Uma construção alternativa para o funtor de Happel
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFS |
Texto Completo: | http://ri.ufs.br/jspui/handle/riufs/7782 |
Resumo: | The aim of this dissertation is to present a simpli cation of the proof of the following result obtained rst by Happel in [3]: If A is a nite-dimensional algebra over a eld algebraically closed K, then there is a triangulated, full and faithful functor of triangulated categories H : Db(modA) ! modA^, where A^ is the repetitive algebra obtained from A, which is also dense if A is of nite global dimension. We begin with a succinct presentation of the categorical language, approaching in general terms on the localization of categories, triangulated categories and their localizations, and nally derived categories, which are localized and triangulated categories. We also introduce the stable category of modules of a repetitive algebra A^. In the last chapter, we demonstrate the main result with the help of a result found in [8], in addition to the previously mentioned concepts. |
id |
UFS-2_e6fef1c6e8e1a7a2ad60b7c5a1f5bebc |
---|---|
oai_identifier_str |
oai:ufs.br:riufs/7782 |
network_acronym_str |
UFS-2 |
network_name_str |
Repositório Institucional da UFS |
repository_id_str |
|
spelling |
Lima, Maria Elismara de SousaSilva, Danilo Dias da2018-04-17T19:28:00Z2018-04-17T19:28:00Z2018-02-23LIMA, Maria Elismara de Sousa. Uma construção alternativa para o funtor de Happel. 2018. 113 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristovão, SE, 2018.http://ri.ufs.br/jspui/handle/riufs/7782The aim of this dissertation is to present a simpli cation of the proof of the following result obtained rst by Happel in [3]: If A is a nite-dimensional algebra over a eld algebraically closed K, then there is a triangulated, full and faithful functor of triangulated categories H : Db(modA) ! modA^, where A^ is the repetitive algebra obtained from A, which is also dense if A is of nite global dimension. We begin with a succinct presentation of the categorical language, approaching in general terms on the localization of categories, triangulated categories and their localizations, and nally derived categories, which are localized and triangulated categories. We also introduce the stable category of modules of a repetitive algebra A^. In the last chapter, we demonstrate the main result with the help of a result found in [8], in addition to the previously mentioned concepts.O objetivo dessa disserta c~ao e trazer uma simpli ca c~ao da demonstra c~ao do seguinte resultado obtido primeiramente por Happel [3]: Se A e uma K- algebra de dimens~ao nita, ent~ao existe um funtor pleno, el e triangulado H : Db(modA) ! modA^, onde A^ e a a lgebra repetitiva obtida de A, que e tamb em denso se A e de dimensa~o global nita. Iniciamos com uma apresenta c~ao sucinta da linguagem categ orica, abordando de maneira geral sobre localiza c~ao de categorias, categorias trianguladas e suas localiza c~oes, e nalmente categorias derivadas, que s~ao categorias localizadas e trianguladas. Tamb em introduzimos a categoria est avel de m odulos da algebra repetitiva de A. No ultimo cap tulo, demonstramos o resultado principal com o aux lio de um resultado encontrado em [8], al em dos conceitos citados anteriormente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão Cristóvão, SEporMatemáticaÁlgebraÁlgebra homológicaCategorias (Matemática)Localização de categoriasCategorias trianguladasCategoria derivadaLocalization of categoriesTriangulated categoriesDerived categoryUma construção alternativa para o funtor de Happelinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisPós-Graduação em MatemáticaUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/7782/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALMARIA_ELISMARA_SOUSA_LIMA.pdfMARIA_ELISMARA_SOUSA_LIMA.pdfapplication/pdf1026395https://ri.ufs.br/jspui/bitstream/riufs/7782/2/MARIA_ELISMARA_SOUSA_LIMA.pdf8868b7e4631d377e6827a1781c4a01b7MD52TEXTMARIA_ELISMARA_SOUSA_LIMA.pdf.txtMARIA_ELISMARA_SOUSA_LIMA.pdf.txtExtracted texttext/plain139535https://ri.ufs.br/jspui/bitstream/riufs/7782/3/MARIA_ELISMARA_SOUSA_LIMA.pdf.txtdee8e85d01231bb6a53427684f02fdaaMD53THUMBNAILMARIA_ELISMARA_SOUSA_LIMA.pdf.jpgMARIA_ELISMARA_SOUSA_LIMA.pdf.jpgGenerated Thumbnailimage/jpeg1391https://ri.ufs.br/jspui/bitstream/riufs/7782/4/MARIA_ELISMARA_SOUSA_LIMA.pdf.jpgb1568c92ab4ab33add84f51c6dca935bMD54riufs/77822018-04-17 16:28:00.802oai:ufs.br:riufs/7782TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2018-04-17T19:28Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
dc.title.pt_BR.fl_str_mv |
Uma construção alternativa para o funtor de Happel |
title |
Uma construção alternativa para o funtor de Happel |
spellingShingle |
Uma construção alternativa para o funtor de Happel Lima, Maria Elismara de Sousa Matemática Álgebra Álgebra homológica Categorias (Matemática) Localização de categorias Categorias trianguladas Categoria derivada Localization of categories Triangulated categories Derived category |
title_short |
Uma construção alternativa para o funtor de Happel |
title_full |
Uma construção alternativa para o funtor de Happel |
title_fullStr |
Uma construção alternativa para o funtor de Happel |
title_full_unstemmed |
Uma construção alternativa para o funtor de Happel |
title_sort |
Uma construção alternativa para o funtor de Happel |
author |
Lima, Maria Elismara de Sousa |
author_facet |
Lima, Maria Elismara de Sousa |
author_role |
author |
dc.contributor.author.fl_str_mv |
Lima, Maria Elismara de Sousa |
dc.contributor.advisor1.fl_str_mv |
Silva, Danilo Dias da |
contributor_str_mv |
Silva, Danilo Dias da |
dc.subject.por.fl_str_mv |
Matemática Álgebra Álgebra homológica Categorias (Matemática) Localização de categorias Categorias trianguladas Categoria derivada |
topic |
Matemática Álgebra Álgebra homológica Categorias (Matemática) Localização de categorias Categorias trianguladas Categoria derivada Localization of categories Triangulated categories Derived category |
dc.subject.eng.fl_str_mv |
Localization of categories Triangulated categories Derived category |
description |
The aim of this dissertation is to present a simpli cation of the proof of the following result obtained rst by Happel in [3]: If A is a nite-dimensional algebra over a eld algebraically closed K, then there is a triangulated, full and faithful functor of triangulated categories H : Db(modA) ! modA^, where A^ is the repetitive algebra obtained from A, which is also dense if A is of nite global dimension. We begin with a succinct presentation of the categorical language, approaching in general terms on the localization of categories, triangulated categories and their localizations, and nally derived categories, which are localized and triangulated categories. We also introduce the stable category of modules of a repetitive algebra A^. In the last chapter, we demonstrate the main result with the help of a result found in [8], in addition to the previously mentioned concepts. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-04-17T19:28:00Z |
dc.date.available.fl_str_mv |
2018-04-17T19:28:00Z |
dc.date.issued.fl_str_mv |
2018-02-23 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
LIMA, Maria Elismara de Sousa. Uma construção alternativa para o funtor de Happel. 2018. 113 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristovão, SE, 2018. |
dc.identifier.uri.fl_str_mv |
http://ri.ufs.br/jspui/handle/riufs/7782 |
identifier_str_mv |
LIMA, Maria Elismara de Sousa. Uma construção alternativa para o funtor de Happel. 2018. 113 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Sergipe, São Cristovão, SE, 2018. |
url |
http://ri.ufs.br/jspui/handle/riufs/7782 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.program.fl_str_mv |
Pós-Graduação em Matemática |
dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
instname_str |
Universidade Federal de Sergipe (UFS) |
instacron_str |
UFS |
institution |
UFS |
reponame_str |
Repositório Institucional da UFS |
collection |
Repositório Institucional da UFS |
bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/7782/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/7782/2/MARIA_ELISMARA_SOUSA_LIMA.pdf https://ri.ufs.br/jspui/bitstream/riufs/7782/3/MARIA_ELISMARA_SOUSA_LIMA.pdf.txt https://ri.ufs.br/jspui/bitstream/riufs/7782/4/MARIA_ELISMARA_SOUSA_LIMA.pdf.jpg |
bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 8868b7e4631d377e6827a1781c4a01b7 dee8e85d01231bb6a53427684f02fdaa b1568c92ab4ab33add84f51c6dca935b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
_version_ |
1802110654489821184 |