Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk

Detalhes bibliográficos
Autor(a) principal: Marschner, Paulo Fernando
Data de Publicação: 2019
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000008bps
Texto Completo: http://repositorio.ufsm.br/handle/1/17142
Resumo: This research proposes a comparative analysis of some conditional volatility models for the calculation of Value-at-Risk (VaR) applied to the main financial series of the crypto-currencies market. Conditional volatility models of the ARCH family were used, taking into account markov-switching changes. Specifically, we used the EGARCH and MS-EGARCH models estimated from four different distributions, Normal, Normal Asymmetric, Student-t and Student-t Asymmetric, to model and make predictions for the time series of Bitcoin, Bitcoin Cash, Ripple, Ethereum, EOS and Stellar. Estimates confirm the existence of two states: the first regime is characterized greater volatility and less affected by asymmetries, while the second reveals greater effect of the arrival of information, ie is more sensitive to asymmetric shock and less persistence of volatility. To complement the analysis of the volatility models, risk estimates were generated from Value-at-Risk. Thus, we performed the process to obtain the estimates of the VaR estimates for 100 steps forward with readjustment of the parameters at each step obtained for α = 1% and α = 5%. It should be noted that MS-EGARCH exceeded EGARCH-type models by 1%, indicating that this model is the most appropriate for estimation of the value at risk in the extreme quantile of 1%, that is, the model with change of Markovian regime made a prediction closer to perfection. However, in 5% the occurrence of losses was similar between the models. In this case, regardless of the number of regimes, there was an overestimation of VaR, that is, there were violations between expected and expected losses. As there were no statistically robust results, there is no way to imply that the MS-EGARCH model exceeds in large magnitudes the EGARCH model in a single prediction of 100 steps forward. Instead, it can be inferred that models with regime change can more accurately accommodate the properties of the financial returns and dynamics present in their volatility.
id UFSM_5d3ca21340dbc58c041cad3522a5dcec
oai_identifier_str oai:repositorio.ufsm.br:1/17142
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-riskMarkov-switching change in the volatility dynamics of the cryptocurrencies market and its reflections in the value-at-risk forecastingPrevisãoCriptomoedasValue-at-RiskForecastingCryptocurrencyCNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAOThis research proposes a comparative analysis of some conditional volatility models for the calculation of Value-at-Risk (VaR) applied to the main financial series of the crypto-currencies market. Conditional volatility models of the ARCH family were used, taking into account markov-switching changes. Specifically, we used the EGARCH and MS-EGARCH models estimated from four different distributions, Normal, Normal Asymmetric, Student-t and Student-t Asymmetric, to model and make predictions for the time series of Bitcoin, Bitcoin Cash, Ripple, Ethereum, EOS and Stellar. Estimates confirm the existence of two states: the first regime is characterized greater volatility and less affected by asymmetries, while the second reveals greater effect of the arrival of information, ie is more sensitive to asymmetric shock and less persistence of volatility. To complement the analysis of the volatility models, risk estimates were generated from Value-at-Risk. Thus, we performed the process to obtain the estimates of the VaR estimates for 100 steps forward with readjustment of the parameters at each step obtained for α = 1% and α = 5%. It should be noted that MS-EGARCH exceeded EGARCH-type models by 1%, indicating that this model is the most appropriate for estimation of the value at risk in the extreme quantile of 1%, that is, the model with change of Markovian regime made a prediction closer to perfection. However, in 5% the occurrence of losses was similar between the models. In this case, regardless of the number of regimes, there was an overestimation of VaR, that is, there were violations between expected and expected losses. As there were no statistically robust results, there is no way to imply that the MS-EGARCH model exceeds in large magnitudes the EGARCH model in a single prediction of 100 steps forward. Instead, it can be inferred that models with regime change can more accurately accommodate the properties of the financial returns and dynamics present in their volatility.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEsta pesquisa propõe uma análise comparativa de alguns modelos de volatilidade condicional para o cálculo do Value-at-Risk (VaR) aplicado as principais séries financeiras do mercado de criptomoedas. Foram utilizados modelos de volatilidade condicional da família ARCH levando em consideração mudanças de regime markoviano. Em específico, utilizaram-se os modelos EGARCH e MS-EGARCH estimados a partir de quatro diferentes distribuições, Normal, Normal Assimétrica, Student-t e Student-t Assimétrica, para modelar e fazer previsões para as séries do Bitcoin, Bitcoin Cash, Ripple, Ethereum, EOS e Stellar. As estimativas confirmam a existência de dois estados: o primeiro regime é caracterizado maior volatilidade e menos afetado por assimetrias, enquanto o segundo revela ser mais sensível à choque assimétricos e têm menor persistência da volatilidade. Para complementar a análise dos modelos de volatilidade foram geradas estimativas de risco a partir do Value-at-Risk. Dessa forma, foi realizado o processo para obter as previsões das estimativas do VaR para 100 passos à frente com reajuste dos parâmetros a cada passo obtidas para α = 1% e α = 5%. Pode-se notar que o MS-EGARCH superou os modelos do tipo EGARCH em 1%, indicando que este modelo é o mais adequado para estimação do valor em risco no quantil extremo de 1%, ou seja, o modelo com mudança de regime markoviano realizou uma previsão mais próxima da perfeição. Todavia, em 5% a ocorrência de perdas foi similar entre os modelos. Neste caso, independente do número de regimes houve uma superestimação do VaR, ou seja, ocorreram violações entre as perdas esperadas e previstas. Como não houve resultados estatisticamente robustos, não há como implicar que o modelo MS-EGARCH supera em grandes magnitudes o modelo EGARCH em uma previsão única de 100 passos à frente. Ao invés disso, pode-se inferir os modelos com mudança de regime conseguem acomodar com mais precisão às propriedades dos retornos financeiros e das dinâmicas presentes em sua volatilidade.Universidade Federal de Santa MariaBrasilAdministraçãoUFSMPrograma de Pós-Graduação em AdministraçãoCentro de Ciências Sociais e HumanasCeretta, Paulo Sergiohttp://lattes.cnpq.br/3049029014914257Souza, Adriano Mendonçahttp://lattes.cnpq.br/5271075797851198Milani, Brunohttp://lattes.cnpq.br/0005005751598450Marschner, Paulo Fernando2019-06-25T21:20:55Z2019-06-25T21:20:55Z2019-02-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17142ark:/26339/0013000008bpsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-06-26T06:00:24Zoai:repositorio.ufsm.br:1/17142Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/ONGhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.comopendoar:2019-06-26T06:00:24Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
Markov-switching change in the volatility dynamics of the cryptocurrencies market and its reflections in the value-at-risk forecasting
title Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
spellingShingle Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
Marschner, Paulo Fernando
Previsão
Criptomoedas
Value-at-Risk
Forecasting
Cryptocurrency
CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
title_short Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
title_full Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
title_fullStr Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
title_full_unstemmed Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
title_sort Mudança de regime markoviano na dinâmica de volatilidade do mercado de criptomoedas e seus reflexos na previsão do value-at-risk
author Marschner, Paulo Fernando
author_facet Marschner, Paulo Fernando
author_role author
dc.contributor.none.fl_str_mv Ceretta, Paulo Sergio
http://lattes.cnpq.br/3049029014914257
Souza, Adriano Mendonça
http://lattes.cnpq.br/5271075797851198
Milani, Bruno
http://lattes.cnpq.br/0005005751598450
dc.contributor.author.fl_str_mv Marschner, Paulo Fernando
dc.subject.por.fl_str_mv Previsão
Criptomoedas
Value-at-Risk
Forecasting
Cryptocurrency
CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
topic Previsão
Criptomoedas
Value-at-Risk
Forecasting
Cryptocurrency
CNPQ::CIENCIAS SOCIAIS APLICADAS::ADMINISTRACAO
description This research proposes a comparative analysis of some conditional volatility models for the calculation of Value-at-Risk (VaR) applied to the main financial series of the crypto-currencies market. Conditional volatility models of the ARCH family were used, taking into account markov-switching changes. Specifically, we used the EGARCH and MS-EGARCH models estimated from four different distributions, Normal, Normal Asymmetric, Student-t and Student-t Asymmetric, to model and make predictions for the time series of Bitcoin, Bitcoin Cash, Ripple, Ethereum, EOS and Stellar. Estimates confirm the existence of two states: the first regime is characterized greater volatility and less affected by asymmetries, while the second reveals greater effect of the arrival of information, ie is more sensitive to asymmetric shock and less persistence of volatility. To complement the analysis of the volatility models, risk estimates were generated from Value-at-Risk. Thus, we performed the process to obtain the estimates of the VaR estimates for 100 steps forward with readjustment of the parameters at each step obtained for α = 1% and α = 5%. It should be noted that MS-EGARCH exceeded EGARCH-type models by 1%, indicating that this model is the most appropriate for estimation of the value at risk in the extreme quantile of 1%, that is, the model with change of Markovian regime made a prediction closer to perfection. However, in 5% the occurrence of losses was similar between the models. In this case, regardless of the number of regimes, there was an overestimation of VaR, that is, there were violations between expected and expected losses. As there were no statistically robust results, there is no way to imply that the MS-EGARCH model exceeds in large magnitudes the EGARCH model in a single prediction of 100 steps forward. Instead, it can be inferred that models with regime change can more accurately accommodate the properties of the financial returns and dynamics present in their volatility.
publishDate 2019
dc.date.none.fl_str_mv 2019-06-25T21:20:55Z
2019-06-25T21:20:55Z
2019-02-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/17142
dc.identifier.dark.fl_str_mv ark:/26339/0013000008bps
url http://repositorio.ufsm.br/handle/1/17142
identifier_str_mv ark:/26339/0013000008bps
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Administração
UFSM
Programa de Pós-Graduação em Administração
Centro de Ciências Sociais e Humanas
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Administração
UFSM
Programa de Pós-Graduação em Administração
Centro de Ciências Sociais e Humanas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com
_version_ 1815172303922659328