Estudo experimental de recursos quânticos usando os computadores quânticos da IBM

Detalhes bibliográficos
Autor(a) principal: Pozzobom, Mauro Buemo
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional Manancial UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/21294
Resumo: Bell-diagonal states are extremely important for understanding the dynamics and applications of some quantum resources. Quantum properties such as steering, entanglement, and coherence, among others, can be used as resources in quantum computing. Because of this, we believe it is necessary to understand the preparation of these states. We create an adjustable quantum circuit, which we implement on the International Business Machines (IBM) quantum computer. These computers are an excellent possibility for carrying out experiments like this. We implement the circuit on three different quantum chips that are available on the online platform. As an example, we measure non-locality, steering, entanglement, discord and non-local coherence for Werner states, which are a special type of the Bell-diagonal. We compare the theoretical results with the experimental data. We note the harmful effect that noise can have on quantum circuits, bringing undesirable decoherence effects to the system. We model noise in a simple way, using two quantum channels, amplitude damping and phase damping. We investigate the direct relationship between measures of discord and entanglement, as well as the sudden change of discord. But, even carrying out these tests on several quantum chips, it was not possible to carry out such verification with great clarity. On the other hand, the great importance of Bohr’s Complementarity Principle for Quantum Mechanics is well known. However, the search for quantifiers to measure wave or particle characteristics, in a quantum system, has always been very intense. Recently, a formalism was developed based on basic properties of the density matrix ( 0; Tr = 1). We use the IBM quantum computer to check the complementarity relationships based on these properties. We calculate quantum coherence, predictability and quantum correlations for a particular class of quantum states of one qubit and also for random quantum states of one, two and three qubits. We note that for both cases, the interaction of the system with the environment, and the consequent creation of correlation, generates a decrease in the sum of quantum coherence and predictability but which is compensated by the increase in quantum correlations between system and environment.
id UFSM-20_b2c01158bf4c200f872ac57be44fe41a
oai_identifier_str oai:repositorio.ufsm.br:1/21294
network_acronym_str UFSM-20
network_name_str Repositório Institucional Manancial UFSM
repository_id_str 3913
spelling 2021-07-05T13:05:36Z2021-07-05T13:05:36Z2021-02-26http://repositorio.ufsm.br/handle/1/21294Bell-diagonal states are extremely important for understanding the dynamics and applications of some quantum resources. Quantum properties such as steering, entanglement, and coherence, among others, can be used as resources in quantum computing. Because of this, we believe it is necessary to understand the preparation of these states. We create an adjustable quantum circuit, which we implement on the International Business Machines (IBM) quantum computer. These computers are an excellent possibility for carrying out experiments like this. We implement the circuit on three different quantum chips that are available on the online platform. As an example, we measure non-locality, steering, entanglement, discord and non-local coherence for Werner states, which are a special type of the Bell-diagonal. We compare the theoretical results with the experimental data. We note the harmful effect that noise can have on quantum circuits, bringing undesirable decoherence effects to the system. We model noise in a simple way, using two quantum channels, amplitude damping and phase damping. We investigate the direct relationship between measures of discord and entanglement, as well as the sudden change of discord. But, even carrying out these tests on several quantum chips, it was not possible to carry out such verification with great clarity. On the other hand, the great importance of Bohr’s Complementarity Principle for Quantum Mechanics is well known. However, the search for quantifiers to measure wave or particle characteristics, in a quantum system, has always been very intense. Recently, a formalism was developed based on basic properties of the density matrix ( 0; Tr = 1). We use the IBM quantum computer to check the complementarity relationships based on these properties. We calculate quantum coherence, predictability and quantum correlations for a particular class of quantum states of one qubit and also for random quantum states of one, two and three qubits. We note that for both cases, the interaction of the system with the environment, and the consequent creation of correlation, generates a decrease in the sum of quantum coherence and predictability but which is compensated by the increase in quantum correlations between system and environment.Estados Bell-diagonais são de extrema importância para a compreensão da dinâmica e das aplicações de alguns recursos quânticos. Propriedades quânticas como steering, emaranhamento e coerência, dentre outras, podem ser usadas como recursos em computação quântica. Devido a isso, julgamos necessário o entendimento sobre a preparação desses estados. Nós criamos um circuito quântico ajustável, que implementamos no computador quântico da International Business Machines (IBM). Esses computadores são uma excelente possibilidade para realizar experimentos como este. Implementamos o circuito em três diferentes chips quânticos que estão disponíveis na plataforma on-line. Como exemplo, medimos a não localidade, steering, emaranhamento, discórdia e coerência não local para estados de Werner, que são um tipo especial dos estados Bell-diagonal. Comparamos os resultados teóricos com os dados experimentais. Notamos o efeito prejudicial que o ruído pode provocar nos circuitos quânticos, trazendo efeitos indesejáveis de decoerência para o sistema. Modelamos de maneira simples o ruído através de dois canais quânticos, amplitude damping e phase damping. Tentamos verificar a relação direta entre medidas de discórdia e emaranhamento, assim como observar experimentalmente a mudança súbita para a discórdia. Mesmo realizando esses testes em diversos chips quânticos, não foi possível fazer tal verificação com grande clareza. Por outro lado, é conhecida a grande importância do Princípio da Complementaridade de Bohr para a Mecânica Quântica. No entanto, a busca por quantificadores para medir característica de onda ou de partícula, em um sistema quântico, sempre foi muito grande. Recentemente um formalismo foi desenvolvido a partir de propriedades básicas da matriz densidade ( 0; Tr = 1). Utilizamos o computador quântico da IBM para verificar as relações de complementaridade baseadas nessas propriedades. Calculamos coerência quântica, previsibilidade e correlações quânticas para uma classe particular de estados quânticos de um q-bit e também para estados quânticos aleatórios de um, dois e três q-bits. Notamos que, para ambos os casos, a interação do sistema com ambiente, e a consequente criação de correlação, gera diminuição na soma da coerência quântica e previsibilidade, mas que é compensada pelo aumento das correlações quânticas entre sistema e ambiente.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de Santa MariaCentro de Ciências Naturais e ExatasPrograma de Pós-Graduação em FísicaUFSMBrasilFísicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEstados Bell-diagonalEstados de WernerComputador quânticoRecursos quânticosRelações de complementaridadeBell-diagonal statesWerner statesQuantum computerQuantum resourcesComplementarity relationsCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAEstudo experimental de recursos quânticos usando os computadores quânticos da IBMExperimental study of quantum resources using IBM quantum computersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisMaziero, Jonashttp://lattes.cnpq.br/1270437648097538Sarandy, Marcelo SilvaCéleri, Lucas ChibebeCalegari, Eleonir JoãoPiquini, Paulo Cesarhttp://lattes.cnpq.br/0907139618368906Pozzobom, Mauro Buemo100500000006600600600600600832c6bda-ec6d-4308-9152-fd4f204fe619738f707e-101a-4b24-8a62-54d8f21b33dbbc85ff50-da57-41cf-b3ee-99d192ff3c5bfea4103a-8905-4c11-aad0-8b2fda0a09fc09cdaa61-0f88-4361-90a2-73c029303b875e7b9aa5-ecfc-487e-b9b1-46db2d268eaereponame:Repositório Institucional Manancial UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALTES_PPGFISICA_2021_POZZOBOM_MAURO.pdfTES_PPGFISICA_2021_POZZOBOM_MAURO.pdfTeseapplication/pdf9766024http://repositorio.ufsm.br/bitstream/1/21294/1/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf59a228e4760bac54a1b121505b047e7eMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/21294/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/21294/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTTES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.txtTES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.txtExtracted texttext/plain258474http://repositorio.ufsm.br/bitstream/1/21294/4/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.txt7d78345890ed4f0405fb0dbb1afd7302MD54THUMBNAILTES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.jpgTES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.jpgIM Thumbnailimage/jpeg4372http://repositorio.ufsm.br/bitstream/1/21294/5/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.jpg175abba9af8515987ba0bc39f2c7d025MD551/212942021-07-06 03:03:20.974oai:repositorio.ufsm.br:1/21294TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestouvidoria@ufsm.bropendoar:39132021-07-06T06:03:20Repositório Institucional Manancial UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
dc.title.alternative.eng.fl_str_mv Experimental study of quantum resources using IBM quantum computers
title Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
spellingShingle Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
Pozzobom, Mauro Buemo
Estados Bell-diagonal
Estados de Werner
Computador quântico
Recursos quânticos
Relações de complementaridade
Bell-diagonal states
Werner states
Quantum computer
Quantum resources
Complementarity relations
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
title_full Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
title_fullStr Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
title_full_unstemmed Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
title_sort Estudo experimental de recursos quânticos usando os computadores quânticos da IBM
author Pozzobom, Mauro Buemo
author_facet Pozzobom, Mauro Buemo
author_role author
dc.contributor.advisor1.fl_str_mv Maziero, Jonas
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1270437648097538
dc.contributor.referee1.fl_str_mv Sarandy, Marcelo Silva
dc.contributor.referee2.fl_str_mv Céleri, Lucas Chibebe
dc.contributor.referee3.fl_str_mv Calegari, Eleonir João
dc.contributor.referee4.fl_str_mv Piquini, Paulo Cesar
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0907139618368906
dc.contributor.author.fl_str_mv Pozzobom, Mauro Buemo
contributor_str_mv Maziero, Jonas
Sarandy, Marcelo Silva
Céleri, Lucas Chibebe
Calegari, Eleonir João
Piquini, Paulo Cesar
dc.subject.por.fl_str_mv Estados Bell-diagonal
Estados de Werner
Computador quântico
Recursos quânticos
Relações de complementaridade
topic Estados Bell-diagonal
Estados de Werner
Computador quântico
Recursos quânticos
Relações de complementaridade
Bell-diagonal states
Werner states
Quantum computer
Quantum resources
Complementarity relations
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Bell-diagonal states
Werner states
Quantum computer
Quantum resources
Complementarity relations
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description Bell-diagonal states are extremely important for understanding the dynamics and applications of some quantum resources. Quantum properties such as steering, entanglement, and coherence, among others, can be used as resources in quantum computing. Because of this, we believe it is necessary to understand the preparation of these states. We create an adjustable quantum circuit, which we implement on the International Business Machines (IBM) quantum computer. These computers are an excellent possibility for carrying out experiments like this. We implement the circuit on three different quantum chips that are available on the online platform. As an example, we measure non-locality, steering, entanglement, discord and non-local coherence for Werner states, which are a special type of the Bell-diagonal. We compare the theoretical results with the experimental data. We note the harmful effect that noise can have on quantum circuits, bringing undesirable decoherence effects to the system. We model noise in a simple way, using two quantum channels, amplitude damping and phase damping. We investigate the direct relationship between measures of discord and entanglement, as well as the sudden change of discord. But, even carrying out these tests on several quantum chips, it was not possible to carry out such verification with great clarity. On the other hand, the great importance of Bohr’s Complementarity Principle for Quantum Mechanics is well known. However, the search for quantifiers to measure wave or particle characteristics, in a quantum system, has always been very intense. Recently, a formalism was developed based on basic properties of the density matrix ( 0; Tr = 1). We use the IBM quantum computer to check the complementarity relationships based on these properties. We calculate quantum coherence, predictability and quantum correlations for a particular class of quantum states of one qubit and also for random quantum states of one, two and three qubits. We note that for both cases, the interaction of the system with the environment, and the consequent creation of correlation, generates a decrease in the sum of quantum coherence and predictability but which is compensated by the increase in quantum correlations between system and environment.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-07-05T13:05:36Z
dc.date.available.fl_str_mv 2021-07-05T13:05:36Z
dc.date.issued.fl_str_mv 2021-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/21294
url http://repositorio.ufsm.br/handle/1/21294
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 100500000006
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.authority.fl_str_mv 832c6bda-ec6d-4308-9152-fd4f204fe619
738f707e-101a-4b24-8a62-54d8f21b33db
bc85ff50-da57-41cf-b3ee-99d192ff3c5b
fea4103a-8905-4c11-aad0-8b2fda0a09fc
09cdaa61-0f88-4361-90a2-73c029303b87
5e7b9aa5-ecfc-487e-b9b1-46db2d268eae
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Física
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Física
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Repositório Institucional Manancial UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Repositório Institucional Manancial UFSM
collection Repositório Institucional Manancial UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/21294/1/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf
http://repositorio.ufsm.br/bitstream/1/21294/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/21294/3/license.txt
http://repositorio.ufsm.br/bitstream/1/21294/4/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.txt
http://repositorio.ufsm.br/bitstream/1/21294/5/TES_PPGFISICA_2021_POZZOBOM_MAURO.pdf.jpg
bitstream.checksum.fl_str_mv 59a228e4760bac54a1b121505b047e7e
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
7d78345890ed4f0405fb0dbb1afd7302
175abba9af8515987ba0bc39f2c7d025
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional Manancial UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ouvidoria@ufsm.br
_version_ 1808854727492894720