Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência Florestal (Online) |
DOI: | 10.5902/1980509867995 |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/67995 |
Resumo: | An alternative to reduce the time taken for height measurements of trees is the use of equations, usually obtained from the fitting of local hypsometric models, which require the fit of equations for each stratum that characterize the forest. Therefore, this work was developed with the objective of evaluating regional hypsometric models adjusted to clonal eucalyptus data. A total of 26 regional fixed-effect (FE) models were evaluated, adopting the following statistical criteria: lack of multicollinearity, significance in the estimation of regression coefficients, compliance with regression assumptions, graphical residual analysis and validation test with independent data adopting the mean squared of the prediction residuals, the sum of squares of the relative prediction residuals, the interquartile range between the 1st and 3rd quartiles and multiple linear correlation. After identifying the FE model that most stood out among the others, it was adjusted in the form of a mixed effect (ME) model, by including the random effect of the sampling unit. In this case, to compare with the respective FE model, in addition to the previous criteria, the following were adopted: Akaike information criterion, Bayesian information criterion and maximum likelihood ratio test. It was concluded that there is an inexorable need to consider the adjustment of models with ME, because it stands out above the respective model with FE. |
id |
UFSM-6_2e659dedc444238756e161b7bea58281 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/67995 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
spelling |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado areaModelos regionais de relação hipsométrica avaliados para plantio clonal de eucalipto em área de CerradoTestes estatísticosAnálise de regressãoModelos mistosBiometria florestalStatistical testsRegression analysisMixed modelsForest biometricsAn alternative to reduce the time taken for height measurements of trees is the use of equations, usually obtained from the fitting of local hypsometric models, which require the fit of equations for each stratum that characterize the forest. Therefore, this work was developed with the objective of evaluating regional hypsometric models adjusted to clonal eucalyptus data. A total of 26 regional fixed-effect (FE) models were evaluated, adopting the following statistical criteria: lack of multicollinearity, significance in the estimation of regression coefficients, compliance with regression assumptions, graphical residual analysis and validation test with independent data adopting the mean squared of the prediction residuals, the sum of squares of the relative prediction residuals, the interquartile range between the 1st and 3rd quartiles and multiple linear correlation. After identifying the FE model that most stood out among the others, it was adjusted in the form of a mixed effect (ME) model, by including the random effect of the sampling unit. In this case, to compare with the respective FE model, in addition to the previous criteria, the following were adopted: Akaike information criterion, Bayesian information criterion and maximum likelihood ratio test. It was concluded that there is an inexorable need to consider the adjustment of models with ME, because it stands out above the respective model with FE.Uma alternativa para reduzir o tempo despendido com a medição da altura das árvores é o emprego de equações, geralmente, geradas a partir do ajuste de modelos hipsométricos locais, os quais exigem o ajuste de equações conforme o número de unidades amostrais e, ou, estratos que caracterizam a população inventariada. Por isso, este trabalho tem o objetivo de avaliar modelos hipsométricos regionais ajustados aos dados de eucalipto clonal. Foram avaliados um total de 26 modelos regionais de efeito fixo (EF), adotando-se os seguintes critérios estatísticos: inexistência de multicolinearidade, significância na estimativa dos coeficientes de regressão, atendimento às pressuposições de regressão, análise gráfica de resíduos e teste validação com dados independentes, adotando-se a média dos quadrados dos resíduos de predição, a soma dos quadrados dos resíduos de predição relativos, o intervalo interquartil entre o 1º e 3º quartis e correlação linear múltipla. Após identificar o modelo de EF que mais se sobressaiu dentre os demais, procedeu-se o seu ajuste na forma de modelo de efeito misto (EM), ao incluir o efeito aleatório da unidade amostral. Neste caso, para comparar com o respectivo modelo de EF, além dos critérios anteriores, adotaram-se: critério de informação de Akaike, critério de informação Bayesiano e teste da razão da máxima verossimilhança. Concluiu-se a necessidade inexorável de considerar o ajuste de modelos com EM, por este se destacar sobremaneira ao respectivo modelo com EF.Universidade Federal de Santa Maria2023-06-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/6799510.5902/1980509867995Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e67995Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e679951980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/67995/60974Copyright (c) 2023 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessAndrade, Valdir Carlos Lima deSchmitt, ThaísCarvalho, Samuel de Pádua Chaves eBinotti, Daniel Henrique BredaCalegario, Natalino2023-06-22T01:25:51Zoai:ojs.pkp.sfu.ca:article/67995Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2023-06-22T01:25:51Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area Modelos regionais de relação hipsométrica avaliados para plantio clonal de eucalipto em área de Cerrado |
title |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
spellingShingle |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area Andrade, Valdir Carlos Lima de Testes estatísticos Análise de regressão Modelos mistos Biometria florestal Statistical tests Regression analysis Mixed models Forest biometrics Andrade, Valdir Carlos Lima de Testes estatísticos Análise de regressão Modelos mistos Biometria florestal Statistical tests Regression analysis Mixed models Forest biometrics |
title_short |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
title_full |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
title_fullStr |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
title_full_unstemmed |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
title_sort |
Regional hypsometric relationship models assessed for clonal eucalyptus planting in a Cerrado area |
author |
Andrade, Valdir Carlos Lima de |
author_facet |
Andrade, Valdir Carlos Lima de Andrade, Valdir Carlos Lima de Schmitt, Thaís Carvalho, Samuel de Pádua Chaves e Binotti, Daniel Henrique Breda Calegario, Natalino Schmitt, Thaís Carvalho, Samuel de Pádua Chaves e Binotti, Daniel Henrique Breda Calegario, Natalino |
author_role |
author |
author2 |
Schmitt, Thaís Carvalho, Samuel de Pádua Chaves e Binotti, Daniel Henrique Breda Calegario, Natalino |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Andrade, Valdir Carlos Lima de Schmitt, Thaís Carvalho, Samuel de Pádua Chaves e Binotti, Daniel Henrique Breda Calegario, Natalino |
dc.subject.por.fl_str_mv |
Testes estatísticos Análise de regressão Modelos mistos Biometria florestal Statistical tests Regression analysis Mixed models Forest biometrics |
topic |
Testes estatísticos Análise de regressão Modelos mistos Biometria florestal Statistical tests Regression analysis Mixed models Forest biometrics |
description |
An alternative to reduce the time taken for height measurements of trees is the use of equations, usually obtained from the fitting of local hypsometric models, which require the fit of equations for each stratum that characterize the forest. Therefore, this work was developed with the objective of evaluating regional hypsometric models adjusted to clonal eucalyptus data. A total of 26 regional fixed-effect (FE) models were evaluated, adopting the following statistical criteria: lack of multicollinearity, significance in the estimation of regression coefficients, compliance with regression assumptions, graphical residual analysis and validation test with independent data adopting the mean squared of the prediction residuals, the sum of squares of the relative prediction residuals, the interquartile range between the 1st and 3rd quartiles and multiple linear correlation. After identifying the FE model that most stood out among the others, it was adjusted in the form of a mixed effect (ME) model, by including the random effect of the sampling unit. In this case, to compare with the respective FE model, in addition to the previous criteria, the following were adopted: Akaike information criterion, Bayesian information criterion and maximum likelihood ratio test. It was concluded that there is an inexorable need to consider the adjustment of models with ME, because it stands out above the respective model with FE. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-07 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/67995 10.5902/1980509867995 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/67995 |
identifier_str_mv |
10.5902/1980509867995 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/67995/60974 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2023 Ciência Florestal http://creativecommons.org/licenses/by-nc/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 33 No. 2 (2023): Publicação Contínua; e67995 Ciência Florestal; v. 33 n. 2 (2023): Publicação Contínua; e67995 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1822181497262571520 |
dc.identifier.doi.none.fl_str_mv |
10.5902/1980509867995 |