Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Ciência Florestal (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/43274 |
Resumo: | Stratifying a forest results in more precise and cheaper inventories. This study aimed to select the stratifying variable that estimates more precise and stable inventory over the years for a eucalyptus plantation in Minas Gerais state, Brazil. The continuous forest inventory was performed annually from 2.7 to 6.8 years, and based on the field measurements, arithmetic mean diameter (d), height (h), dominant height (Hdom), basal area (G), volume (V), and mean annual increment in volume (MAI) were calculated. Semivariograms were generated and the exponential, spherical and Gaussian models were fit for each stratifying variable for each measurement date. The models were assessed by the reduced mean error and its deviation, being the exponential model selected. Maps showing the spatial distribution of all variables were generated for each measurement age, using ordinary kriging. Next, the study area was divided in four strata based on each stratifying variable for each measurement age. The stability of each stratifying variables for each measurement age were assessed by: 1) coincident strata area; 2) stability of total strata area; 3) plot permanency on each stratum; and 4) inventory error using stratified random sampling procedures. All variables in all ages presented spatial dependence structure. G and Hdom were the stratifying variables that generated the most and the least coincident strata area over the years, respectively. G and height (h and Hdom) were the stratifying variables yielding the least and most plot stratum changes, respectively. The same trend was observed for the total strata area stability. Stratifying based on MAI and V yielded the smaller inventory error, and h and Hdom yielded the largest. G was selected as the best stratifying variable because it yielded small inventory errors and was the most stable variable in terms of coincident strata area, total strata area and plot stratum changes over the years. |
id |
UFSM-6_08bfff99ed7758cc3e990d7d392c999a |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/43274 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
repository_id_str |
|
spelling |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolationEstabilidade temporal das estratificações utilizando diferentes variáveis dendrométricas e interpolação geoestatísticaStratified random samplingEucalyptusForest inventoryForest managementAmostragem casual estratificadaEucaliptoInventário florestalManejo florestalStratifying a forest results in more precise and cheaper inventories. This study aimed to select the stratifying variable that estimates more precise and stable inventory over the years for a eucalyptus plantation in Minas Gerais state, Brazil. The continuous forest inventory was performed annually from 2.7 to 6.8 years, and based on the field measurements, arithmetic mean diameter (d), height (h), dominant height (Hdom), basal area (G), volume (V), and mean annual increment in volume (MAI) were calculated. Semivariograms were generated and the exponential, spherical and Gaussian models were fit for each stratifying variable for each measurement date. The models were assessed by the reduced mean error and its deviation, being the exponential model selected. Maps showing the spatial distribution of all variables were generated for each measurement age, using ordinary kriging. Next, the study area was divided in four strata based on each stratifying variable for each measurement age. The stability of each stratifying variables for each measurement age were assessed by: 1) coincident strata area; 2) stability of total strata area; 3) plot permanency on each stratum; and 4) inventory error using stratified random sampling procedures. All variables in all ages presented spatial dependence structure. G and Hdom were the stratifying variables that generated the most and the least coincident strata area over the years, respectively. G and height (h and Hdom) were the stratifying variables yielding the least and most plot stratum changes, respectively. The same trend was observed for the total strata area stability. Stratifying based on MAI and V yielded the smaller inventory error, and h and Hdom yielded the largest. G was selected as the best stratifying variable because it yielded small inventory errors and was the most stable variable in terms of coincident strata area, total strata area and plot stratum changes over the years.A estratificação de uma floresta resulta em inventários mais precisos e mais baratos. Este estudo teve como objetivo selecionar a variável estratificadora que estima inventários mais precisos e estáveis ao longo dos anos para um plantio de eucalipto no estado de Minas Gerais, Brasil. Foi realizado inventário florestal contínuo na área anualmente dos anos 2,7 a 6,8, sendo posteriormente calculados o diâmetro médio aritmético (d), altura (h), altura dominante (Hdom), área basal (G), volume (V) e incremento médio anual em volume (MAI). Foram gerados semivariogramas e os modelos exponencial, esférico e Gaussiano foram ajustados para cada variável estratificadora em cada época de medição. Os modelos foram avaliados pelo erro médio reduzido e seu desvio, sendo o modelo exponencial selecionado. Mapas mostrando a distribuição espacial de todas as variáveis foram construídos para cada idade de medição, utilizando krigagem ordinária. Em seguida, a área de estudo foi dividida em quatro estratos com base em cada variável estratificadora para cada idade de medição. A estabilidade de cada variável estratificadora para cada idade de medição foi avaliada por: 1) área coincidente dos estratos; 2) estabilidade da área total dos estratos; 3) permanência da parcela em cada estrato; e 4) erro de inventário utilizando formulação de amostragem casual estratificada. Todas as variáveis em todas as idades apresentaram estrutura de dependência espacial. G e Hdom foram as variáveis estratificadoras que geraram mais e menos área coincidente entre estratos ao longo dos anos, respectivamente. G e altura (h e Hdom) foram as variáveis estratificadoras que apresentaram menor e maior número de parcelas com mudança de estrato, respectivamente. A mesma tendência foi observada para a estabilidade da área total dos estratos. As estratificações baseadas em MAI e V renderam os menores erros de inventário, enquanto as estratificações baseadas em h e Hdom renderam os maiores erros. G foi selecionada como a melhor variável estratificadora, pois apresentou pequenos erros de inventário e foi a variável mais estável em termos da área coincidente dos estratos, estabilidade da área total dos estratos e permanência das parcelas no mesmo estrato.Universidade Federal de Santa Maria2022-03-25info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersiontextoinfo:eu-repo/semantics/otherapplication/pdftext/xmlhttps://periodicos.ufsm.br/cienciaflorestal/article/view/4327410.5902/1980509843274Ciência Florestal; Vol. 32 No. 1 (2022); 102-121Ciência Florestal; v. 32 n. 1 (2022); 102-1211980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaflorestal/article/view/43274/46351https://periodicos.ufsm.br/cienciaflorestal/article/view/43274/50567Copyright (c) 2022 Ciência Florestalhttps://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccessReis, Aliny Aparecida dosRibeiro, AndressaMayrinck, Rafaella CarvalhoMello, José Marcio deBatista, Anderson Pedro BernardinaFerraz Filho, Antonio Carlos2023-03-22T13:48:16Zoai:ojs.pkp.sfu.ca:article/43274Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-03-22T13:48:16Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation Estabilidade temporal das estratificações utilizando diferentes variáveis dendrométricas e interpolação geoestatística |
title |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
spellingShingle |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation Reis, Aliny Aparecida dos Stratified random sampling Eucalyptus Forest inventory Forest management Amostragem casual estratificada Eucalipto Inventário florestal Manejo florestal |
title_short |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
title_full |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
title_fullStr |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
title_full_unstemmed |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
title_sort |
Temporal stability of stratifications using different dendrometric variables and geostatistical interpolation |
author |
Reis, Aliny Aparecida dos |
author_facet |
Reis, Aliny Aparecida dos Ribeiro, Andressa Mayrinck, Rafaella Carvalho Mello, José Marcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
author_role |
author |
author2 |
Ribeiro, Andressa Mayrinck, Rafaella Carvalho Mello, José Marcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Reis, Aliny Aparecida dos Ribeiro, Andressa Mayrinck, Rafaella Carvalho Mello, José Marcio de Batista, Anderson Pedro Bernardina Ferraz Filho, Antonio Carlos |
dc.subject.por.fl_str_mv |
Stratified random sampling Eucalyptus Forest inventory Forest management Amostragem casual estratificada Eucalipto Inventário florestal Manejo florestal |
topic |
Stratified random sampling Eucalyptus Forest inventory Forest management Amostragem casual estratificada Eucalipto Inventário florestal Manejo florestal |
description |
Stratifying a forest results in more precise and cheaper inventories. This study aimed to select the stratifying variable that estimates more precise and stable inventory over the years for a eucalyptus plantation in Minas Gerais state, Brazil. The continuous forest inventory was performed annually from 2.7 to 6.8 years, and based on the field measurements, arithmetic mean diameter (d), height (h), dominant height (Hdom), basal area (G), volume (V), and mean annual increment in volume (MAI) were calculated. Semivariograms were generated and the exponential, spherical and Gaussian models were fit for each stratifying variable for each measurement date. The models were assessed by the reduced mean error and its deviation, being the exponential model selected. Maps showing the spatial distribution of all variables were generated for each measurement age, using ordinary kriging. Next, the study area was divided in four strata based on each stratifying variable for each measurement age. The stability of each stratifying variables for each measurement age were assessed by: 1) coincident strata area; 2) stability of total strata area; 3) plot permanency on each stratum; and 4) inventory error using stratified random sampling procedures. All variables in all ages presented spatial dependence structure. G and Hdom were the stratifying variables that generated the most and the least coincident strata area over the years, respectively. G and height (h and Hdom) were the stratifying variables yielding the least and most plot stratum changes, respectively. The same trend was observed for the total strata area stability. Stratifying based on MAI and V yielded the smaller inventory error, and h and Hdom yielded the largest. G was selected as the best stratifying variable because it yielded small inventory errors and was the most stable variable in terms of coincident strata area, total strata area and plot stratum changes over the years. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-03-25 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion texto info:eu-repo/semantics/other |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/43274 10.5902/1980509843274 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/43274 |
identifier_str_mv |
10.5902/1980509843274 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/43274/46351 https://periodicos.ufsm.br/cienciaflorestal/article/view/43274/50567 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2022 Ciência Florestal https://creativecommons.org/licenses/by-nc/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2022 Ciência Florestal https://creativecommons.org/licenses/by-nc/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/xml |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 32 No. 1 (2022); 102-121 Ciência Florestal; v. 32 n. 1 (2022); 102-121 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1799944135319224320 |