Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica

Detalhes bibliográficos
Autor(a) principal: Boos, Christine Fredel
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFSC
Texto Completo: https://repositorio.ufsc.br/xmlui/handle/123456789/158796
Resumo: Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015.
id UFSC_a22777feef55e9389855d38b9acd6342
oai_identifier_str oai:repositorio.ufsc.br:123456789/158796
network_acronym_str UFSC
network_name_str Repositório Institucional da UFSC
repository_id_str 2373
spelling Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológicaEngenharia elétricaEletroencefalografiaProcessamento de sinaisTese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015.A análise do sinal de eletroencefalograma (EEG) pode ser uma importante ferramenta de auxílio à comprovação clínica do diagnóstico de epilepsia. Esta análise é uma verificação visual criteriosa de registros de EEG na busca por uma atividade eletrográfica específica denominada descarga ou padrão epileptiformes. Essa atividade, quando encontrada com determinada frequência, pode corroborar o diagnóstico de epilepsia. No entanto, como os registros analisados normalmente são resultado de longos períodos de monitoramento, a análise do EEG pode ser um processo demorado. Diversos estudos propuseram metodologias ou sistemas para automatizar este tipo de análise, mas apesar dos esforços e relativo sucesso ainda não existe um algoritmo ou sistema para este reconhecimento automático que seja amplamente difundido no ambiente clínico, possua um desempenho de acordo com as necessidades dos especialistas na área e, do ponto de vista técnico, não possua restrição quanto aos dados de entrada. Desta forma, com o intuito de contribuir para o estudo do reconhecimento automático de padrões epileptiformes o presente trabalho descreve uma proposta de metodologia baseada em análise morfológica e inspirada no comportamento dos especialistas humanos. A análise morfológica é realizada utilizando um conjunto de descritores morfológicos extraídos de sinais de EEG processados digitalmente. A avaliação da metodologia é realizada utilizando um grupo de classificadores computacionais e diferentes bases de dados de EEG. O desempenho da metodologia é analisado por métricas consolidadas na literatura e por uma comparação pareada com o desempenho de sensibilidade, especificidade e concordância de quatro neurofisiologistas clínicos. Resultados obtidos mostraram que o classificador que apresentou o melhor desempenho geral foi uma rede neural combinada com a Análise de Componentes Principais. A sensibilidade e a especificidade média atingida por essa rede foram, respectivamente 58,6 e 87,2%. A eficiência média obtida pela rede nas bases de dados foi de 89%. E a concordância dessa rede com os quatro especialistas foi de 45,7%. Os resultados obtidos para a especificidade mostraram-se satisfatórios, uma vez que os valores médios obtidos foram compatíveis àqueles dos especialistas. Apesar da sensibilidade e da concordância com os especialistas terem apresentado valores baixos, pode-se considerar que a metodologia proposta apresenta resultados promissores considerando a quantidade e natureza dos testes realizados.<br>Abstract : The analysis of the EEG signal (EEG) can be an important support tool to the clinical confirmation of the diagnosis of epilepsy. This analysis is a thorough visual inspection of EEG recordings in the search for a specific electrographic activity called epileptiform pattern or discharge. This activity, when found with a certain frequency, can corroborate the diagnosis of epilepsy. However, as the analyzed recordings are usually the result of long term monitoring, the EEG analysis can be a time consuming process. Several studies have proposed methodologies and/or systems to automate this type of analysis however despite the efforts and relative success, there is still no solution for the automatic recognition that is widely disseminated in the clinical environment, has a performance according to the needs of specialists in the field and, from a technical point of view has no restriction about the input data. Thus, in order to contribute to the study of automatic recognition of epileptiform patterns this work describes a methodology proposal based on morphological analysis and inspired by the behavior of human experts. The morphological analysis is performed using a set of morphological descriptors extracted from digitally processed EEG signals. The evaluation of the methodology is performed using a group of computational classifiers and different EEG databases. The methodology?s performance is analyzed by metrics consolidated in the literature and by a pairwise comparison of the sensitivity, specificity and agreement of four clinical neurophysiologists. Obtained results show that the classifier that presented the best overall performance was a neural network combined with the Principal Component Analysis. The average sensitivity and specificity achieved by this network were respectively 58.6 and 87.2%. The network?s average efficiency obtained in the databases was 89%. And the agreement of the network with four experts was 45.7%. The results for specificity were satisfactory, since the average values obtained were consistent to those of the experts. Despite the low values of sensitivity and agreement with the experts presented by the classifiers, it can be considered that the proposed methodology shows promising results considering the amount and nature of the tests performed in this work.Azevedo, Fernando Mendes deUniversidade Federal de Santa CatarinaBoos, Christine Fredel2016-02-09T03:04:49Z2016-02-09T03:04:49Z2015info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis[149] p.| il., grafs., tabs.application/pdf337508https://repositorio.ufsc.br/xmlui/handle/123456789/158796porreponame:Repositório Institucional da UFSCinstname:Universidade Federal de Santa Catarina (UFSC)instacron:UFSCinfo:eu-repo/semantics/openAccess2016-03-07T18:59:30Zoai:repositorio.ufsc.br:123456789/158796Repositório InstitucionalPUBhttp://150.162.242.35/oai/requestopendoar:23732016-03-07T18:59:30Repositório Institucional da UFSC - Universidade Federal de Santa Catarina (UFSC)false
dc.title.none.fl_str_mv Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
title Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
spellingShingle Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
Boos, Christine Fredel
Engenharia elétrica
Eletroencefalografia
Processamento de sinais
title_short Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
title_full Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
title_fullStr Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
title_full_unstemmed Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
title_sort Contribuição ao reconhecimento automático de padrões epileptiformes em sinais de eletroencefalograma utilizando análise morfológica
author Boos, Christine Fredel
author_facet Boos, Christine Fredel
author_role author
dc.contributor.none.fl_str_mv Azevedo, Fernando Mendes de
Universidade Federal de Santa Catarina
dc.contributor.author.fl_str_mv Boos, Christine Fredel
dc.subject.por.fl_str_mv Engenharia elétrica
Eletroencefalografia
Processamento de sinais
topic Engenharia elétrica
Eletroencefalografia
Processamento de sinais
description Tese (doutorado) - Universidade Federal de Santa Catarina, Centro Tecnológico, Programa de Pós-Graduação em Engenharia Elétrica, Florianópolis, 2015.
publishDate 2015
dc.date.none.fl_str_mv 2015
2016-02-09T03:04:49Z
2016-02-09T03:04:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv 337508
https://repositorio.ufsc.br/xmlui/handle/123456789/158796
identifier_str_mv 337508
url https://repositorio.ufsc.br/xmlui/handle/123456789/158796
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv [149] p.| il., grafs., tabs.
application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFSC
instname:Universidade Federal de Santa Catarina (UFSC)
instacron:UFSC
instname_str Universidade Federal de Santa Catarina (UFSC)
instacron_str UFSC
institution UFSC
reponame_str Repositório Institucional da UFSC
collection Repositório Institucional da UFSC
repository.name.fl_str_mv Repositório Institucional da UFSC - Universidade Federal de Santa Catarina (UFSC)
repository.mail.fl_str_mv
_version_ 1808652370685460480