Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos

Detalhes bibliográficos
Autor(a) principal: Ferreira, Letícia de Oliveira
Data de Publicação: 2020
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Manancial - Repositório Digital da UFSM
Texto Completo: http://repositorio.ufsm.br/handle/1/23068
Resumo: This work presents a study on the charge transfer of the automatic micropipette and the glass microsyringe with the grounded and ungrounded metallic part when dripping with different liquids and also when applying different electric fields in a metallic cylinder, measured with Faraday cup and analyzing how charges can change and how the excess occur at the interface drops. The main object of study developed was the evaporation of drops, the liquid was transferred through a glass microsyringe with the grounded metallic part and deposited on polytetrafluoroethylene (PTFE) surfaces with low residual electrostatic potential. During evaporation, the Kelvin probe was used to measure changes in electrostatic potential in the droplets, which registered an increase in the positive charge in the liquid until reaching a maximum value, followed by a rapid decrease in potential and then stabilization after total evaporation of the liquid. Different solutions were evaporated, deionized water and 3% NaCℓ (sodium chloride), solutions of three different surfactants sodium dodecyl sulfate (sodium lauryl sulfate) (SDS), cetylpyridinium chloride (CPCℓ), and ether 1,1,3, 3-tetramethyl-butyl-phenyl (9.5) - polyoxyethylene (Triton X-100) and drops of different pH. Through the mapping of electrostatic potential and microscopic measurements it was possible to verify an increase in charge in the drop, and where the drop was deposited the dielectric surface became positive and the surroundings in the PTFE, negative. In addition, an electrostatic model was proposed for the evaporation of liquid droplets deposited on the PTFE surface, where the negative charges (hydroxyls; OH-) are disposed in excess at the water-air and water-PTFE interface, while the positive charges (hydrons, H3O+) are found inside the drop (bulk). It is believed that all this work can collaborate/contribute to meteorological research in the future, as there is no model or electrification process explained for drops during evaporation. Also to be able to store all this energy generated spontaneously, which may someday be an alternative energy source.
id UFSM-20_c8bdc87676a67b6868060d22e496cbb7
oai_identifier_str oai:repositorio.ufsm.br:1/23068
network_acronym_str UFSM-20
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str 3913
spelling 2021-11-30T13:20:28Z2021-11-30T13:20:28Z2020-03-06http://repositorio.ufsm.br/handle/1/23068This work presents a study on the charge transfer of the automatic micropipette and the glass microsyringe with the grounded and ungrounded metallic part when dripping with different liquids and also when applying different electric fields in a metallic cylinder, measured with Faraday cup and analyzing how charges can change and how the excess occur at the interface drops. The main object of study developed was the evaporation of drops, the liquid was transferred through a glass microsyringe with the grounded metallic part and deposited on polytetrafluoroethylene (PTFE) surfaces with low residual electrostatic potential. During evaporation, the Kelvin probe was used to measure changes in electrostatic potential in the droplets, which registered an increase in the positive charge in the liquid until reaching a maximum value, followed by a rapid decrease in potential and then stabilization after total evaporation of the liquid. Different solutions were evaporated, deionized water and 3% NaCℓ (sodium chloride), solutions of three different surfactants sodium dodecyl sulfate (sodium lauryl sulfate) (SDS), cetylpyridinium chloride (CPCℓ), and ether 1,1,3, 3-tetramethyl-butyl-phenyl (9.5) - polyoxyethylene (Triton X-100) and drops of different pH. Through the mapping of electrostatic potential and microscopic measurements it was possible to verify an increase in charge in the drop, and where the drop was deposited the dielectric surface became positive and the surroundings in the PTFE, negative. In addition, an electrostatic model was proposed for the evaporation of liquid droplets deposited on the PTFE surface, where the negative charges (hydroxyls; OH-) are disposed in excess at the water-air and water-PTFE interface, while the positive charges (hydrons, H3O+) are found inside the drop (bulk). It is believed that all this work can collaborate/contribute to meteorological research in the future, as there is no model or electrification process explained for drops during evaporation. Also to be able to store all this energy generated spontaneously, which may someday be an alternative energy source.Este trabalho apresenta um estudo sobre a transferência de carga da micropipeta automática e da microseringa de vidro com a parte metálica aterrada e não aterrada ao fazer o gotejamento com diferentes líquidos e também ao aplicar diferentes campos elétricos em um cilindro metálico, medidos através do Copo de Faraday e analisando como ocorre a alteração e excesso de cargas na interface das gotas. O principal objeto de estudo desenvolvido foi a evaporação de gotas, o líquido era transferido através de uma microseringa de vidro com a parte metálica aterrada e depositadas em superfícies de politetrafluoroetileno (PTFE) com baixo potencial eletrostático residual. Durante a evaporação o eletrodo de Kelvin foi utilizado para medir as alterações de potencial eletrostático nas gotas, os quais registraram aumento de carga positiva no líquido até atingir um valor máximo, seguido de um rápido decréscimo de potencial e então estabilização após a evaporação total do líquido. Foram evaporadas diferentes soluções, água deionizada e 3% NaCℓ (cloreto de sódio), soluções de três diferentes surfactantes dodecilsulfato de sódio (lauril sulfato de sódio) (SDS), cloreto de cetilpiridínio (CPCℓ), e éter 1,1,3,3-tetrametil-butil-fenil (9,5) – poli-oxietilênico (Triton X-100) e gotas de diferentes pH. Através do mapeamento de potencial eletrostático e das medidas microscópicas foi possível verificar um aumento de carga na gota e onde estava depositada a gota a superfície dielétrica tornou-se positiva e aos arredores no PTFE, negativa. Além disto foi proposto um modelo eletrostático para a evaporação de gotas líquidas depositadas na superfície de PTFE, onde as cargas negativas (hidroxilas; OH-) estão dispostas em excesso na interface água-ar e água-PTFE, enquanto as cargas positivas (hidrônios, H3O+) encontram-se no interior da gota (bulk). Acredita-se que todo este trabalho possa colaborar/contribuir futuramente com pesquisas meteorológicas, pois não há nenhum modelo e nem processo de eletrização explicado para gotas durante a evaporação. Também conseguir armazenar toda esta energia gerada espontaneamente, podendo quem sabe algum dia ser uma fonte de energia alternativa.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de Santa MariaCentro de Ciências Naturais e ExatasPrograma de Pós-Graduação em QuímicaUFSMBrasilQuímicaAttribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessLíquidosEvaporaçãoPotencial eletrostáticoEletrodo de KelvinLiquidsEvaporationElectrostatic potentialKelvin probeCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICAMosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidosMosaics of electrical charges and large gradients of potential in dielectric surfaces formed by the evaporation of liquidsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisBurgo, Thiago Augusto de Limahttp://lattes.cnpq.br/5737213839553155Villetti, Marcos AntonioKöhler, Mateus HenriqueFagan, Solange Binottohttp://lattes.cnpq.br/0061711985233710Ferreira, Letícia de Oliveira100600000000600600600600600600916c8ab9-62ba-4206-8425-d7240282c7583807c6e0-c974-4790-9eef-0412792bb602572b0d41-38ea-4a4f-96e4-b123bc97f2ca5fa0dd89-a510-4c61-ad8d-898236f1bf07d3cfec46-fadc-4c2f-ae06-9f29e38662f6reponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMORIGINALDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdfDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdfDissertaçãoapplication/pdf5387438http://repositorio.ufsm.br/bitstream/1/23068/1/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf1d7fb31f1aa9bf9d3c1b4420ef2ba3b9MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.ufsm.br/bitstream/1/23068/2/license_rdf4460e5956bc1d1639be9ae6146a50347MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81956http://repositorio.ufsm.br/bitstream/1/23068/3/license.txt2f0571ecee68693bd5cd3f17c1e075dfMD53TEXTDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.txtDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.txtExtracted texttext/plain157986http://repositorio.ufsm.br/bitstream/1/23068/4/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.txt4b3a931cc19119060ac93e22ba7b47f9MD54THUMBNAILDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.jpgDIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.jpgIM Thumbnailimage/jpeg4409http://repositorio.ufsm.br/bitstream/1/23068/5/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.jpg9702e1a50af7b8ed08c88c018eee0eebMD551/230682021-12-01 03:03:06.572oai:repositorio.ufsm.br:1/23068TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgw6AgVW5pdmVyc2lkYWRlCkZlZGVyYWwgZGUgU2FudGEgTWFyaWEgKFVGU00pIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZQplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVGU00gcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbwpwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVUZTTSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdQpkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcwpuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0byBkYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG7Do28sIHF1ZSBzZWphIGRlIHNldQpjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6oKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFVGU00Kb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQcOHw4NPIE9SQSBERVBPU0lUQURBIFRFTkhBIFNJRE8gUkVTVUxUQURPIERFIFVNIFBBVFJPQ8ONTklPIE9VCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgVUZTTQosIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PClRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBVRlNNIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKQpkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbywgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBhbMOpbSBkYXF1ZWxhcwpjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgoKRepositório Institucionalhttp://repositorio.ufsm.br/PUBhttp://repositorio.ufsm.br/oai/requestopendoar:39132021-12-01T06:03:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.por.fl_str_mv Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
dc.title.alternative.eng.fl_str_mv Mosaics of electrical charges and large gradients of potential in dielectric surfaces formed by the evaporation of liquids
title Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
spellingShingle Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
Ferreira, Letícia de Oliveira
Líquidos
Evaporação
Potencial eletrostático
Eletrodo de Kelvin
Liquids
Evaporation
Electrostatic potential
Kelvin probe
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
title_full Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
title_fullStr Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
title_full_unstemmed Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
title_sort Mosaicos de cargas elétricas e grandes gradientes de potencial em superfícies dielétricas formados pela evaporação de líquidos
author Ferreira, Letícia de Oliveira
author_facet Ferreira, Letícia de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Burgo, Thiago Augusto de Lima
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5737213839553155
dc.contributor.advisor-co1.fl_str_mv Villetti, Marcos Antonio
dc.contributor.referee1.fl_str_mv Köhler, Mateus Henrique
dc.contributor.referee2.fl_str_mv Fagan, Solange Binotto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0061711985233710
dc.contributor.author.fl_str_mv Ferreira, Letícia de Oliveira
contributor_str_mv Burgo, Thiago Augusto de Lima
Villetti, Marcos Antonio
Köhler, Mateus Henrique
Fagan, Solange Binotto
dc.subject.por.fl_str_mv Líquidos
Evaporação
Potencial eletrostático
Eletrodo de Kelvin
topic Líquidos
Evaporação
Potencial eletrostático
Eletrodo de Kelvin
Liquids
Evaporation
Electrostatic potential
Kelvin probe
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Liquids
Evaporation
Electrostatic potential
Kelvin probe
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work presents a study on the charge transfer of the automatic micropipette and the glass microsyringe with the grounded and ungrounded metallic part when dripping with different liquids and also when applying different electric fields in a metallic cylinder, measured with Faraday cup and analyzing how charges can change and how the excess occur at the interface drops. The main object of study developed was the evaporation of drops, the liquid was transferred through a glass microsyringe with the grounded metallic part and deposited on polytetrafluoroethylene (PTFE) surfaces with low residual electrostatic potential. During evaporation, the Kelvin probe was used to measure changes in electrostatic potential in the droplets, which registered an increase in the positive charge in the liquid until reaching a maximum value, followed by a rapid decrease in potential and then stabilization after total evaporation of the liquid. Different solutions were evaporated, deionized water and 3% NaCℓ (sodium chloride), solutions of three different surfactants sodium dodecyl sulfate (sodium lauryl sulfate) (SDS), cetylpyridinium chloride (CPCℓ), and ether 1,1,3, 3-tetramethyl-butyl-phenyl (9.5) - polyoxyethylene (Triton X-100) and drops of different pH. Through the mapping of electrostatic potential and microscopic measurements it was possible to verify an increase in charge in the drop, and where the drop was deposited the dielectric surface became positive and the surroundings in the PTFE, negative. In addition, an electrostatic model was proposed for the evaporation of liquid droplets deposited on the PTFE surface, where the negative charges (hydroxyls; OH-) are disposed in excess at the water-air and water-PTFE interface, while the positive charges (hydrons, H3O+) are found inside the drop (bulk). It is believed that all this work can collaborate/contribute to meteorological research in the future, as there is no model or electrification process explained for drops during evaporation. Also to be able to store all this energy generated spontaneously, which may someday be an alternative energy source.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-06
dc.date.accessioned.fl_str_mv 2021-11-30T13:20:28Z
dc.date.available.fl_str_mv 2021-11-30T13:20:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/23068
url http://repositorio.ufsm.br/handle/1/23068
dc.language.iso.fl_str_mv por
language por
dc.relation.cnpq.fl_str_mv 100600000000
dc.relation.confidence.fl_str_mv 600
600
600
600
600
600
dc.relation.authority.fl_str_mv 916c8ab9-62ba-4206-8425-d7240282c758
3807c6e0-c974-4790-9eef-0412792bb602
572b0d41-38ea-4a4f-96e4-b123bc97f2ca
5fa0dd89-a510-4c61-ad8d-898236f1bf07
d3cfec46-fadc-4c2f-ae06-9f29e38662f6
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Química
dc.publisher.initials.fl_str_mv UFSM
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Química
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Centro de Ciências Naturais e Exatas
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
bitstream.url.fl_str_mv http://repositorio.ufsm.br/bitstream/1/23068/1/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf
http://repositorio.ufsm.br/bitstream/1/23068/2/license_rdf
http://repositorio.ufsm.br/bitstream/1/23068/3/license.txt
http://repositorio.ufsm.br/bitstream/1/23068/4/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.txt
http://repositorio.ufsm.br/bitstream/1/23068/5/DIS_PPGQUIMICA_2020_FERREIRA_LETICIA.pdf.jpg
bitstream.checksum.fl_str_mv 1d7fb31f1aa9bf9d3c1b4420ef2ba3b9
4460e5956bc1d1639be9ae6146a50347
2f0571ecee68693bd5cd3f17c1e075df
4b3a931cc19119060ac93e22ba7b47f9
9702e1a50af7b8ed08c88c018eee0eeb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv
_version_ 1801223687009992704