Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | https://ri.ufs.br/jspui/handle/riufs/14528 |
Resumo: | It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved. |
id |
UFS-2_958659e875e27c87ead2c3860af50e99 |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/14528 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Macena, Arianne Santos daMatos, Leonardo NogueiraBispo, Thiago Dias2021-08-26T00:18:38Z2021-08-26T00:18:38Z2021-04-09Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021https://ri.ufs.br/jspui/handle/riufs/14528It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved.É notável o avanço recente da Inteligência Artificial na vida cotidiana das pessoas que, de uma forma ou de outra, usam soluções de tecnologia em suas atividades. Em grande parte este avanço se deve ao emprego de Redes Neurais Convolucionais, que são particularmente úteis na solução de problemas de localização, detecção e classificação de imagens. Estas redes também são usadas no rastreamento de múltiplos objetos. Elas podem localizar e classificar um objeto, mantendo sua identidade única ao longo do tempo. Esta é uma das razões que as tornam atraentes em aplicações de computação na borda, tendo em vista o potencial emprego em áreas como vigilância eletrônica, controle de tráfego, contagem de pedestres, dentre outras. Por outro lado, as arquiteturas consideradas estado-da-arte demandam grande capacidade computacional, em termos de processamento, consumo de memória e, consequentemente, energia. Essas exigências dificultam o emprego de modelos complexos em equipamentos com restrições de recursos computacionais, como Raspberry Pi. Apesar de ser possível realizar tarefas mais complexas do que em outras plataformas, utilizar Redes Neurais Convolucionais em Raspberry Pi é ainda desafiador. Este trabalho propõe a exploração de uma arquitetura estado-da-arte, a YOLOv4-tiny, simultaneamente ao rastreador de objetos do algoritmo SmartSORT, em Raspberry Pi 4. A solução proposta foi experimentada no rastreamento de múltiplos pedestres do benchmark MOT Challenge 2016 e em um vídeo de um ambiente comercial controlado. Foi obtido uma precisão média de 69% e uma taxa de processamento de quadros de 1,2 FPS.São Cristóvão, SEporCiência da computaçãoRedes neurais convolucionaisRastreamento de múltiplos objetosRaspberry PiVisão computacionalComputer visionConvolutional neural networksMultiple object trackingCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAORastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal de SergipeDCOMP - Departamento de Computação – Ciência da Computação – São Cristóvão - Presencialreponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessORIGINALArianne_Santos_Macena.pdfArianne_Santos_Macena.pdfapplication/pdf9233868https://ri.ufs.br/jspui/bitstream/riufs/14528/2/Arianne_Santos_Macena.pdf705f381e987a15a0b864c80935c6fcf3MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/14528/3/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD53TEXTArianne_Santos_Macena.pdf.txtArianne_Santos_Macena.pdf.txtExtracted texttext/plain135888https://ri.ufs.br/jspui/bitstream/riufs/14528/4/Arianne_Santos_Macena.pdf.txt80611a775dccace580e11e708df8e109MD54THUMBNAILArianne_Santos_Macena.pdf.jpgArianne_Santos_Macena.pdf.jpgGenerated Thumbnailimage/jpeg1349https://ri.ufs.br/jspui/bitstream/riufs/14528/5/Arianne_Santos_Macena.pdf.jpga04147dc3fc380d9bcb78a1f0f009cf8MD55riufs/145282021-08-25 21:18:38.397oai:ufs.br:riufs/14528TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2021-08-26T00:18:38Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
title |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
spellingShingle |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado Macena, Arianne Santos da Ciência da computação Redes neurais convolucionais Rastreamento de múltiplos objetos Raspberry Pi Visão computacional Computer vision Convolutional neural networks Multiple object tracking CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
title_full |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
title_fullStr |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
title_full_unstemmed |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
title_sort |
Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado |
author |
Macena, Arianne Santos da |
author_facet |
Macena, Arianne Santos da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Macena, Arianne Santos da |
dc.contributor.advisor1.fl_str_mv |
Matos, Leonardo Nogueira |
dc.contributor.advisor-co1.fl_str_mv |
Bispo, Thiago Dias |
contributor_str_mv |
Matos, Leonardo Nogueira Bispo, Thiago Dias |
dc.subject.por.fl_str_mv |
Ciência da computação Redes neurais convolucionais Rastreamento de múltiplos objetos Raspberry Pi Visão computacional |
topic |
Ciência da computação Redes neurais convolucionais Rastreamento de múltiplos objetos Raspberry Pi Visão computacional Computer vision Convolutional neural networks Multiple object tracking CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Computer vision Convolutional neural networks Multiple object tracking |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
It is worth paying attention to the recent progress of artificial intelligence in the everyday life of people who, one way or another, use technological solutions in their activities. Much of this advancement is due to the use of convolutional neural networks, which are particularly useful in solving problems related to locating, detecting and classifying images. These networks are also used to track multiple objects. They can locate and classify an object while maintaining its unique identity over time. This is one of the reasons that make them attractive for edge computing applications, given the potential employment in areas such as electronic surveillance, traffic control, pedestrian counting, among others. On the other hand, architectures considered state-of-the-art require a lot of computing power in terms of processing, memory consumption, and thus energy. These requirements make it difficult to use complex models in hardware with limited computing resources, such as the Raspberry Pi. While it is possible to perform more complex tasks than on other platforms, using convolutional neural networks on the Raspberry Pi still presents a challenge. This monography proposes to explore the state-of-the-art YOLOv4-tiny architecture, simultaneously with the SmartSORT algorithm object tracker, in the Raspberry Pi 4. The proposed solution was tested in tracking multiple pedestrians from the MOT Challenge 2016 benchmark and in a video showing a controlled commercial environment. An average accuracy of 69% and a frame processing speed of 1.2 fps were achieved. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-08-26T00:18:38Z |
dc.date.available.fl_str_mv |
2021-08-26T00:18:38Z |
dc.date.issued.fl_str_mv |
2021-04-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021 |
dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/14528 |
identifier_str_mv |
Macena, Arianne Santos da. Rastreamento de múltiplos objetos utilizando modelos de aprendizado profundo em Hardware Limitado. São Cristóvão, 2021. Monografia (graduação em Ciência da Computação) – Departamento de Computação, Centro de Ciências Exatas e Tecnologia, Universidade Federal de Sergipe, São Cristóvão, SE, 2021 |
url |
https://ri.ufs.br/jspui/handle/riufs/14528 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.publisher.department.fl_str_mv |
DCOMP - Departamento de Computação – Ciência da Computação – São Cristóvão - Presencial |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/14528/2/Arianne_Santos_Macena.pdf https://ri.ufs.br/jspui/bitstream/riufs/14528/3/license.txt https://ri.ufs.br/jspui/bitstream/riufs/14528/4/Arianne_Santos_Macena.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/14528/5/Arianne_Santos_Macena.pdf.jpg |
bitstream.checksum.fl_str_mv |
705f381e987a15a0b864c80935c6fcf3 098cbbf65c2c15e1fb2e49c5d306a44c 80611a775dccace580e11e708df8e109 a04147dc3fc380d9bcb78a1f0f009cf8 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110812472475648 |