Logicism Revisited

Detalhes bibliográficos
Autor(a) principal: Bueno, Otávio
Data de Publicação: 2001
Tipo de documento: Artigo
Idioma: por
Título da fonte: Principia (Florianópolis. Online)
Texto Completo: https://periodicos.ufsc.br/index.php/principia/article/view/17766
Resumo: In this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue that a nominalist can use the resulting approach to provide a nominalization strategy for mathematics. In this way, mathematical structures can be introduced without ontological costs. And so, if this proposal is correct, we can say that ultimately all the nominalist needs is logic (and, rather loosely, ali the logicist needs is nominalism).
id UFSC-5_6277837d3a0d366d959e53eed70ee4f4
oai_identifier_str oai:periodicos.ufsc.br:article/17766
network_acronym_str UFSC-5
network_name_str Principia (Florianópolis. Online)
repository_id_str
spelling Logicism RevisitedIn this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue that a nominalist can use the resulting approach to provide a nominalization strategy for mathematics. In this way, mathematical structures can be introduced without ontological costs. And so, if this proposal is correct, we can say that ultimately all the nominalist needs is logic (and, rather loosely, ali the logicist needs is nominalism).Federal University of Santa Catarina – UFSC2001-01-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsc.br/index.php/principia/article/view/1776610.5007/%xPrincipia: an international journal of epistemology; Vol. 5 No. 1-2 (2001); 99-124Principia: an international journal of epistemology; Vol. 5 Núm. 1-2 (2001); 99-124Principia: an international journal of epistemology; v. 5 n. 1-2 (2001); 99-1241808-17111414-4247reponame:Principia (Florianópolis. Online)instname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSCporhttps://periodicos.ufsc.br/index.php/principia/article/view/17766/16350Copyright (c) 2021 Otávio Buenohttp://creativecommons.org/licenses/by-nc-nd/4.0info:eu-repo/semantics/openAccessBueno, Otávio2016-01-02T12:18:13Zoai:periodicos.ufsc.br:article/17766Revistahttps://periodicos.ufsc.br/index.php/principiaPUBhttps://periodicos.ufsc.br/index.php/principia/oaiprincipia@contato.ufsc.br||principia@contato.ufsc.br1808-17111414-4247opendoar:2016-01-02T12:18:13Principia (Florianópolis. Online) - Universidade Federal de Santa Catarina (UFSC)false
dc.title.none.fl_str_mv Logicism Revisited
title Logicism Revisited
spellingShingle Logicism Revisited
Bueno, Otávio
title_short Logicism Revisited
title_full Logicism Revisited
title_fullStr Logicism Revisited
title_full_unstemmed Logicism Revisited
title_sort Logicism Revisited
author Bueno, Otávio
author_facet Bueno, Otávio
author_role author
dc.contributor.author.fl_str_mv Bueno, Otávio
description In this paper, I develop a new defense of logicism: one that combines logicism and nominalism. First, I defend the logicist approach from recent criticisms; in particular from the charge that a cruciai principie in the logicist reconstruction of arithmetic, Hume's Principle, is not analytic. In order to do that, I argue, it is crucial to understand the overall logicist approach as a nominalist view. I then indicate a way of extending the nominalist logicist approach beyond arithmetic. Finally, I argue that a nominalist can use the resulting approach to provide a nominalization strategy for mathematics. In this way, mathematical structures can be introduced without ontological costs. And so, if this proposal is correct, we can say that ultimately all the nominalist needs is logic (and, rather loosely, ali the logicist needs is nominalism).
publishDate 2001
dc.date.none.fl_str_mv 2001-01-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsc.br/index.php/principia/article/view/17766
10.5007/%x
url https://periodicos.ufsc.br/index.php/principia/article/view/17766
identifier_str_mv 10.5007/%x
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsc.br/index.php/principia/article/view/17766/16350
dc.rights.driver.fl_str_mv Copyright (c) 2021 Otávio Bueno
http://creativecommons.org/licenses/by-nc-nd/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Otávio Bueno
http://creativecommons.org/licenses/by-nc-nd/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Federal University of Santa Catarina – UFSC
publisher.none.fl_str_mv Federal University of Santa Catarina – UFSC
dc.source.none.fl_str_mv Principia: an international journal of epistemology; Vol. 5 No. 1-2 (2001); 99-124
Principia: an international journal of epistemology; Vol. 5 Núm. 1-2 (2001); 99-124
Principia: an international journal of epistemology; v. 5 n. 1-2 (2001); 99-124
1808-1711
1414-4247
reponame:Principia (Florianópolis. Online)
instname:Universidade Federal de Santa Catarina (UFSC)
instacron:UFSC
instname_str Universidade Federal de Santa Catarina (UFSC)
instacron_str UFSC
institution UFSC
reponame_str Principia (Florianópolis. Online)
collection Principia (Florianópolis. Online)
repository.name.fl_str_mv Principia (Florianópolis. Online) - Universidade Federal de Santa Catarina (UFSC)
repository.mail.fl_str_mv principia@contato.ufsc.br||principia@contato.ufsc.br
_version_ 1789435110311854080