Clustering of Amazon wood species based on physical and mechanical properties
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | Ciência Florestal (Online) |
Texto Completo: | https://periodicos.ufsm.br/cienciaflorestal/article/view/28114 |
Resumo: | The intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clusters |
id |
UFSM-6_4eb251b8fdc576cb43c38c57041f0519 |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/28114 |
network_acronym_str |
UFSM-6 |
network_name_str |
Ciência Florestal (Online) |
repository_id_str |
|
spelling |
Clustering of Amazon wood species based on physical and mechanical propertiesAgrupamento de espécies madeireiras da Amazônia com base em propriedades físicas e mecânicasIndication of speciesTropical woodWood technologyIndicação de espéciesMadeiras tropicaisTecnologia da madeiraThe intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clustersA procura intensa por essências madeireiras nativas consolidadas, que apresentam elevado uso, pode ocasionar a superexploração de espécies e diminuição do seu estoque na floresta. Uma alternativa para essa situação é a substituição dessas espécies por outras com propriedades da madeira semelhantes e com suficiente estoque de crescimento na floresta. O objetivo deste trabalho foi agrupar as espécies da Amazônia através das propriedades físico-mecânicas da madeira e realizar a análise discriminante para identificar quais características tecnológicas são mais importantes para o agrupamento. As espécies estudadas foram provenientes de oito localidades distintas da região amazônica. As propriedades físico-mecânicas utilizadas obtidas da literatura especializada nacional foram: densidade básica, contração (tangencial, radial e volumétrica), flexão estática, compressão paralela e perpendicular às fibras, dureza Janka paralela e transversal, tração perpendicular às fibras, fendilhamento e cisalhamento. Foi utilizada a técnica de análise multivariada de Cluster (distância euclidiana simples e o método de Ward) e a análise discriminante para avaliar o agrupamento. A análise de Cluster foi eficiente para agrupar as espécies, que foram separadas em três grupos distintos. As espécies que se destacaram foram a Helicostylis pedunculata Benoist. e Tachigali chrysophylla (Poepp.) Zarucchi & Herend., por se agruparem com as espécies mais comercializadas. Os menores valores de Wilks’Lambda foram da densidade da madeira (0,759053), cisalhamento (0,802960) e compressão paralela às fibras (0,825594). Essas características foram as mais determinantes para discriminar os grupos. A análise de agrupamento é eficiente para indicar a substituição de espécies consolidadas na Amazônia.Universidade Federal de Santa Maria2019-04-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaflorestal/article/view/2811410.5902/1980509828114Ciência Florestal; Vol. 29 No. 1 (2019); 336-346Ciência Florestal; v. 29 n. 1 (2019); 336-3461980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/28114/pdfCopyright (c) 2019 Ciência Florestalinfo:eu-repo/semantics/openAccessReis, Pamella Carolline Marques dos ReisSouza, Agostinho Lopes deReis, Leonardo PequenoCarvalho, Ana Márcia Macedo LadeiraMazzei, LucasReis, Alisson Rodrigo SouzaTorres, Carlos Moreira Miquelino Eleto2020-06-05T19:47:21Zoai:ojs.pkp.sfu.ca:article/28114Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2020-06-05T19:47:21Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Clustering of Amazon wood species based on physical and mechanical properties Agrupamento de espécies madeireiras da Amazônia com base em propriedades físicas e mecânicas |
title |
Clustering of Amazon wood species based on physical and mechanical properties |
spellingShingle |
Clustering of Amazon wood species based on physical and mechanical properties Reis, Pamella Carolline Marques dos Reis Indication of species Tropical wood Wood technology Indicação de espécies Madeiras tropicais Tecnologia da madeira |
title_short |
Clustering of Amazon wood species based on physical and mechanical properties |
title_full |
Clustering of Amazon wood species based on physical and mechanical properties |
title_fullStr |
Clustering of Amazon wood species based on physical and mechanical properties |
title_full_unstemmed |
Clustering of Amazon wood species based on physical and mechanical properties |
title_sort |
Clustering of Amazon wood species based on physical and mechanical properties |
author |
Reis, Pamella Carolline Marques dos Reis |
author_facet |
Reis, Pamella Carolline Marques dos Reis Souza, Agostinho Lopes de Reis, Leonardo Pequeno Carvalho, Ana Márcia Macedo Ladeira Mazzei, Lucas Reis, Alisson Rodrigo Souza Torres, Carlos Moreira Miquelino Eleto |
author_role |
author |
author2 |
Souza, Agostinho Lopes de Reis, Leonardo Pequeno Carvalho, Ana Márcia Macedo Ladeira Mazzei, Lucas Reis, Alisson Rodrigo Souza Torres, Carlos Moreira Miquelino Eleto |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Reis, Pamella Carolline Marques dos Reis Souza, Agostinho Lopes de Reis, Leonardo Pequeno Carvalho, Ana Márcia Macedo Ladeira Mazzei, Lucas Reis, Alisson Rodrigo Souza Torres, Carlos Moreira Miquelino Eleto |
dc.subject.por.fl_str_mv |
Indication of species Tropical wood Wood technology Indicação de espécies Madeiras tropicais Tecnologia da madeira |
topic |
Indication of species Tropical wood Wood technology Indicação de espécies Madeiras tropicais Tecnologia da madeira |
description |
The intense search for consolidated native wood essences, which are highly used, can lead to the overexploitation of species and decrease their stocks in the forest. An alternative to this situation is the replacement of these species by others with similar wood properties and with sufficient forest growing stock. The objective of this work was to cluster the Amazon species through wood physical-mechanical properties and perform the discriminant analysis to identify which technological characteristics are more important for the clustering. The species studied came from eight different locations in the Amazon region. The properties used were: basic density, contraction (tangential, radial and volumetric), static flexion, compression parallel and perpendicular to the fibers, Janka hardness parallel and transversal, traction perpendicular to the fibers, cracking and shearing, all obtained from the national specialized literature. Multivariate Cluster analysis (simple Euclidean distance and Ward’s method) and the discriminant analyses were used to evaluate the clustering. Cluster analysis was efficient to cluster the species, which were separated into three distinct groups. The species that stood out were Helicostylis pedunculata Benoist. and Tachigali chrysophylla (Poepp.) Zarucchi & Herend., f or clustering with the most commercialized species. The lowest values of Wilks’Lambda were wood density (0.759053), shearing (0.802960) and compression parallel to the fibers (0.825594). These characteristics were the most determinant to discriminate the clusters. The clustering analysis was efficient for the separation of the species into marketing clusters |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-04-04 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/28114 10.5902/1980509828114 |
url |
https://periodicos.ufsm.br/cienciaflorestal/article/view/28114 |
identifier_str_mv |
10.5902/1980509828114 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaflorestal/article/view/28114/pdf |
dc.rights.driver.fl_str_mv |
Copyright (c) 2019 Ciência Florestal info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2019 Ciência Florestal |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
dc.source.none.fl_str_mv |
Ciência Florestal; Vol. 29 No. 1 (2019); 336-346 Ciência Florestal; v. 29 n. 1 (2019); 336-346 1980-5098 0103-9954 reponame:Ciência Florestal (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Ciência Florestal (Online) |
collection |
Ciência Florestal (Online) |
repository.name.fl_str_mv |
Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br |
_version_ |
1799944132447174656 |