Clustering of Amazon wood species based on physical and mechanical properties

Detalhes bibliográficos
Autor(a) principal: Reis, Pamella Carolline Marques dos Reis
Data de Publicação: 2019
Outros Autores: Souza, Agostinho Lopes de, Reis, Leonardo Pequeno, Carvalho, Ana Márcia Macedo Ladeira, Mazzei, Lucas, Reis, Alisson Rodrigo Souza, Torres, Carlos Moreira Miquelino Eleto
Tipo de documento: Artigo
Idioma: por
Título da fonte: Ciência Florestal (Online)
Texto Completo: https://periodicos.ufsm.br/cienciaflorestal/article/view/28114
Resumo: The intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clusters
id UFSM-6_4eb251b8fdc576cb43c38c57041f0519
oai_identifier_str oai:ojs.pkp.sfu.ca:article/28114
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
repository_id_str
spelling Clustering of Amazon wood species based on physical and mechanical propertiesAgrupamento de espécies madeireiras da Amazônia com base em propriedades físicas e mecânicasIndication of speciesTropical woodWood technologyIndicação de espéciesMadeiras tropicaisTecnologia da madeiraThe intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clustersA procura intensa por essências madeireiras nativas consolidadas, que apresentam elevado uso, pode ocasionar a superexploração de espécies e diminuição do seu estoque na floresta. Uma alternativa para essa situação é a substituição dessas espécies por outras com propriedades da madeira semelhantes e com suficiente estoque de crescimento na floresta. O objetivo deste trabalho foi agrupar as espécies da Amazônia através das propriedades físico-mecânicas da madeira e realizar a análise discriminante para identificar quais características tecnológicas são mais importantes para o agrupamento. As espécies estudadas foram provenientes de oito localidades distintas da região amazônica. As propriedades físico-mecânicas utilizadas obtidas da literatura especializada nacional foram: densidade básica, contração (tangencial, radial e volumétrica), flexão estática, compressão paralela e perpendicular às fibras, dureza Janka paralela e transversal, tração perpendicular às fibras, fendilhamento e cisalhamento. Foi utilizada a técnica de análise multivariada de Cluster (distância euclidiana simples e o método de Ward) e a análise discriminante para avaliar o agrupamento. A análise de Cluster foi eficiente para agrupar as espécies, que foram separadas em três grupos distintos. As espécies que se destacaram foram a Helicostylis pedunculata Benoist. e Tachigali chrysophylla (Poepp.) Zarucchi & Herend., por se agruparem com as espécies mais comercializadas. Os menores valores de Wilks’Lambda foram da densidade da madeira (0,759053), cisalhamento (0,802960) e compressão paralela às fibras (0,825594). Essas características foram as mais determinantes para discriminar os grupos. A análise de agrupamento é eficiente para indicar a substituição de espécies consolidadas na Amazônia.Universidade Federal de Santa Maria2019-04-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2811410.5902/1980509828114Ciência Florestal; Vol. 29 No. 1 (2019); 336-346Ciência Florestal; v. 29 n. 1 (2019); 336-3461980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/28114/pdfCopyright (c) 2019 Ciência Florestalinfo:eu-repo/semantics/openAccessReis, Pamella Carolline Marques dos ReisSouza, Agostinho Lopes deReis, Leonardo PequenoCarvalho, Ana Márcia Macedo LadeiraMazzei, LucasReis, Alisson Rodrigo SouzaTorres, Carlos Moreira Miquelino Eleto2020-06-05T19:47:21Zoai:ojs.pkp.sfu.ca:article/28114Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2020-06-05T19:47:21Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Clustering of Amazon wood species based on physical and mechanical properties
Agrupamento de espécies madeireiras da Amazônia com base em propriedades físicas e mecânicas
title Clustering of Amazon wood species based on physical and mechanical properties
spellingShingle Clustering of Amazon wood species based on physical and mechanical properties
Reis, Pamella Carolline Marques dos Reis
Indication of species
Tropical wood
Wood technology
Indicação de espécies
Madeiras tropicais
Tecnologia da madeira
title_short Clustering of Amazon wood species based on physical and mechanical properties
title_full Clustering of Amazon wood species based on physical and mechanical properties
title_fullStr Clustering of Amazon wood species based on physical and mechanical properties
title_full_unstemmed Clustering of Amazon wood species based on physical and mechanical properties
title_sort Clustering of Amazon wood species based on physical and mechanical properties
author Reis, Pamella Carolline Marques dos Reis
author_facet Reis, Pamella Carolline Marques dos Reis
Souza, Agostinho Lopes de
Reis, Leonardo Pequeno
Carvalho, Ana Márcia Macedo Ladeira
Mazzei, Lucas
Reis, Alisson Rodrigo Souza
Torres, Carlos Moreira Miquelino Eleto
author_role author
author2 Souza, Agostinho Lopes de
Reis, Leonardo Pequeno
Carvalho, Ana Márcia Macedo Ladeira
Mazzei, Lucas
Reis, Alisson Rodrigo Souza
Torres, Carlos Moreira Miquelino Eleto
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Reis, Pamella Carolline Marques dos Reis
Souza, Agostinho Lopes de
Reis, Leonardo Pequeno
Carvalho, Ana Márcia Macedo Ladeira
Mazzei, Lucas
Reis, Alisson Rodrigo Souza
Torres, Carlos Moreira Miquelino Eleto
dc.subject.por.fl_str_mv Indication of species
Tropical wood
Wood technology
Indicação de espécies
Madeiras tropicais
Tecnologia da madeira
topic Indication of species
Tropical wood
Wood technology
Indicação de espécies
Madeiras tropicais
Tecnologia da madeira
description The intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clusters
publishDate 2019
dc.date.none.fl_str_mv 2019-04-04
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/28114
10.5902/1980509828114
url https://periodicos.ufsm.br/cienciaflorestal/article/view/28114
identifier_str_mv 10.5902/1980509828114
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/28114/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2019 Ciência Florestal
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2019 Ciência Florestal
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 29 No. 1 (2019); 336-346
Ciência Florestal; v. 29 n. 1 (2019); 336-346
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1799944132447174656