. Then, using computer simulation based on a model in which the ions are treated as charged spheres interacting through interaction potentials which aim to minimize the lattice energy, tungstates have their perfect and defective crystal lattices simulated to try to elucidate the defect mechanism that dominates and/or contributes for luminescence and its consequences. Using static computer simulation we have as main results: a) 21 different tungstates were modeled using a single set of potential parameters taking into account the covalency of the (WO4)2- group. This covalent interaction affects the behavior of defects, where (WO4)2- groups can be directly connected by an oxygen ion at an interstitial site; b) the charge compensation for extrinsic defects is via interstitial oxygen. When codoped, the codopant ionic radius directly influences the solution energy; c) the simulated energy levels for SrWO4:Eu3+ were compared with recent experimental studies and are in agreement, pointing two different symmetries to the Eu site and d) simulation of holes and electrons in these tungstates reveals that n-type conductivity is expected.
publishDate 2013
dc.date.issued.fl_str_mv 2013-03-01
dc.date.accessioned.fl_str_mv 2017-09-26T18:27:18Z
dc.date.available.fl_str_mv 2017-09-26T18:27:18Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://ri.ufs.br/handle/riufs/5304
url https://ri.ufs.br/handle/riufs/5304
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.program.fl_str_mv Pós-Graduação em Física
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/5304/1/JOMAR_BATISTA_AMARAL.pdf
https://ri.ufs.br/jspui/bitstream/riufs/5304/2/JOMAR_BATISTA_AMARAL.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/5304/3/JOMAR_BATISTA_AMARAL.pdf.jpg
bitstream.checksum.fl_str_mv dce72b25e7b472a9e316d07a0435b2cf
f73b4e4a902a8fb08ab531f983d4af48
53c6f5c09cf2f43378ad4feb9fa80959
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110661315002368