Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado

Detalhes bibliográficos
Autor(a) principal: Macena, Arianne Santos da
Data de Publicação: 2021
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/14528
Resumo: It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved.
id UFS-2_958659e875e27c87ead2c3860af50e99
oai_identifier_str oai:ufs.br:riufs/14528
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Macena, Arianne Santos daMatos, Leonardo NogueiraBispo, Thiago Dias2021-08-26T00:18:38Z2021-08-26T00:18:38Z2021-04-09Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021https://ri.ufs.br/jspui/handle/riufs/14528It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved.É notável o avanço recente da Inteligência Artificial na vida cotidiana das pessoas que, de uma forma ou de outra, usam soluções de tecnologia em suas atividades. Em grande parte este avanço se deve ao emprego de Redes Neurais Convolucionais, que são particularmente úteis na solução de problemas de localização, detecção e classificação de imagens. Estas redes também são usadas no rastreamento de múltiplos objetos. Elas podem localizar e classificar um objeto, mantendo sua identidade única ao longo do tempo. Esta é uma das razões que as tornam atraentes em aplicações de computação na borda, tendo em vista o potencial emprego em áreas como vigilância eletrônica, controle de tráfego, contagem de pedestres, dentre outras. Por outro lado, as arquiteturas consideradas estado-da-arte demandam grande capacidade computacional, em termos de processamento, consumo de memória e, consequentemente, energia. Essas exigências dificultam o emprego de modelos complexos em equipamentos com restrições de recursos computacionais, como Raspberry Pi. Apesar de ser possível realizar tarefas mais complexas do que em outras plataformas, utilizar Redes Neurais Convolucionais em Raspberry Pi é ainda desafiador. Este trabalho propõe a exploração de uma arquitetura estado-da-arte, a YOLOv4-tiny, simultaneamente ao rastreador de objetos do algoritmo SmartSORT, em Raspberry Pi 4. A solução proposta foi experimentada no rastreamento de múltiplos pedestres do benchmark MOT Challenge 2016 e em um vídeo de um ambiente comercial controlado. Foi obtido uma precisão média de 69% e uma taxa de processamento de quadros de 1,2 FPS.São Cristóvão, SEporCiência da computaçãoRedes neurais convolucionaisRastreamento de múltiplos objetosRaspberry PiVisão computacionalComputer visionConvolutional neural networksMultiple object trackingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDCOMP - Departamento de Computação – Ciência da Computação – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALArianne_Santos_Macena.pdfArianne_Santos_Macena.pdfapplication/pdf9233868https://ri.ufs.br/jspui/bitstream/riufs/14528/2/Arianne_Santos_Macena.pdf705f381e987a15a0b864c80935c6fcf3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/14528/3/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD53TEXTArianne_Santos_Macena.pdf.txtArianne_Santos_Macena.pdf.txtExtracted texttext/plain135888https://ri.ufs.br/jspui/bitstream/riufs/14528/4/Arianne_Santos_Macena.pdf.txt80611a775dccace580e11e708df8e109MD54THUMBNAILArianne_Santos_Macena.pdf.jpgArianne_Santos_Macena.pdf.jpgGenerated Thumbnailimage/jpeg1349https://ri.ufs.br/jspui/bitstream/riufs/14528/5/Arianne_Santos_Macena.pdf.jpga04147dc3fc380d9bcb78a1f0f009cf8MD55riufs/145282021-08-25 21:18:38.397oai:ufs.br:riufs/14528TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2021-08-26T00:18:38Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
title Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
spellingShingle Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
Macena, Arianne Santos da
Ciência da computação
Redes neurais convolucionais
Rastreamento de múltiplos objetos
Raspberry Pi
Visão computacional
Computer vision
Convolutional neural networks
Multiple object tracking
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
title_full Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
title_fullStr Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
title_full_unstemmed Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
title_sort Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
author Macena, Arianne Santos da
author_facet Macena, Arianne Santos da
author_role author
dc.contributor.author.fl_str_mv Macena, Arianne Santos da
dc.contributor.advisor1.fl_str_mv Matos, Leonardo Nogueira
dc.contributor.advisor-co1.fl_str_mv Bispo, Thiago Dias
contributor_str_mv Matos, Leonardo Nogueira
Bispo, Thiago Dias
dc.subject.por.fl_str_mv Ciência da computação
Redes neurais convolucionais
Rastreamento de múltiplos objetos
Raspberry Pi
Visão computacional
topic Ciência da computação
Redes neurais convolucionais
Rastreamento de múltiplos objetos
Raspberry Pi
Visão computacional
Computer vision
Convolutional neural networks
Multiple object tracking
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Computer vision
Convolutional neural networks
Multiple object tracking
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-08-26T00:18:38Z
dc.date.available.fl_str_mv 2021-08-26T00:18:38Z
dc.date.issued.fl_str_mv 2021-04-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/14528
identifier_str_mv Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021
url https://ri.ufs.br/jspui/handle/riufs/14528
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.publisher.department.fl_str_mv DCOMP - Departamento de Computação – Ciência da Computação – São Cristóvão - Presencial
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/14528/2/Arianne_Santos_Macena.pdf
https://ri.ufs.br/jspui/bitstream/riufs/14528/3/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/14528/4/Arianne_Santos_Macena.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/14528/5/Arianne_Santos_Macena.pdf.jpg
bitstream.checksum.fl_str_mv 705f381e987a15a0b864c80935c6fcf3
098cbbf65c2c15e1fb2e49c5d306a44c
80611a775dccace580e11e708df8e109
a04147dc3fc380d9bcb78a1f0f009cf8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110812472475648