Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar

Detalhes bibliográficos
Autor(a) principal: Vasconcelos, Nathanael Oliveira
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: http://ri.ufs.br/jspui/handle/riufs/16599
Resumo: Context: Dropout is certainly one of the major problems that plague educational institutions in general, since, as a result of student dropout, they are social, academic and economic assets. A search for their actions has been the subject of much educational work and research around the world. In the practical field, the various American high school associations had their guidelines focused on the dropout rate control, however, in Brazil, there is still little work done in this area of research. As a result, there is the ability to increase understanding of the problem and its causes by adopting more effective measures to identify and understand the key factors that may contribute to student failure. Objective: This work had the purpose of conducting experiments of more advanced data mining algorithms in the area of education, aiming to improve the educational context of the high school dropout of two federal institutions, as well as to implement a method of using the best model, which supports the decision support process and the school dropout mitigation. Method: Two in vivo controlled experiments were developed and performed to compare the selected classifiers. Then, a case study with interface created to apply the algorithm that obtained the best result was performed. Results: The results showed the differences between the algorithms used and, despite the SVM, had a higher average of the accumulation metrics, statistically, after a meta-analysis of the experiments, the algorithms MLP and Random forest, respectively, obtained similar accuracy results (85.38 %, 84.40 % and 84.13 %). For F-measure, a statistical significance was equal only for the MLP (84.42 %, 83.44 %). Conclusions: This dissertation exposes the need to increase the admission of measures to identify and understand the main factors that may contribute to students’ failure. The two experimental tests were examined and introduced by the success criteria, being the SVM, the selected differential, selected to be applied in a case study of one of the planning items. Federal University of Sergipe - UFS.
id UFS-2_d2d76940324f59c1125cf0eae60de8c5
oai_identifier_str oai:ufs.br:riufs/16599
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Vasconcelos, Nathanael OliveiraRodrigues Júnior, Methanias Colaço2022-10-10T15:03:48Z2022-10-10T15:03:48Z2019-08-22VASCONCELOS, Nathanael Oliveira. Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar. 2019. 69 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.http://ri.ufs.br/jspui/handle/riufs/16599Context: Dropout is certainly one of the major problems that plague educational institutions in general, since, as a result of student dropout, they are social, academic and economic assets. A search for their actions has been the subject of much educational work and research around the world. In the practical field, the various American high school associations had their guidelines focused on the dropout rate control, however, in Brazil, there is still little work done in this area of research. As a result, there is the ability to increase understanding of the problem and its causes by adopting more effective measures to identify and understand the key factors that may contribute to student failure. Objective: This work had the purpose of conducting experiments of more advanced data mining algorithms in the area of education, aiming to improve the educational context of the high school dropout of two federal institutions, as well as to implement a method of using the best model, which supports the decision support process and the school dropout mitigation. Method: Two in vivo controlled experiments were developed and performed to compare the selected classifiers. Then, a case study with interface created to apply the algorithm that obtained the best result was performed. Results: The results showed the differences between the algorithms used and, despite the SVM, had a higher average of the accumulation metrics, statistically, after a meta-analysis of the experiments, the algorithms MLP and Random forest, respectively, obtained similar accuracy results (85.38 %, 84.40 % and 84.13 %). For F-measure, a statistical significance was equal only for the MLP (84.42 %, 83.44 %). Conclusions: This dissertation exposes the need to increase the admission of measures to identify and understand the main factors that may contribute to students’ failure. The two experimental tests were examined and introduced by the success criteria, being the SVM, the selected differential, selected to be applied in a case study of one of the planning items. Federal University of Sergipe - UFS.Contexto: A evasão é, certamente, um dos grandes problemas que afligem as instituições de ensino em geral, uma vez que as perdas ocasionadas pelo abandono do aluno são desperdícios sociais, acadêmicos e econômicos. A busca de suas causas tem sido objeto de muitos trabalhos e pesquisas educacionais em todo mundo. No campo prático, diversas organizações de ensino norteiam as suas decisões estratégicas para o controle da taxa de evasão, entretanto, no Brasil, ainda são poucos os trabalhos publicados nesta área de pesquisa. Como consequência, fica evidente a necessidade de aumentar a compreensão do problema e de suas causas, com a adoção de medidas mais eficazes para identificar e entender os principais fatores que podem contribuir com o insucesso dos estudantes. Objetivo: Este trabalho teve por propósito fazer duas análises experimentais dos algoritmos de mineração de dados mais utilizados na área de educação, avaliando o que melhor se adequa ao contexto de abandono do ensino em duas instituições federais, bem como implementar um método de uso do melhor modelo, o qual auxiliará o processo de apoio à decisão e à mitigação da evasão escolar. Método: Foram planejados e executados dois experimentos controlados "in vivo", para comparar a eficácia dos classificadores selecionados. Em seguida, foi realizado um estudo de caso com interface criada para aplicar o algoritmo que obteve a melhor eficácia. Resultados: Os resultados evidenciaram que existem diferenças significativas entre os algoritmos utilizados, e que, apesar do SVM possuir a maior média das métricas de eficácia, estatisticamente, após a metanálise dos experimentos, os algoritmos MLP e Random Forest, respectivamente, obtiveram resultados semelhantes de acurácia (85,38%, 84,40% e 84,13%). Para medida-F, a significância estatística foi igual apenas para o MLP (84,42%, 83,44%). Conclusões: Esta dissertação expôs a necessidade de aumentar a adoção de medidas para identificar e entender os principais fatores que podem contribuir com o insucesso dos estudantes. Após duas análises experimentais, foi evidenciado que existem diferenças significativas entre os três primeiros colocados e os demais algoritmos avaliados, sendo o SVM, pelo seu pequeno destaque, selecionado para ser aplicado em um estudo de caso de atendimento a um dos itens do planejamento estratégico da Universidade Federal de Sergipe – UFS.São CristóvãoporComputaçãoEvasãoMineração de dados educacionaisAlgoritmos de classificaçãoExperimentaçãoSchool dropoutEducational data miningClassification algorithmsExperimentationCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOData mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolarinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em Ciência da ComputaçãoUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/16599/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALNATHANAEL_OLIVEIRA_VASCONCELOS.pdfNATHANAEL_OLIVEIRA_VASCONCELOS.pdfapplication/pdf2025991https://ri.ufs.br/jspui/bitstream/riufs/16599/2/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf1d9bc0f8ec2be57aec91321d4dbe19f4MD52TEXTNATHANAEL_OLIVEIRA_VASCONCELOS.pdf.txtNATHANAEL_OLIVEIRA_VASCONCELOS.pdf.txtExtracted texttext/plain130591https://ri.ufs.br/jspui/bitstream/riufs/16599/3/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf.txt0c3894a3c41023474c6c017ef2dd1c12MD53THUMBNAILNATHANAEL_OLIVEIRA_VASCONCELOS.pdf.jpgNATHANAEL_OLIVEIRA_VASCONCELOS.pdf.jpgGenerated Thumbnailimage/jpeg1357https://ri.ufs.br/jspui/bitstream/riufs/16599/4/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf.jpgca87d06ed254f15dcb7048496fb33b3aMD54riufs/165992022-10-10 12:03:48.424oai:ufs.br:riufs/16599TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2022-10-10T15:03:48Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
title Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
spellingShingle Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
Vasconcelos, Nathanael Oliveira
Computação
Evasão
Mineração de dados educacionais
Algoritmos de classificação
Experimentação
School dropout
Educational data mining
Classification algorithms
Experimentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
title_full Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
title_fullStr Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
title_full_unstemmed Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
title_sort Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar
author Vasconcelos, Nathanael Oliveira
author_facet Vasconcelos, Nathanael Oliveira
author_role author
dc.contributor.author.fl_str_mv Vasconcelos, Nathanael Oliveira
dc.contributor.advisor1.fl_str_mv Rodrigues Júnior, Methanias Colaço
contributor_str_mv Rodrigues Júnior, Methanias Colaço
dc.subject.por.fl_str_mv Computação
Evasão
Mineração de dados educacionais
Algoritmos de classificação
Experimentação
topic Computação
Evasão
Mineração de dados educacionais
Algoritmos de classificação
Experimentação
School dropout
Educational data mining
Classification algorithms
Experimentation
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv School dropout
Educational data mining
Classification algorithms
Experimentation
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Context: Dropout is certainly one of the major problems that plague educational institutions in general, since, as a result of student dropout, they are social, academic and economic assets. A search for their actions has been the subject of much educational work and research around the world. In the practical field, the various American high school associations had their guidelines focused on the dropout rate control, however, in Brazil, there is still little work done in this area of research. As a result, there is the ability to increase understanding of the problem and its causes by adopting more effective measures to identify and understand the key factors that may contribute to student failure. Objective: This work had the purpose of conducting experiments of more advanced data mining algorithms in the area of education, aiming to improve the educational context of the high school dropout of two federal institutions, as well as to implement a method of using the best model, which supports the decision support process and the school dropout mitigation. Method: Two in vivo controlled experiments were developed and performed to compare the selected classifiers. Then, a case study with interface created to apply the algorithm that obtained the best result was performed. Results: The results showed the differences between the algorithms used and, despite the SVM, had a higher average of the accumulation metrics, statistically, after a meta-analysis of the experiments, the algorithms MLP and Random forest, respectively, obtained similar accuracy results (85.38 %, 84.40 % and 84.13 %). For F-measure, a statistical significance was equal only for the MLP (84.42 %, 83.44 %). Conclusions: This dissertation exposes the need to increase the admission of measures to identify and understand the main factors that may contribute to students’ failure. The two experimental tests were examined and introduced by the success criteria, being the SVM, the selected differential, selected to be applied in a case study of one of the planning items. Federal University of Sergipe - UFS.
publishDate 2019
dc.date.issued.fl_str_mv 2019-08-22
dc.date.accessioned.fl_str_mv 2022-10-10T15:03:48Z
dc.date.available.fl_str_mv 2022-10-10T15:03:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv VASCONCELOS, Nathanael Oliveira. Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar. 2019. 69 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.
dc.identifier.uri.fl_str_mv http://ri.ufs.br/jspui/handle/riufs/16599
identifier_str_mv VASCONCELOS, Nathanael Oliveira. Data mining e data analytics para apoio à gestão estratégica e mitigação da evasão escolar. 2019. 69 f. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Sergipe, São Cristóvão, 2019.
url http://ri.ufs.br/jspui/handle/riufs/16599
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciência da Computação
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/16599/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/16599/2/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf
https://ri.ufs.br/jspui/bitstream/riufs/16599/3/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/16599/4/NATHANAEL_OLIVEIRA_VASCONCELOS.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
1d9bc0f8ec2be57aec91321d4dbe19f4
0c3894a3c41023474c6c017ef2dd1c12
ca87d06ed254f15dcb7048496fb33b3a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1802110751106662400